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Abstract

In this paper, using connected compact oriented smooth 4-manifolds, some representations of
the hyperfinite II1-type factor von Neumann algebra are constructed. The Murray–von Neumann
coupling constant of these representations gives rise to a new smooth 4-manifold invariant whose
very first properties are investigated.

Moreover as a part of this construction, a connected oriented smooth 4-manifold admits an
embedding into the hyperfinite II1 factor. This embedding, on the one hand, induces a Riemannian
metric on the manifold such that its Riemannian curvature tensor, if appropriately bounded, belongs
to the von Neumann algebra; on the other hand the metric induces a periodic dynamics on the von
Neumann algebra, what we call the Hodge dynamics on the hyperfinite II1 factor. It is observed
that the metric is Einstein i.e., satisfies the (Riemannian) vacuum Einstein equation with a possibly
non-zero cosmological constant, if and only if its Riemannian curvature tensor belongs to the fixed-
point-subalgebra of the Hodge dynamics.

Finally, we make a comprehensive enumeration of all representations of the hyperfinite II1 factor
constructed here, from the viewpoint of thermal equilibrium states and phase transitions in algebraic
quantum field theory.
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1 Introduction and summary
The hyperfinite factor von Neumann algebra of type II1 is distinguished among von Neumann algebras
in many senses. Apparently this was von Neumann’s favourite operator algebra and he was especially
satisfied with its discovery. As it is known (cf. [23, pp. 22-32] for a possible reconstruction of the
story) he attempted, but finally did not complete or abandoned, to use the hyperfinite II1 factor to bring
quantum mechanics to a not only mathematically, but even conceptionally sound basis, by interpreting
quantum probabilities as relative frequencies of a particular statistical ensemble sorted from an absolute
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one a priori given by this von Neumann algebra due to its unique normalized trace. The idea looked
appealing not only by the uniqueness of the hyperfinite II1 factor among operator algebras, but also be-
cause of its unexpectedly rich representation theory among factors. Indeed, compared with others the
hyperfinite II1 factor has a proliferation of representations: the moduli space of its non-equivalent rep-
resentations is isomorphic to R+ (and accordingly, the II1 factor is the only one among factors whose
K0 group is non-trivial, namely isomorphic to R). However the existence of inequivalent representa-
tions, or in other words the failure of the Stone–von Neumann representation theorem in this case, is an
indicator that the hyperfinite II1 factor is an operator algebra of a physical system possessing infinitely
many degrees of freedom, like a (macroscopic) quantum statistical ensemble. As was mentioned by
von Neumann, but with some uncertainty, in e.g. [23, Letters to P. Jordan, December 11, 1949 and Jan-
uary 12, 1950], because of this property the hyperfinite II1 factor might even play a role in (relativistic)
quantum field theory; although the recent conviction is that rather algebras of type III appear here, cf.
[16, Section V.6].

The aim of this paper is to take two walks around representation theory of the hyperfinite II1 fac-
tor: one mathematical and one physical (of course these are not unrelated). The mathematical trip is
a substantial extension of our previous efforts in [11, 12] and concerns the following problem: despite
the existence of many non-trivial inequivalent representations of the hyperfinite II1 factor, only one of
them appears as “reasonable”, namely its standard representation; of course one can say that this is the
most important while other representations, if cyclic, arise in principle via the Gelfand–Naimark–Segal
construction, and the rest are direct sums of these. However one can also say that this general descrip-
tion of representations is not too informative. Our first result toward constructing new representations
connects the general theory of the hyperfinite II1 factor with four dimensional differential geometry:

Theorem 1.1. Let M be a connected oriented smooth 4-manifold. Making use of its smooth structure
only, out of M a von Neumann algebra R can be constructed which is geometric in the sense that it is
generated by local operators, including all bounded complexified algebraic (i.e., formal or stemming
from a metric) curvature tensors of M. Moreover R itself is a hyperfinite factor of type II1 hence is
unique up to abstract isomorphisms of von Neumann algebras.

Furthermore M admits an embedding M ⊂ R via projections. Two 4-manifolds M,N with cor-
responding embeddings have abstractly isomorphic von Neumann algebras however not canonically.
Nevertheless different abstract isomorphisms between these von Neumann algebras induce orientation-
preserving diffeomorphisms of M and N respectively i.e. leave their embeddings unchanged. Hence up
to diffeomorphisms, all connected oriented smooth 4-manifolds embed into a commonly given abstract
von Neumann algebra R which is the hyperfinite II1 factor.

The occurence of the hyperfinite II1 factor in low dimensional differential topology is not only an
immense source for new representations, but even brings a smooth 4-manifold invariant to life:

Theorem 1.2. Assuming that M above is moreover compact, its von Neumann algebra R admits a
non-faithful representation on a certain complex separable Hilbert space, such that the unitary equiv-
alence class of this representation is invariant under orientation-preserving diffeomorphisms of M.
Consequently the Murray–von Neumann coupling constant of this representation gives rise to a smooth
4-manifold invariant γ . This invariant takes values in the semi-open real interval [0,1) more precisely
γ(M) = 1− 1

x where x ∈
{

4cos2 (π

n

) ∣∣ n = 3,4, . . .
}
∪ [4,+∞) is an element of the set of Jones’ finite

subfactor indices. Moreover γ behaves like

γ(M#N) = γ(M)+ γ(N)− γ(M)γ(N)

under taking connected sum.
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Some further very immediate properties of γ will be elaborated in Lemmata 2.4, 2.5 and 2.6 below,
however let us make some general comments already here. The set of Jones indices hence the spectrum
of γ within [0,1) splits into a discrete and a continuous part. Subfactors belonging to the discrete
part {4cos2 (π

n

)
| n ≧ 3} have been completely classified [25] and in turn they follow an ADE pattern

(with the odditiy that no subfactors corresponding to D2k+1 and E7 exist) [24]. The set of subfactors
belonging to the continuous portion [4,+∞) is however very wild and only partial results are known
mainly for the subinterval [4,5]⊂ [4,+∞) or a bit more (cf. e.g. [21] for an excellent survey and recent
results while for some further extension cf. [1]). Concerning the impact of this division on γ , on the one
hand for the (standard) 4-sphere γ(S4) = 0 hence 1

1−γ(S4)
= 1 belongs to the discrete range of the Jones’

index spectrum. On the other hand, the connected sum formula exhibited in Theorem 1.2 here and some
further ad hoc computations carried out in Section 2 strongly indicate that if a compact 4-manifold M
has non-zero γ-invariant then 1

1−γ(M) ∈ [4,+∞) i.e., the corresponding Jones index already belongs to
the continuous range. This observation is a hint that smooth 4-manifolds might provide a rich reservoir
of subfactors in the wild i.e., continuous index range; moreover poses the question whether or not
smooth 4-manifolds distinct from S4 having invariant in the tame i.e., discrete range (like for instance
the hypothetic exotic or fake S4’s, see Lemma 2.6 below) exist at all.

Next turning toward physics: a longstanding problem of contemporary theoretical physics is how
to unify the obviously successful and mathematically consistent theory of general relativity with the
obviously successful but yet mathematically problematic relativistic quantum field theory. It has been
generally believed that these two fundamental pillars of modern theoretical physics are in a clash not
only because of the different mathematical tools they use but are in tension even at a deep conceptional
level: for instance classical notions of general relativity such as a space-time event, the light cone or
the event horizon of a black hole are “too sharp” objects and the theory itself is “too non-linear” from a
quantum theoretic viewpoint; whereas relativistic quantum field theory is not background independent
from the aspect of general relativity.

The demand by general relativity summarized as the principle of general covariance is perhaps
one of the two main obstacles why general relativity has remained outside of the mainstream classical
and quantum field theoretic expansion in the 20th century. Indeed, an implementation of this inherent
principle of general relativity forces that a robust group, namely the full diffeomorphism group of the
underlying space-time manifold must belong to the symmetry group of a field theory compatible with
general relativity. However an unwanted consequence of the vast diffeomorphism symmetry is that it
even allows one to transform time itself away from the theory (known as the “problem of time” in gen-
eral relativity, see e.g. [30, Appendix E] for a technical presentation as well as e.g. [6, Chapter 2] and
[18, Subsection 2.1] for a broader philosophical survey on this problem) making it problematic to ap-
ply standard canonical quantization methods—based on Hamiltonian formulation hence on an essential
explicit reference to an ”auxiliary time”—in case of general relativity. The other reason is the as well
in-built core idea, the equivalence principle which renders general relativity a strongly self-interacting
classical field theory in the sense that precisely in four dimensions the “free” and the “interaction-with-
itself” modes of the gravitational field have energetically the same magnitudes, obfuscating perturbative
considerations. In fact the equivalence principle says that there is no way to make a physical distinction
between these two modes of gravity. Heisenberg and Pauli were still optimistic concerning canonical
and perturbative quantization of gravity with respect to a fixed time or, more generally, a reference or
ambient space-time in their 1929 paper [19]; however these initial hopes quickly evaporated already
in the 1930’s by recognizing the essential impossibility of quantizing general relativity via canonical
quantization and exhibit it as a perturbatively renormalizable quantum field theory in a coherent way.
This was clearly observed by Bronstein [5] first; as he wrote in his 1936 paper: “[...] the elimination of
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the logical inconsistencies [requires] rejection of our ordinary concepts of space and time, modifying
them by some much deeper and nonevident concepts.” (also cited by Smolin [28, p. 85]).

Roughly the thinking about gravity has split into two main branches since the 1950-60’s [18].
The first older and more accepted direction postulates that gravity should be quantized akin to other
fundamental forces but with more advanced methods including (super)string theoretic [17], Feynman
integral, loop quantum gravity or some further techniques—or at least one should construct it as a low
energy effective field theory of an unknown high energy theory; the other newer and yet less-accepted
attitude declares that gravity is an emergent macroscopic phenomenon in the sense that it always in-
volves a huge amount of physical degrees-of-freedom (beyond the obvious astronomical evidences,
also supported by various theoretical discoveries during the 1970-80’s such as Hawking’s area theo-
rem, black hole radiation, all resembling thermodynamics) hence is not subject to quantization at all.
Nevertheless, as a matter of fact in the 2020’s, we have to admit that an overall accepted quantum the-
ory of gravity does not exist yet and even general relativity as a classical field theory persists to keep its
conceptionally isolated position within current theoretical physics [18]. Perhaps it is worth mentioning
here that general relativity receives further challenges from low dimensional differential topology too
by recent discoveries which were unforeseenable earlier, cf. e.g. [10, Section 1] for a brief summary.

Strongly motivated by these well-known general incompatibility comments, in the aforementioned
second i.e., physical trip around the hyperfinite II1 factor, an operator algebraic characterization of the
vacuum Einstein equation is obtained, which can be summarized as follows:

Theorem 1.3. Let M be a connected oriented smooth 4-manifold and consider its embedding M⊂R as
in Theorem 1.1. This embeding induces a Riemannian structure (M,g) whose Riemannian curvature,
if bounded, satisfies Rg ∈R. Morever if ∗ denotes the Hodge star operating on Ω2

c(M;C) then ∗ ∈R.
It is self-adjoint and satisfies ∗2 = 1 hence is unitary thus generates a periodic inner ⋇-automorphism
of R rendering R a so-called Hodge dynamical system

(
R,

{
Ad∗t}t∈R

)
. Finally, M ⊂R is preserved

by the Hodge dynamics, more precisely it is part of its fixed-point-subalgebra, and (M,g) is Einstein if
and only if Rg belongs to this fixed-point-subalgebra too.

This result can be regarded as a sort of “linearization via complex numbers” of the highly non-linear
and inherently real Einstein equation.

The paper is organized as follows. Section 2 contains detailed proofs of Theorems 1.1 and 1.2 and
some further results concerning smooth 4-manifolds in Lemmata 2.4, 2.5 and 2.6. Then Section 3 is
devoted to the proof of Theorem 1.3 as well as placing representation theory of the hyperfinite II1 factor
into the context of algebraic quantum field theory.

Acknowledgements. All the not-referenced results in this work are fully the author’s own contribution.
There are no conflict of interest to declare that are relevant to the content of this article. The work meets
all ethical standards applicable here. No funds, grants, or other financial supports were received. Data
sharing is not applicable to this article as no datasets were generated or analysed during the underlying
study.

2 Emergence of the hyperfinite II1 factor
In this section for completeness and the Reader’s convenience we recall and partly extend further the
mathematical exposition in [12] and give a detailed proof of Theorems 1.1 and 1.2. First we shall
exhibit a simple self-contained two-step construction of a von Neumann algebra attached to any ori-
ented smooth 4-manifold. Then the structure of this algebra will be explored in some detail. Finally
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we exhibit a new (i.e. not the standard) representation of this von Neumann algebra induced by the
whole procedure leading to a new smooth 4-manifold invariant whose properties are also examined.
For clarity we emphasize that the forthcoming constructions are rigorous in the sense that no physical
ideas, considerations, steps, etc. are used.

Construction of an algebra. Take the isomorphism class of a connected oriented smooth 4-manifold
(without boundary) and from now on let M be a once and for all fixed representative in it carrying the
action of its own orientation-preserving group of diffeomorphisms Diff+(M). Among all tensor bun-
dles T (p,q)M over M the 2nd exterior power ∧2T ∗M ⊂ T (0,2)M is the only one which can be endowed
with a pairing in a natural way i.e., with a pairing extracted from the smooth structure (and the orienta-
tion) of M alone. Indeed, consider its associated vector space Ω2

c(M) :=C∞
c (M;∧2T ∗M) of compactly

supported smooth 2-forms on M. Define a pairing ⟨ · , · ⟩L2(M) : Ω2
c(M)×Ω2

c(M)→ R via integration:

⟨ϕ,ψ⟩L2(M) :=
∫
M

ϕ ∧ψ (1)

and observe that this pairing is non-degenerate however is indefinite in general thus can be regarded
as an indefinite scalar product on Ω2

c(M). It therefore induces an indefinite real quadratic form Q on
Ω2

c(M) given by Q(ϕ) := ⟨ϕ,ϕ⟩L2(M). Let C(M) denote the complexification of the infinite dimensional
real Clifford algebra associated with (Ω2

c(M),Q). Because Clifford algebras are usually constructed
out of definite quadratic forms, we summarize this construction [22, Section I.§3] to make sure that
the resulting object C(M) is well-defined i.e. is not sensitive for the indefiniteness of (1). To begin
with, let Vm ⊂ Ω2

c(M) be an m dimensional real subspace and assume that Qr,s := Q|Vm has signature
(r,s) on Vm that is, the maximal positive definite subspace of Vm with respect to Qr,s has dimension
r while the dimension of the maximal negative definite subspace is s such that r+ s = m by the non-
degeneracy of Qr,s. Then out of the input data (Vm,Qr,s) one constructs in the standard way a finite
dimensional real Clifford algebra Cr,s(M) with unit 1 ∈Cr,s(M) and an embedding Vm ⊂Cr,s(M) with
the property ϕ2 = Qr,s(ϕ)1 for every element ϕ ∈ Vm. This real algebra depends on the signature
(r,s) however fortunately its complexification Cm(M) := Cr,s(M)⊗C is already independent of it. In
fact, if Mk(C) denotes the algebra of k× k complex matrices, then it is well-known [22, Section I.§3]
that C0(M)∼=M1(C) while C1(M)∼=M1(C)⊕M1(C) and the higher dimensional cases follow from
the complex periodicity Cm+2(M)∼=Cm(M)⊗M2(C). Consequently depending on the parity Cm(M) is
isomorphic to either M

2
m
2
(C) or M

2
m−1

2
(C)⊕M

2
m−1

2
(C). These imply that 2-step-chains of successive

embeddings of real subspaces Vm⊂Vm+1⊂Vm+2⊂Ω2
c(M) starting with V0 = {0} and given by iterating

ω 7→
(

ω

0

)
provide us with injective algebra homomorphisms M

2
m
2
(C) ↪→M

2
m
2 +1(C) having the shape

A 7→
(

A 0
0 A

)
. Therefore C(M) is isomorphic to the injective limit of this directed system, that is there

exists a linear algebraic isomorphism

C(M)∼=
+∞⋃
n=0

M2n(C) (2)

or equivalently
C(M)∼=M2(C)⊗M2(C)⊗ . . .

because this injective limit is also isomorphic to the infinite tensor product of M2(C)’s. For clarity note
that being (1) a non-local operation, C(M) is a genuine global infinite dimensional object.

It is well-known (cf. [8, Section I.3]) that any complexified infinite Clifford algebra like C(M)
above generates the II1 type hyperfinite factor von Neumann algebra. Let us summarize this procedure
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too (cf. [2, Section 1.1.6]). It readily follows that C(M) possesses a unit 1 ∈ C(M) and its center
comprises the scalar multiples of the unit only. Moreover C(M) continues to admit a canonical embed-
ding Ω2

c(M;C) ⊂C(M) satisfying ω2 = Q(ω)1 where now Q denotes the quadratic form induced by
the complex-bilinear extension of (1). We also see via (2) already that C(M) is a complex ⋇-algebra
whose ⋇-operation (provided by taking Hermitian matrix transpose, a non-local operation) is written as
A 7→ A⋇. The isomorphism (2) also shows that if A ∈C(M) then one can pick the smallest n ∈ N such
that A∈M2n(C) consequently A has a finite trace defined by τ(A) := 2−nTrace(A) i.e., taking the usual
normalized trace of the corresponding 2n×2n complex matrix. It is straightforward that τ(A) ∈C does
not depend on n. We can then define a sesquilinear inner product on C(M) by (A,B) := τ(AB⋇) which
is non-negative and non-degenerate thus the completion of C(M) with respect to the norm ∥ · ∥ induced
by ( · , · ) renders C(M) a complex Hilbert space what we shall write as H and its Banach algebra
of all bounded linear operators as B(H ). Multiplication in C(M) from the left onitself is continuous
hence gives rise to a representation π : C(M)→B(H ). Finally our central object effortlessly emerges
as the weak closure of the image of C(M) under π within B(H ) or equivalently, by referring to von
Neumann’s bicommutant theorem [2, Theorem 2.1.3] we put

R := (π(C(M)))′′ ⊂B(H ) .

This von Neumann algebra of course admits a unit 1 ∈ R moreover continues to have trivial center
i.e., is a factor. Moreover by construction it is hyperfinite. The trace τ as defined extends from C(M)
to R and satisfies τ(1) = 1. Moreover [2, Proposition 4.1.4] this trace is unique on R. Likewise we
obtain by extension a representation π : R→B(H ). Observe that here we have constructed H as
a completion of (C(M),τ) however the same H arises if taking the completion of (R,τ). Hence the
two kinds of completions R and H of one and the same object C(M) in fact form an increasing chain
C(M)⊂R⊂H as complex (complete) vector spaces. Thus the canonical inclusion Ω2

c(M;C)⊂C(M)
recorded above automatically extends to inclusions Ω2

c(M;C)⊂R⊂H too. Given A,B ∈R we shall
write A ∈ R but B̂ ∈H from now on as usual. This is necessary since R and H are very different
for example as U(H )-modules: given a unitary operator V ∈ U(H ) then A ∈ R is acted upon as
A 7→VAV−1 but B̂ ∈H transforms as B̂ 7→V B̂. Using this notation the trace always can be written as
a scalar product with the image of the unit in H that is, for every A ∈R we have

τ(A) = (Â, 1̂)

yielding a general and geometric expression for the trace.
Exploring the algebra R. Before proceeding further let us make a digression here to gain a better

picture. This is desirable because taking the weak closure like R of some explicitly known structure like
C(M) often involves a sort of loosing control over the latter. Nevertheless we already know promisingly
that R is a hyperfinite factor von Neumann algebra of II1 type. Let us now exhibit some of its elements.

1. Our first examples are the 2-forms themselves as it follows from the already mentioned canonical
embedding Ω2

c(M;C) ⊂ C(M) combined with C(M) ⊂ R. This also implies that in fact R is weakly
generated by 1 ∈ C(M) and all finite products of 2-forms ω1ω2 . . .ωn within the associative algebra
C(M)(and likewise, H is the closure of the unit and all finite products too). We might call this as the
first picture on R provided by the embedding Ω2

c(M;C) ⊂C(M) however this description is not very
informative.

2. To see more examples, let us return to the Clifford algebra in (2) for a moment. We already know
that there exists a canonical embedding Ω2

c(M;C) ⊂ C(M). In addition to this let us find a Clifford
module for C(M). Consider again any finite even dimensional approximation Cm(M) = Cr,s(M)⊗C
constructed from (Vm,Qr,s) where now Vm ⊂ Ω2

c(M) is a real even m = r + s dimensional subspace.
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Choose any 2
m
2 dimensional complex vector subspace Sm within Ω2

c(M;C). If End(Ω2
c(M;C)) denotes

the associative algebra of all C-linear transformations of Ω2
c(M;C) then Sm ⊂ Ω2

c(M;C) induces an
embedding EndSm ⊂ End(Ω2

c(M;C)) moreover we know that EndSm ∼=M
2

m
2
(C)∼=Cm(M). Therefore

we obtain a non-canonical inclusion Cm(M) ⊂ End(Ω2
c(M;C)) for every fixed m ∈ 2N. Furthermore

Sm ⊂ Sm+2 ⊂ Ω2
c(M;C) given by ω 7→

(
ω

0

)
induces a sequence Cm(M)⊂Cm+2(M)⊂ End(Ω2

c(M;C))
for Clifford algebras which is compatible with the previous ascending chain of their matrix algebra
realizations. Consequently taking the limit m→+∞ we come up with a non-canonical injective linear-
algebraic homomorphism

C(M)⊂ End(Ω2
c(M;C)) (3)

and this embedding gives rise to the second picture on R. Of course, unlike the first picture above, this
second one does not exist in the finite dimensional case.

Although the ⋇-algebra End(Ω2
c(M;C)) is yet too huge, we can at least exhibit some of its elements.

The simplest ones are the 2-forms themselves because Ω2
c(M;C) ⊂C(M) ⊂ End(Ω2

c(M;C)) holds as
we already know. Furthermore orientation-preserving diffeomorphisms act C-linearly on Ω2

c(M;C) via
pullbacks thus we conclude that Diff+(M)⊂ End(Ω2

c(M;C)). Likewise Lie(Diff+(M))∼=C∞
c (M;T M)

consisting of compactly supported real vector fields acts C-linearly on Ω2
c(M;C) through Lie deriva-

tives hence we also find that Lie(Diff+(M))⊂ End(Ω2
c(M;C)).

Moreover C∞(M;End(∧2T ∗M⊗C)) ⊂ End(Ω2
c(M;C)) i.e. the bundle or in other words point-

wisely defined endomorphisms are also included. As an introductory observation note that in case
of such elements all operations in End(Ω2

c(M;C)) stem from the corresponding pointwise opera-
tions i.e. if A,B ∈C∞(M;End(∧2T ∗M⊗C)) and x ∈M therefore Ax,A∗x ,Bx ∈ End(∧2T ∗x M⊗C) then
(AB)x = AxBx and A⋇

x = A∗x . Operators of this kind are important because they allow to make a con-
tact with local four dimensional differential geometry.1 A peculiarity of four dimensions is that the
space C∞(M;End(∧2T ∗M⊗C)) contains curvature tensors (more precisely their complex linear exten-
sions) on M. If (M,g) is an oriented Riemannian 4-manifold then its Riemannian curvature tensor Rg
is indeed a member of this subalgebra: with respect to the splitting of complexified 2-forms into their
(anti)self-dual parts its complex linear extension looks like (cf. [27])

Rg =

( 1
12Scal+Weyl+ Ric0

Ric∗0
1

12Scal+Weyl−

)
:

Ω+
c (M;C)⊕

Ω−c (M;C)
−→

Ω+
c (M;C)⊕

Ω−c (M;C)
(4)

hence is a self-adjoint operator R⋇
g = Rg. More generally, C∞(M;End(∧2T ∗M⊗C)) contains the com-

plex linear extensions of all algebraic (i.e. formal only, not stemming from a metric) curvature tensors
R over M.

How to decide whether or not these elements of End(Ω2
c(M;C)) belong to R? The key concept

here is the trace. Compared with the above trace expression τ(A) = (Â, 1̂) generally valid on R, more
specific trace formulata are obtained if M is endowed with a normalized Riemannian metric g i.e., the
corresponding volume form µg = ∗1 satisfies

∫
M µg = 1. The unique sesquilinear extension of g induces

a positive definite sesquilinear L2-scalar product

(ϕ,ψ)L2(M,g) :=
∫

x∈M

g(ϕx,ψx)µg(x) =
∫
M

ϕ ∧∗ψ

1In fact all the constructions so far work for an arbitrary oriented and smooth 4k-manifold with k = 0,1,2, . . . (note that
in 4k+2 dimensions the indefinite pairing (1) gives rise to a symplectic structure on 2k+1-forms).
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on Ω2
c(M;C). If {ϕ1, . . . ,ϕ2n}n=1,2,... is an ascending orthonormal sub-base sequence in Ω2

c(M;C) then
it readily follows that the trace of any B ∈ End(Ω2

c(M;C)) formally looks like

τ(B) = lim
n→+∞

1
2n

2n

∑
i=1

(Bϕi , ϕi)L2(M,g) (5)

and, if exists, is independent of the frame used. Obviously B ∈ End(Ω2
c(M;C))∩C(M) if and only

if the sum on the right hand side is constant after finitely many terms; and an inspection of this trace
expression at finite stages shows that in general B ∈ End(Ω2

c(M;C))∩R if and only if τ(B) exists.2 As
a consequence note that End(Ω2

c(M;C))∩R is already independent of the particular inclusion (3).
An example: Φ ∈ Diff+(M) acts on Ω2

c(M;C) via pullback (Φ−1)∗ but this action necessarily
induces a C-linear inner ⋇-automorphism on End(Ω2

c(M;C)) too consequently (Φ−1)∗ must be unitary
hence |τ((Φ−1)∗)|= 1. Thus due to finiteness of its trace it extends to H (cf. Footnote 2) as a unitary
operator hence Diff+(M) ⊂ End(Ω2

c(M;C))∩R. Another example: likewise if X ∈ C∞
c (M;T M) and

its corresponding Lie derivative LX operating on 2-forms satisfies τ(LX) < +∞ then it extends to H
(cf. again Footnote 2) such that LX ∈ End(Ω2

c(M;C))∩R.
Furthermore the curvature Rg of (M,g) as an operator in (4) acts on Ω2

c(M;C). If in addition it is
bounded which means that

sup
∥ω∥L2(M,g)=1

∥Rgω∥L2(M,g) ≦ K <+∞

then

0 ≦ |τ(Rg)|≦ lim
n→+∞

1
2n

2n

∑
i=1
|(Rgϕi , ϕi)L2(M,g)|≦ lim

n→+∞

1
2n

2n

∑
i=1
∥Rgϕi∥L2(M,g) ≦ K

thus extends over H (cf. again Footnote 2) and satisfies Rg ∈C∞(M;End(∧2T ∗M⊗C))∩R and more
generally any R ∈C∞(M;End(∧2T ∗M⊗C))∩R if it is bounded.

Actually when R ∈ C∞(M;End(∧2T ∗M⊗C)) the previous trace formula can be further specified
because one can compare the global trace τ(R) and the local trace function x 7→ tr(Rx) given by the
pointwise traces of the local operators Rx : ∧2T ∗x M⊗C→ ∧2T ∗x M⊗C at every x ∈ M. Recall that
R has been constructed as the weak closure of the Clifford algebra (2). In fact [2, Section 1.1.6] the

universality of R permits to obtain it from other matrix algebras too, like for instance from
+∞⋃
n=0

M6n(C)

whose weak closure therefore is again R. By the aid of this altered construction we can formally start
with

τ(R) = lim
n→+∞

1
6n

6n

∑
i=1

(Rϕi , ϕi)L2(M,g) .

Fix n ∈ N, write Mn :=
6n⋂

i=1
suppϕi ⫅ M and take a point x ∈Mn. Since dimC(∧2T ∗x M⊗C) =

(4
2

)
= 6

the maximal number of completely disjoint linearly independent sub-6-tuples in {ϕ1,x,ϕ2,x, . . . ,ϕ6n,x}
2By definition End(Ω2

c(M;C))∩R contains those operators in R⊂B(H ) which are defined on the whole H but map
Ω2

c(M;C) ⊂H into itself; obviously such operators have finite trace. Conversely, given B ∈ End(Ω2
c(M;C)) we may try

to extend it from Ω2
c(M;C) to H step-by-step as follows. For a fixed n take the sub-basis {ϕ1, . . . ,ϕ2n} in Ω2

c(M;C) and
consider the restriction Bn to the corresponding 2n dimensional complex subspace; then iterating Bn 7→

(
Bn 0
0 Bn

)
embed

it into C(M) and define the action of Bn on H by continuously extending over H the multiplication from the left on
C(M) ⊂H with its image; it is clear that Bn→ B weakly as n→ +∞ yielding a well-defined action of B on H . This is
indeed and extension of the action of B on Ω2

c(M;C) to H simply because of (3); moreover B ∈R if τ(B)<+∞ i.e. in this
case B ∈ End(Ω2

c(M;C))∩R.
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is equal to 6n

6 = 6n−1. Moreover it follows from Sard’s lemma that with a generic smooth choice for
{ϕ1,ϕ2, . . .} the subset of those points y ∈Mn where this number is less than 6n−1 has measure zero in
Mn with respect to the measure µg. Consequently

6n

∑
i=1

(Rϕi,ϕi)L2(Mn,g) =
∫

x∈Mn

6n

∑
i=1

g(Rxϕi,x,ϕi,x)µg(x) = 6n−1
∫

x∈Mn

tr(Rx)µg(x) .

Since {ϕ1,ϕ2, . . .} is a basis in Ω2
c(M;C) therefore M \

+∞⋃
n=0

Mn has measure zero as well we can let

n→+∞ to end up with

τ(R) =
1
6

∫
M

tr(R)µg (6)

and observe that τ in this form is nothing else than the generalization of the total scalar curvature of a
Riemannian manifold. Moreover if and only if (6) exists R extends to H (cf. Footnote (2) as usual)
and gives R ∈C∞(M;End(∧2T ∗M⊗C))∩R. So if we start with (3) i.e. the second picture we can use
several useful tracial criteria for checking whether or not an operator in End(Ω2

c(M;C)) extends to an
operator in R.

3. Now we are ready to exhibit an especially important class of elements in R through a natural
regular embedding of any connected oriented smooth 4-manifold M into its R by the aid of the first
picture as follows. To every sufficiently nice closed subset /0 ⫅ X ⫅ M there exists an associated linear
subspace Ω2

c(M,X ;C) ⊂ Ω2
c(M;C) ⊂C(M) ⊂H consisting of compactly supported smooth 2-forms

vanishing at least along X . In this way to every point x ∈M one can attach a closed subspace Vx ⊂H
provided by the corresponding local Clifford algebra C(M,x)⊂C(M) having the structure

C(M,x) = C1+Ω
2
c(M,x ;C)+Ω

2
c(M,x ;C)Ω2

c(M,x ;C)+ . . . (7)

and taking its closure within H . Let Px : H →Vx be the corresponding orthogonal projection. Observe
that a priori Px ∈B(H ) however in fact Px ∈ R. Indeed, with respect to H = Vx⊕V ⊥x there is an
induced decomposition C(M) =

(
C(M,x) ∗
∗ ∗

)
hence simply Px =

(
1 0
0 0

)
∈ C(M) ⊂ R. It readily follows

that the resulting map
iM : M −→R (8)

defined by x 7→ Px is injective and continuous in the norm topology consequently gives rise to a contin-
uous embedding of M into R via projections.

Having understood M ⊂ R for a given 4-manifold let us compare these embeddings for different
spaces. So let M,N be two connected oriented smooth 4-manifolds and consider their corresponding
embeddings into their von Neumann algebras via (8) respectively. Regardless what M or N are, their
abstractly given algebras are both hyperfinite factors of II1 type, therefore these latter objects are iso-
morphic [2, Theorem 11.2.2] however not in a canonical fashion. Indeed, if F ′ : R→R is an abstract
isomorphism between the R’s for M and N respectively then any other abstract isomorphism between
them has the form F ′′ = β−1F ′α where α and β are C-linear ⋇-automorphisms (in short from now on:
automorphisms) of the abstractly given R for M and the abstractly given R for N respectively.

Therefore to understand the freedom how operator algebras for different 4-manifolds are identified
we have to understand automorphisms of R. First, let us see how inner automorphisms of the weakly
dense subalgebra C(M) look like. Taking into account (3) all inner automorphisms of C(M) are sim-
ply conjugations with appropriate elements of Aut(Ω2

c(M;C)) i.e., the group of all invertible C-linear
transformations of Ω2

c(M;C). If x∈M recall that Ω2
c(M,x;C)⊂Ω2

c(M;C) is a complex subspace and it
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is easy to show by invertability that subspaces of this kind are permuted by elements of Aut(Ω2
c(M;C)).

Consequently any member of Aut(Ω2
c(M;C)) induces an orientation-preserving diffeomorphism Φ of

M and a fiberwise C-linear diffeomorphism f of ∧2T ∗M⊗C such that

∧2T ∗M⊗C
π

��

f // ∧2T ∗M⊗C
π

��
M Φ // M

is commutative i.e. yields a bundle isomorphism of ∧2T ∗M⊗C. Conversely it is straightforward that
every C-linear bundle isomorphism of ∧2T ∗M⊗C gives rise to an element of Aut(Ω2

c(M;C)). Thus
there exists an isomorphism of groups Aut(Ω2

c(M;C)) ∼= Iso(∧2T ∗M⊗C). Consider the short exact
sequence 1→ G (∧2T ∗M⊗C)→ Iso(∧2T ∗M⊗C)→Diff+(M)→ 1 involving the fiberwise C-linear
automorphism group (the gauge group) G (∧2T ∗M⊗C) ∼= C∞(M;Aut(∧2T ∗M⊗C)) the global auto-
morphism group Iso(∧2T ∗M⊗C) ∼= Aut(C∞(M;∧2T ∗M⊗C)) = Aut(Ω2

c(M;C)), both of the vector
bundle ∧2T ∗M⊗C, and the diffeomorphism group Diff+(M) of the underlying space M respectively.
This short exact sequence can therefore be re-written as

1−→C∞(M;Aut(∧2T ∗M⊗C))−→ Aut(Ω2
c(M;C))−→ Diff+(M)−→ 1 . (9)

In addition the map Φ 7→ (Φ−1)∗ gives rise to a group injection Diff+(M)→ Aut(Ω2
c(M;C)) whose

composition with the projection Aut(Ω2
c(M;C))→ Diff+(M) is the identity consequently (9) can be

supplemented to

1−→C∞(M;Aut(∧2T ∗M⊗C))−→ Aut(Ω2
c(M;C)) −→←− Diff+(M)−→ 1

implying a splitting Aut(Ω2
c(M;C)) =C∞(M;Aut(∧2T ∗M⊗C))⋊Diff+(M) as a semi-direct product.

Thus an inner automorphism of C(M) as a conjugation with a suitable element of Aut(Ω2
c(M;C))

admits a unique decomposition AdγAd(Φ−1)∗ where γ is a C-linear gauge transformation of the bundle
∧2T ∗M⊗C hence leaves M pointwise fixed, and Φ is a diffeomorphism of M which also preserves
M as a whole. It then readily follows that the embedding M ⊂ R given by (8) is preseved by this
transformation. Next, consider the strong⋇-topology on B(H ). Taking R ⊂B(H ) it is clear that
C(M) ⊂ R is a dense subalgebra; moreover, there exists an inclusion AutR ⊂ B(H ) for the full
automorphism group too, and it is known [26, Theorem 4] that the subgroup of inner automorphisms is
also dense within AutR. Consequently, any automorphism α of R arises as

α = lim
i

(
Adγ iAd(Φ−1

i )∗
)

(10)

where the limit is taken in the strong⋇-topology on B(H ), demonstrating that α also preserves M⊂R.
Likewise, Adδ Ad(Ψ−1)∗ is the shape of an inner automorphism of C(N) and a generic automorphism
β arises as strong⋇-limit of them. These make sure that given an abstract isomorphism F ′ : R→ R
between the von Neumann algebras constructed for M and N respectively then any other abstract iso-
morphism can be expressed as F ′′ = lim

i

(
AdΨ∗i

(Ad
δ
−1
i

F ′Adγ i)Ad(Φ−1
i )∗

)
between them. Consequently

abstract isomorphisms between a pair of abstractly given von Neumann algebras differ only by au-
tomorphisms which preserve their underlying 4-manifolds as embedded within their algebras via (8)
respectively; i.e. differences between identifications are inessential in this sense. Our overall conclu-
sion therefore is that up to diffeomorphisms every connected oriented smooth 4-manifold M admits an
embedding into a commonly given abstract von Neumann algebra R via (8).



Operator algebraic characterization of the Einstein equation 11

4. We close the partial comprehension of R with an observation regarding its general structure. The
shape of (9) at the Lie algebra level looks like

0−→C∞(M;End(∧2T ∗M⊗C))−→ End(Ω2
c(M;C))−→ Lie(Diff+(M))−→ 0 .

We already have an embedding (3). In addition to this there exists an isomorphism of Lie algebras
L : C∞

c (M;T M)→ Lie(Diff+(M)) such that X 7→ LX is nothing but taking Lie derivative with respect
to a compactly supported real vector field where the first-order C-linear differential operator LX is
supposed to act on 2-forms hence Lie(Diff+(M))⊂ End(Ω2

c(M;C)) as we know already too. Therefore
the intersection of this sequence with the embedding C(M) ⊂ End(Ω2

c(M;C)) from (3) is meaningful
and gives

0−→C∞(M;End(∧2T ∗M⊗C))∩C(M)−→C(M)−→ Lie(Diff+(M))∩C(M)−→ 0 .

The second term consists of fiberwise algebraic hence local operators (including e.g. algebraic cur-
vature tensors) having finite trace (6) and likewise the fourth term consists of Lie derivatives having
finite trace via (5) thus belongs to the class of local operators too. Since the vector spaces underlying
C(M) considered either as an associative or a Lie algebra are isomorphic we conclude, as an important
structural observation, that the overall construction here is geometric in the sense that the algebra R is
generated by local operators.

Summing up our findings so far. Given a connected oriented smooth 4-manifold M there exists a
hyperfinite factor von Neumann algebra of II1 type R associated to M such that the solely input in
its construction has been the pairing (1). Hence R depends only on the orientation and the smooth
structure of M. It contains, certainly among many other non-geometric operators, the space M itself
as projections, its orientation-preseving diffeomorphisms as well as the space of bounded algebraic
curvature tensors. Nevertheless R is geometric in the sense that it is generated by M’s local operators
alone. It is remarkable that despite the plethora of smooth 4-manifolds detected since the early 1980’s
their associated von Neumann algebras here are unique offering a sort of justification terming R as
“universal”. Moreover one is permitted to say that every connected oriented smooth 4-manifold M
(perhaps together with its curvature tensor) embeds up to diffeomorphisms hence in a functorial way
into a common R and to look upon this von Neumann algebra as a natural common non-commutative
space generalization of all oriented smooth 4-manifolds (or all 4-geometries). This universality also
justifies the simple notation R used throughout the text.

Proof of Theorem 1.1: Putting together all considerations so far the theorem is proved. □

Representations of R and a new smooth 4-manifold invariant. The next lemmata closely follow [12,
Lemmata 2.1-2.4] but with substantially improved constructions and extended contents.

Lemma 2.1. Let M be a connected compact oriented smooth 4-manifold and R its von Neumann al-
gebra with trace τ as before. Then there exists a complex separable Hilbert space I (M)⊥ and a
representation ρM : R→B(I (M)⊥) with the following properties. If π : R→B(H ) is the represen-
tation constructed above then 0 ⫅ I (M)⊥ ⫋ H and ρM = π|I (M)⊥ holds.

Moreover the unitary equivalence class of ρM is invariant under orientation-preserving diffeomor-
phisms of M. Thus the Murray–von Neumann coupling constant3 of ρM is invariant under orientation-
preserving diffeomorphisms. Writing PM : H → I (M)⊥ for the orthogonal projection and taking
into account the characterization of I (M)⊥ the coupling constant is equal to τ(PM) ∈ [0,1) hence
γ(M) := τ(PM) is a smooth 4-manifold invariant. Consequently γ(M) ∈ [0,1) holds.

3Also called the R-dimension of a left R-module hence denoted dimR, cf. [2, Chapter 8].
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Proof. First let us exhibit a representation of R; this construction follows the Gelfand–Naimark–Segal
technique however relative to the already existing standard representation. As we have seen every
connected oriented smooth 4-manifold M admits an embedding into its von Neumann algebra R via
(8) and this map looks like x 7→ Px i.e. to every point x ∈M the map iM : M→R assigns a projection
Px ∈ R. Take any Riemannian metric g on M having volume form µg over M. Suppose furthermore
that M is compact. Then consider the map FM,g : R→ C given by

FM,g(A) :=
∫

x∈M

i∗Mτ
(
APx

)
µg(x)

which is well-defined due to compactness of M. This map is obviously C-linear, continuous and sat-
isfies FM,g(A⋇) = FM,g(A). Moreover we compute FM,g(A⋇A) =

∫
M i∗M

∥∥ÂPx
∥∥2

µg(x) ≧ 0 consequently
FM,g is a non-negative functional on R. In particular FM,g(1⋇1) > 0 hence an application of the stan-
dard inequality |FM,g(A⋇B)|2 ≦ FM,g(A⋇A)FM,g(B⋇B) implies that 0 ⫅ I(M,g)⫅R defined by the el-
ements satisfying FM,g(B⋇B) = 0 is a multiplicative left-ideal in R such that C1 ̸⊂ I(M,g) thus surely
0 ⫅ I(M,g)⫋R. In fact I(M,g) is independent of the metric g involved in its definition: if h is another
Riemannian metric on M then there exists a positive function f : M→ R such that

0 ≦ FM,h(A⋇A) =
∫

x∈M

i∗Mτ
(
A⋇APx

)
µh(x) =

∫
x∈M

i∗Mτ
(
A⋇APx

)
f (x)µg(x)≦ FM,g(A⋇A)∥ f∥L∞(M)

hence I(M,g) ⫅ I(M,h) and likewise we see that I(M,h) ⫅ I(M,g) i.e. I(M,h) = I(M,g). Therefore
we shall denote this ideal simply as I(M) from now on.

Recall that the standard representation π : R→B(H ) arises via multiplication from the left in R
on itself. Since 0 ⫅ I(M) ⫋ R is a left-ideal π restricts to a representation of R on the Hilbert space
completion 0 ⫅ I (M) ⫅ H of I(M). Let us proceed further by exploting that the scalar product on
R⊂H looks like (Â, B̂) = τ(AB⋇) hence satisfies the identity (ÂB,Ĉ ) = (B̂, Â⋇C); consequently the
standard representation restricts to the orthogonal complementum 0 ⫅ I (M)⊥ ⫅ H as well. Note
that I (M)⊥ as a complete complex vector is isomorphic to H /I (M). Thus for a given M we define
ρM : R→ B(I (M)⊥) to be simply the restricted representation π|I (M)⊥ . From the general theory
[2, Chapter 8] we know that if PM : H → I (M)⊥ is the orthogonal projection then simply PM ∈ R′

because 0 ⫅ I (M)⊥ ⫅ H i.e. it lies in the standard R-module (and not in H ⊗ ℓ2(N) as in general).
The Murray–von Neumann coupling constant of ρM is therefore equal to τ(PM) ∈ [0,1] and depends
only on the unitary equivalence class of ρM. In particular it is preserved by orientation-preserving
diffeomorphisms of M hence we conclude that γ(M) := τ(PM) ∈ [0,1] is a smooth invariant of M.

Concerning an important restriction on the spectrum of γ , first note that A ∈ I(M) if and only if
APx = 0 for all x ∈ M. This demonstrates that being Px surely not invertible, non-trivial solutions in
principle are allowed and belong to 0 ⫋R (1−Px) ⫋R. These non-trivial subsets are weakly closed
left-ideals and in fact

I(M) =
⋂

x∈M

R (1−Px) (11)

consequently I(M) itself is a weakly closed left-ideal. Fix x∈M. The Hilbert space closure of R(1−Px)
within H is also non-trivial and carries a non-trivial representation of R in the usual way as above.
Consequently there exists an invariant projection 0 ̸= Qx ∈R′ onto this invariant subspace having the
property R(1−Px) =RQx = QxR. Take 0 ̸= Ax ∈R(1−Px) and write it in the form BxQx = QxBx. If
y∈M is another point with similar 0 ̸=Ay =ByQy =QyBy where Qy ∈R′ too then AxAy =(AxBy)Qy and
AxAy = (BxAy)Qx implies AxAy ∈R(1−Px)∩R(1−Py). Let {x1,x2, . . .} ⊂M be an ordered countable
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everywhere dense subset of points in M (such subset exists because by the standard definition M as a
topological space admits a countable basis) and in addition take an open covering {Uk}k∈N of M. By
the compactness of M this covering possesses a finite subcovering {U1, . . . ,Ul}. For every 1 ≦ k ≦ l
take a point x jk ∈ Uk and some 0 ̸= Ax jk

∈ R(1−Px jk
) and for l ∈ N define Al := clAx j1

Ax j2
. . .Ax jl

where the order is determined by demanding that 1 ≦ j1 < j2 < · · ·< jl . Perturbing slightly Ax jk
within

R(1−Px jk
) if necessary, we can assume that 0 ̸= Al and cl ∈ C is choosen so that [[Al]] = 1 where

[[·]] denotes the operator norm on R. Consequently taking refinements of the covering and performing
re-indexing if necessary, we obtain a sequence {Am}m∈N in the unit sphere of R. However being the
closed unit ball of any von Neumann algebra hence of R weakly compact [2, Corollary 2.3.2], there
exists an element A ∈R satisfying [[A]] = 1 and a (sub)sequence {An}n∈N such that An→ A weakly as
n→ +∞. This limit operator has the following property. Take a subsequence {x1,x2, . . .} within the
by construction everywhere dense subset ∪+∞

n=1∪n
k=1 {x jk} ⊂M converging to an arbitrary fixed x ∈M.

Passing to the corresponding subsequence {Ai}i∈N within the already weakly convergent one {An}n∈N
also by construction we know that AiPxi = 0. Hence picking ξ ,η ∈H we can expand the scalar product(

APxξ ,η
)

=
(
(A−Ai)Pxξ ,η

)
+
(
Ai(Px−Pxi)ξ ,η

)
+
(
AiPxiξ ,η

)
=

(
(A−Ai)Pxξ ,η

)
+
(
Ai(Px−Pxi)ξ ,η

)
and let i→ +∞ hence xi → x to see that

(
APxξ ,η

)
= 0. Now putting η := APxξ gives ∥APxξ∥ = 0

for every ξ ∈H i.e. APx = 0. Since x ∈M was arbitrary via (11) we conclude that the limit operator
satisfies

0 ̸= A ∈
+∞⋂
n=1

n⋂
k=1

R
(
1−Px jk

)w

=
⋂

x∈M

R(1−Px) = I(M)

thus 0 ̸= I(M) hence for its Hilbert space closure also 0 ̸=I (M). Thus for the corresponding projection
1−PM ̸= 0 consequently γ(M)< 1. Therefore the compactness of M implies that γ(M) ∈ [0,1).

Remark. Before proceeding further we note that, taking into account that the inclusion (8) assigning to
a point on the geometric side a projection on the algebraic side is defined for every connected smooth
oriented 4-manifold, (11) permits to extend the construction of γ as in Lemma 2.1 to non-compact M’s
too. If M admits a smooth compactification M̃ then 0 ≦ γ(M)≦ γ(M̃)< 1 consequently γ(M) ∈ [0,1)
continues to hold. However if a connected oriented smooth 4-manifod X fails to have this property then
in principle γ(X) = 1 can occur. An immense class of such X’s exists in four dimensions e.g. taking
any smooth compact M and any R4 (an exotic or fake R4) the connected sum X := M#R4 provides a
typical example. Topologically M is nothing else than the one-point compactification of X however
smoothly not cf. [14, Theorem 2.1].

Jones’ subfactor theory (for a summary cf. e.g. [2, Section 9.4] or [8, Chapter V.10]) imposes an
interesting further restriction on the possible spectrum of γ just introduced.

Lemma 2.2. Let M be a connected compact oriented smooth 4-manifold and γ(M) ∈ [0,1) its smooth
invariant. Then γ(M) = 1− 1

x where x ∈ {4cos2 (π

n

)
|n ≧ 3}∪ [4,+∞) that is, an element from the set

of all possible finite Jones’ subfactor indices.

Proof. We go ahead working with the weakly closed left-ideal (11) distillated out of M alone. Observe
first that its adjoint I(M)⋇ is therefore a weakly closed right-ideal hence I(M)∩ I(M)⋇ ⫅ I(M) ⫋ R
is a two-sided ideal thus the simplicity of R (cf. [2, Proposition 4.1.5]) forces I(M)∩ I(M)⋇ = 0.
Consequently I(M)+ I(M)⋇ = I(M)⊕ I(M)⋇. Likewise I(M)⋇I(M)⫅ I(M)∩ I(M)⋇ = 0 too; finally
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0 ⫅ I(M)I(M)⋇ ⫅ R is also a two-sided ideal hence again is either 0 or R but leveraging the com-
mutativity of the trace τ|I(M)I(M)⋇ = τ|I(M)⋇I(M) = τ|0 = 0 i.e. in fact I(M)I(M)⋇ = 0. Consequently(
I(M)⊕ I(M)⋇

)2
⫅ I(M)⊕ I(M)⋇ demonstrating that this self-adjoint set is already a subalgebra of

R which is even weakly closed however without unit. Hence taking bicommutant within B(H ) we
know that

(
I(M)⊕ I(M)⋇

)′′
= C1⊕ I(M)⊕ I(M)⋇ thus introducing

I(M) := C1⊕ I(M)⊕ I(M)⋇ ⫅R (12)

is by construction a non-trivial von Neumann subalgebra of R since 0 ̸= I(M). (For clarity we note that
the displayed spitting of I(M) valid only as a complex complete vector space and not as an algebra.)
Using the projection PM : H →I (M)⊥ from Lemma 2.1 consider the set R(1−PM). Knowing that
1−PM ∈R′ we can write R(1−PM) = (1−PM)R hence R(1−PM) =R(1−PM)R(1−PM) i.e. it is
an algebra. Since 0 ̸= 1−PM because γ(M) < 1 it operates on (1−PM)H = I (M) such that 1−PM
acts as the identity and extends by zero to I (M)⊥. Therefore R(1−PM) is a von Neumann algebra on
H . Consequently its intersection with R within B(H ) is a von Neumann subalgebra of R and in fact
is equal to R(1−PM). Struggling further pick A∈ I(M)⊂R then Â∈I (M)⊂H thus Â = (1−PM)Â
hence A = A(1−PM) yielding A ∈ R(1−PM); moreover taking adjoint of the previous equation we
get A⋇ = ((1− PM)A)⋇ = A⋇(1− PM) consequently

(
C1⊕ I(M)⊕ I(M)⋇

)
(1− PM) ⫅ R(1− PM).

Conversely, if A ∈ R(1−PM) then A ∈ R has the form A = B(1−PM) with some B ∈ R hence we
obtain Â = (1−PM)B̂; we can assume that B̂ ∈ I (M) therefore Â = B̂ yielding A = B ∈ I(M); or
equivalently we can write Â= J(1−PM)JB̂⋇ such that B̂⋇ ∈I (M)⋇ where I (M)⋇⊂H is the closure
of I(M)⋇; but this means that A = B⋇ ∈ I(M)⋇; therefore

(
C1⊕ I(M)⊕ I(M)⋇

)
(1−PM)⫆R(1−PM)

too. Actually the map A 7→ A(1−PM) is a homomorphism from I(M) to I(M)(1−PM) which is readily
both injective and surjective. In this way we come up with an alternative characterization as an abstract
isomorphism

I(M)∼= I(M)(1−PM) =R(1−PM)⫅R .

The map A 7→ A(1−PM) is also a homomorphism from R to R(1−PM) which is obviously surjective;
but it is injective as well because R is simple hence R and R(1−PM) are abstractly isomorphic conse-
quently R(1−PM) is also a type II1 factor. Thus 0 ⫅ I(M)⫅R is a subfactor of R admitting a Jones
index [R : I(M)] satisfying [R : I(M)] ∈ {4cos2 (π

n

)
|n ≧ 3}∪ [4,+∞] .

The representation of R on I (M) worked out in Lemma 2.1 restricts to I(M) rendering I (M)
a left-I(M)-module too. Moreover also by Lemma 2.1 as left-R-modules H = I (M)⊕I (M)⊥.
Recalling now the basic properties of the dimension function of a left von Neumann algebra module
over the von Neumann algebra itself (cf. e.g. [2, Chapter 8]) we collect:

dimRH = 1 (the standard left-R-module)
dimRH = dimRI (M)+dimRI (M)⊥ (additivity)

dimRI (M)⊥ = γ(M) (by Lemma 2.1 and Footnote 3)
dimI(M)I (M) = [R : I(M)]dimRI (M) (dimension comparison)

dimI(M)(1−PM)I (M) = dimI(M)(1−PM)

(
(1−PM)I (M)

)
= τ(1−PM)dimI(M)I (M)

∥ (projection formula)
dimR(1−PM)I (M) = dimR(1−PM)

(
(1−PM)H

)
= τ(1−PM)dimRH

(projection formula)

from which it follows that 0 ≦ γ(M) = 1− 1
[R :I(M)] . But we know from Lemma 2.1 already that

γ(M)< 1 hence [R : I(M)]<+∞ as stated.
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Next we collect some basic useful properties of the invariant.

Lemma 2.3. (Reversing orientation.) If M is a connected compact oriented smooth 4-manifold and M
is its orientation-reversed form then γ(M) = γ(M).

(Gluing principle.) Let M and N be two connected compact oriented smooth 4-manifolds and let
M#N be their connected sum. With induced orientation M#N is a connected compact oriented smooth
4-manifold. Then

γ(M#N) = γ(M)+ γ(N)− γ(M)γ(N)

and in particular if Sn ⊂ Rn+1 is the standard n-sphere then γ(S4) = 0.
(Blow-up.) If M′ is a smooth blow-up of M then

γ(M)≦ γ(M′) = γ(M)+
(
1− γ(M)

)
t

where t := γ(CP2).

Proof. The first assertion is obvious from γ’s construction carried out in the proof of Lemma 2.1.
Concerning the second assertion as a general observation note that the γ-invariant is a well-defined

map from (the category) Man4 of all orientation-preserving diffeomorphism classes of connected com-
pact oriented smooth 4-manifolds into the real interval [0,1) ⊂ R. But Man4 forms a commutative
semigroup with (one possible) unit S4 under the connected sum operation #. That is, if X ,Y,Z ∈Man4

and S4 ∈ Man4 then X#Y ∼= Y #X and (X#Y )#Z ∼= X#(Y #Z) and X#S4 ∼= X . Pick M,N ∈ Man4 with
their connected sum M#N ∈ Man4 and consider the corresponding γ(M),γ(N),γ(M#N) ∈ [0,1). In-
troduce • : [0,1)× [0,1)→ [0,1) by setting γ(M) • γ(N) := γ(M#N). The •-operation is therefore
well-defined and satisfies γ(X) • γ(Y ) = γ(Y ) • γ(X) and (γ(X) • γ(Y )) • γ(Z) = γ(X) • (γ(Y ) • γ(Z))
and γ(X) • γ(S4) = γ(X) i.e. γ(S4) is a unit. These ensure us that ([0,1),•) is a unital commuta-
tive semigroup and γ : (Man4,#)→ ([0,1),•) is a unital semigroup homomorphism. As a specific
observation note that γ has been defined in Lemma 2.1 as the (continuous) dimension of a closed
subspace within the R-module Hilbert space H ; more precisely γ(M) = τ(PM) arises through a
chain of assignments M 7→ I (M)⊥ 7→ dimRI (M)⊥. Lemma 2.1 and in particular (11) imply that
0 ̸= I(M#N) = I(M)∩ I(N) which demonstrates that 0 ̸= I (M#N) = I (M)∩I (N) ⫅ H for the
Hilbert space completion too. Introducing the Abelian group (L(H ),+) of closed subspaces with
respect to taking sum and hence 0 ∈ H playing the role of the unit we see that the assignment
M 7→ I (M)⊥ has the property I (M#N)⊥ = (I (M)∩I (N))⊥ = I (M)⊥+I (N)⊥ ⫋ H hence
induces a unital semigroup homomorphism L : (Man4,#)→ (L(H )\{H },+). Thus γ factorizes as

γ : (Man4,#) L−−−→ (L(H )\{H },+)
dimR−−−−−→ ([0,1),•)

consequently the unique plain dimension function on subspaces as it is, must in fact be an Abelian unital
semigroup homomorphism too hence its properties impose constraints on its target structure. Recall the
γ-invariant when evaluated on a connected sum has been written as γ(M#N) = γ(M)• γ(N) expressing
that it depends only on γ(M) and γ(N). Putting V = I (M)⊥ and W = I (N)⊥ and knowing that the
dimension function behaves like dimR(V +W ) = dimRV +dimRW −dimR(V ∩W ) forces to write
γ(M)• γ(N) = γ(M)+ γ(N)− f

(
γ(M),γ(N)

)
and the unknown function is strongly determined by the

geometric properties of intersection of subspaces. Namely we know that f : [0,1)× [0,1)→ [0,1)
such that f (s, t) = f (t,s) and s 7→ f (s, t) is linear, f (0, t) = 0 and lims→1 f (s, t) = t. The function
f (s, t) = st solves these constraints. This forces the Abelian semigroup multiplication law on [0,1) to
look like s• t = s+ t− st with 0 ∈ [0,1) being the unit hence yielding the shape for γ(M#N) moreover
constraining γ(S4) = 0 as stated.
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Finally, since the blow-up in the smooth category (Man4,#) is by definition given by M′ := M#CP2

the result follows if we put t := γ(CP2) = γ(CP2) in the connected sum formula.

Proof of Theorem 1.2. Putting together Lemmata 2.1, 2.2 and 2.3 the theorem follows. □

An excursus on the invariant γ . Before proceeding forward let us take a closer look on the smooth
4-manifold concerning its effective computability. The general experience is that the more sensitive
an invariant is, the less computable it is. By techniques taken from 4-manifold theory and the gluing
principle, the following probably non-trivial but quite insensitive behaviour of γ shows up in the closed
simply connected case.

Lemma 2.4. If M′ and M′′ are connected, simply connected, closed smooth 4-manifolds which are
homeomorphic then γ(M′) = γ(M′′).

In fact for any connected, simply connected, closed smooth 4-manifold

γ(M) = 1− (1− t)b2(M)

with t = γ(CP2) as before.

Proof. Concerning the first assertion if M′ and M′′ are as required then there exists an integer k ≧ 0 such
that M′#k(CP1×CP1)∼=M′′#k(CP1×CP1), cf. e.g. [15, Theorem 9.1.12]. Thus we know that we have
the equality γ(M′#k(CP1×CP1)) = γ(M′′#k(CP1×CP1)). Then introducing s := γ(k(CP1×CP1))
and applying the gluing principle we find

γ(M′)+ s− γ(M′)s = γ(M′′)+ s− γ(M′′)s

and leveraging the invertability of the map r 7→ r+ s− rs because s < 1 we obtain γ(M′) = γ(M′′).
Concerning the second assertion, with some s ∈ [0,1) take the recursive sequence

R0(s) := 0 , R1(s) := s , . . . , Rk(s) := s+Rk−1(s)− sRk−1(s) , . . .

for all k = 0,1,2, . . . representing the semigroup {0}∪N inside [0,1) and put t := γ(CP2) = γ(CP2).
Now if M1 and M2 are connected, closed, simply connected, smooth then there exist integers k1, l1 ≧ 0
and k2, l2 ≧ 0 such that M1#k1CP2#l1CP2 ∼= M2#k2CP2#l2CP2 (cf. e.g. [15, Theorem 9.1.14]) which
gives again that γ(M1#k1CP2#l1CP2) = γ(M2#k2CP2#l2CP2). Then by the gluing principle

γ(M1)+Rk1+l1(t)− γ(M1)Rk1+l1(t) = γ(M2)+Rk2+l2(t)− γ(M2)Rk2+l2(t) .

Let M1 := M be arbitrary and M2 := S4 hence γ(M2) = 0. Then we can suppose that k1 + l1 ≦ k2 + l2
therefore

γ(M)+Rk1+l1(t)− γ(M)Rk1+l1(t) = Rk2+l2(t)

from which again, taking into account that t < 1, by invertability we find γ(M) = Rk2+l2−k1−l1(t) hence
setting n := k2 + l2− k1− l1 ≧ 0 we get γ(M) = Rn(t). Moreover it is clear from the proof that in fact
n = b2(M). It is easy to see that actually Rk(s) = 1− (1− s)k and inserting k := b2(M) and s := t we
end up with the stated formula for γ(M) in the simply connected case.

As an important but unexpectedly subtle task next we compute the number 0 ≦ t < 1 assigned to
CP2. This number appears in both Lemmata 2.3 and 2.4 and t ̸= 0 is crucial for rendering things not
completely trivial in the simply connected realm. Nevertheless γ in the non-simply connected regime
might be more interesting; since in the well-known construction of 4-manifolds with prescribed finitely
presented fundamental group the space S1×S3 plays a key role (since π1(S1×S3)∼=Z is the free group
generated by a single element) we compute its invariant here too for future reference.
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Lemma 2.5. An equality γ(CP2) = 8
9 holds hence t = 8

9 . Thus γ(M) = 1−
(1

9

)b2(M) in Lemma 2.4 and
the 2nd Betti number of a connected simply connected closed smooth 4-manifold M can be expressed in
terms of its γ-invariant and looks like

b2(M) =
log 1

1−γ(M)

log9

(we arranged the expression so that the logarithms are positive).
Moreover γ(S1×S3) = 3

4 .

Proof. If (M,g) is a compact oriented Riemannian 4-manifold then remember that, as a special four
dimensional phenomenon, Rg ∈R. Concerning the (complexified) curvature as an operator we make a
general observation: if (M,g) is a homogeneous 4-space then for its curvature Rg ∈ I(M) ⫅R if and
only if Rg = R1. Indeed, referring to the splitting of I(M) in (12) the self-adjoint curvature admits a
unique decomposition Rg = a1+A+A⋇ where a ∈R and A ∈ I(M). We already know via (11) that the
condition A∈ I(M) is equivalent to APx = 0 hence PxA⋇ = 0 too implying that APx+PxA⋇ = 0 for every
x∈M. Also recall that here 0 ̸=Px ∈R has been constructed in (8) as the projection Px : H →Vx where
Vx ⊂H is the closure of the local Clifford algebra C(M,x) ⊂C(M). Recalling its structure exhibited
in (7) consider its subspace Ω2

c(M,x;C)⊂C(M,x) consisting of complex 2-forms vanishing at x ∈M.
Take an arbitrary element ξx ∈Ω2

c(M,x;C)⫋ Vx. Then

0 = Px(APx +PxA⋇)Pxξx = Px(A+A⋇)Pxξx = Px(Rg−a1)Pxξx = Px(Rg−a1)ξx = (Rg−a1)ξx

where at the fourth step we leveraged that Pxξx = ξx and at the fifth step that Rg−a1 ∈R is in fact an
extension of a geometric i.e. pointwisely defined operator (at this point cf. Footnote 2 again) hence
preserves the subspace Ω2

c(M,x;C) ⫋ Vx too. Consequently (Rg− a1)|Ω2
c(M,x;C) = 0 for every x ∈M.

However (M,g) is homogeneous by assumption therefore Rg−a1 is a constant operator along M hence
in this case the stronger property (Rg− a1)|Ω2

c(M;C) = 0 holds too implying (Rg− a1)|H = 0. That is
Rg−a1 is the zero operator on H demonstrating A = 0 in the unique decomposition of Rg or in other
words Rg ∈ R1⊂ I(M) as claimed.

Now specializing to the complex projective space consider the Fubini–Study metric g on CP2 with
corresponding curvature tensor Rg ∈R. It is a classical fact that the Fubini–Study metric is a homoge-
neous Riemannian 4-manifold satisfying the Einstein condition with non-zero cosmological constant
and having non-vanishing Weyl curvature. Therefore referring back to (4) surely 0 ̸= Rg /∈ R1 conse-
quently 0 ̸= Rg ̸∈ I(CP2) hence I(CP2) is a non-trivial subfactor of R. Proceeding further it is clear
that as a therefore non-trivial condition I(CP2) must be invariant within R under Diff+(CP2) acting as
inner automorphisms on R. The isometry group Iso(CP2,g)⫋ Diff+(CP2) of the Fubini–Study metric
is large enough to act transitively along CP2 thus taking into account the decomposition in (11) we can
see that by picking any point x0 ∈ CP2

I(CP2) =
⋂

x∈CP2

R(1−Px) =
⋂

Φ∈Diff+(CP2)

R
(
1−PΦ(x0)

)
=

⋂
Ψ∈Iso(CP2,g)

R
(
1−PΨ(x0)

)
and this together with (12) sharpens the invariance condition. Indeed, being an intersection, I(CP2)
is pointwisely fixed by Iso(CP2,g) hence so is I(CP2) therefore the effective form of the invariance
condition is that I(CP2) be pointwisely fixed by the finite dimensional group Iso(CP2,g) yet acting
as inner automorphisms on R. Actually Iso(CP2,g) acts on Ω2

c(CP2;C) by pullbacks hence taking
into account (3) acts with corresponding conjugations on the Clifford subalgebra C(CP2) which then
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extend to inner automorphisms on the weak closure R. An action characterized by these properties
is unique on R. For if α ∈ AutR belongs to a family of automorphisms abstractly isomorphic to
Iso(CP2,g) and which pointwisely fixes I(CP2) then under the embedding CP2 ⊂R provided by (8)
α factorizes on the corresponding C(CP2) according to (10) as the product of a gauge transformation on
∧2T ∗CP2⊗C which can be supposed to be the identity, and an orientation-preserving diffeomorphism
of CP2. Moreover these latter transformations act transitively nevertheless preserve CP2 ⊂ R. Thus
the action of this family on R looks like as described above. An example for such a unique action of
Iso(CP2,g)∼= PU(3) on R arises as conjugation by 3×3 unitary matrices on R∼=M3(I(CP2)) hence

[R : I(CP2)] = [M3(I(CP2)) : I(CP2)] = 32 = 9

demonstrating that γ(CP2) = 1− 1
[R:I(CP2)]

= 1− 1
9 = 8

9 = t as stated.

Concering S1×S3 we repeat the previous steps. First let us make sure that 0 ̸= I(S1×S3) ⫋ R.
Choosing an isomorphism S1×S3 ∼= U(2) and taking the corresponding biinvariant metric g we obtain
a homogeneous Riemannian 4-space structure on S1×S3 acted upon transitively by U(2). Assume that
this metric is Einstein; then referring back to the decomposition (4) of the Riemannian curvature in the
four dimensional oriented case this means that Ric0 = 0 i.e. the traceless Ricci tensor vanishes but in
addition the Gauß–Bonnet–Chern theorem says that

0 = χ(S1×S3) =
1

8π2

∫
S1×S3

(
|Weyl+|2g + |Weyl−|2g +

1
24

Scal2
)

µg

implying Weyl± = 0 and Scal = 0 too hence actually that Rg = 0 i.e. g is flat. However this is not
possible because a compact flat 4-manifold is always universally covered by the flat R4 which cannot be
the case here. Consequently g is neither Einstein nor flat hence again by (4) we know that 0 ̸= Rg ̸∈R1
and this together with its homogeneity permits to conclude that 0 ̸=Rg ̸∈ I(S1×S3) hence this subfactor
is not trivial. Secondly repeating the remaining steps for CP2 but replacing U(3) with U(2) we find
that

[R : I(S1×S3)] = [M2(I(S1×S3)) : I(S1×S3)] = 22 = 4

consequently γ(S1×S3) = 1− 1
[R:I(S1×S3)]

= 1− 1
4 = 3

4 as stated.

We close our detour on γ as well as this section with two general observations. The first is that by

Lemma 2.2 the range of γ naturally splits into a discrete part
{

1− 1
4cos2

(
π

n

)}
n=3,4,...

⊂ [0,1) and a

continuous part
[3

4 ,1
)
⊂ [0,1). On the one hand γ(S4) = 0 by Lemma 2.3 hence belongs to the discrete

part. On the other hand γ(CP2) = 8
9 is a member of the continuous part by Lemma 2.5 hence the same

holds for all simply connected closed spaces having non-zero 2nd Betti number by Lemma 2.4; and
likewise γ(M#N) belongs to the continuous part whenever γ(M) > 0 and γ(N) > 0 via Lemma 2.3;
finally γ(S1× S3) = 3

4 belongs there too via Lemma 2.5. It is an interesing question whether or not
exists any M distinct from S4 such that γ(M) belongs to the discrete range?

As a second observation, therefore apparently S4 is sharply separated from the rest of 4-manifolds
from the viewpoint of the γ-invariant and this gap phenomenon might be linked with the difficulty
underlying the 4 dimensional smooth Poincaré conjecture as follows. Lemma 2.4 unfortunately makes
sure that γ is not injective at its certain values in the continuous part because γ depends only on the
2nd Betti number and in fact γ gets less-and-less distinctive as the 2nd Betti number inreases. On the
contrary, as the 2nd Betti number approaches zero, γ has a sharp content: an application to S4 satisfying
γ(S4) = 0 implies that if the smooth four dimensional Poincaré conjecture fails then γ is not injective
at zero too. A stronger assertion is the following.
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Lemma 2.6. The restriction γ|Man4
0

to (the category of) all connected, simply connected closed smooth
4-manifolds is injective at zero if and only if the smooth Poincaré conjecture holds i.e. the 4-sphere
admits a unique smooth structure.

Proof. If S4 is a differentiable manifold homeomorphic to S4 then S4 ∈ Man4
0 such that b2(S4) = 0

therefore Lemma 2.4 implies γ(S4) = 1− (1− t)0 = 0. Assume that γ|Man4
0

is injective at zero. Then

S4 ∼= S4 and the 4 dimensional smooth Poincaré conjecture follows.
Conversely, take S4 ∈Man4

0 such that γ(S4) = 0. Then by Lemmata 2.4 and 2.5 we conclude that

γ(S4) = 1−
(1

9

)b2(S4)
= 0 hence b2(S4) = 0. The validity of the 4 dimensional topological Poincaré

conjecture [13] makes sure that S4 is homeomorphic to S4. Assume that the smooth 4 dimensional
Poincaré conjecture is true. Then S4 ∼= S4 hence γ|Man4

0
is injective at zero.

3 The Einstein equation and comparison of representations
In the previous section making use of the smooth structure and orientation of a 4-manifold alone,
we have constructed a subfactor I(M) ⫅ R encoding some information about topology and probably
smoothness. In this section using additional geometric data we shall construct a normal subalgebra
F(M,g) ⫅ R related with an operator algebraic characterization of the Riemannian vacuum Einstein
equation Ric = Λg precisely in 4 dimensions.

Construction of a canonical metric. As a first step, let us observe that the plain manifold embedding
M ⊂R in (8) naturally enhances to a Riemannian embedding (M,g) ⊂ (R,Reτ). Consider the setup
in Theorem 1.1 again i.e., take a connected oriented smooth 4-manifold M and consider its embedding
into R via (8) mapping x ∈M into Px ∈ R. Fix a point x ∈M and a tangent vector X ∈ TxM. Take a
1-parameter family {Φt}t∈(−ε,+ε) of diffeomorphisms such that the curve t 7→Φt(x) within M satisfies
Φ0(x) = x∈M and Φ̇0(x) =X ∈ TxM and consider the corresponding image curve P(t) := iMΦt(x) in R
hence Px =P(0). Then P(0) = iMx∈R and formally Ṗ(0) = d

dt iMΦt(x)|t=0 = iM∗Φ̇0(x) = iM∗X ∈ TPxR.
Orientation-preserving diffeomorphisms act transitively on M thus for any two points x,y ∈ M there
exists Λ ∈ Diff+(M) with Λ(x) = y implying (Λ−1)∗Vx = Vy consequently for their corresponding
projections Py = (Λ−1)∗PxΛ∗ holds. Thus they are unitary equivalent (yielding τ is constant along
iMM ⊂ R). Therefore P(t) = Φ∗−tPxΦ∗t and formally Ṗ(0) = [Px,LX ] where LX ∈ End(Ω2

c(M;C)) is
the Lie derivative constructed from the infinitesimal generator, also denoted as X ∈ C∞

c (M;T M), of
{Φt}t∈(−ε,+ε). Without loss of generality we can assume Φt = idM outside a small neighbourhood of
x ∈ M hence the support of X is also small. Hence we can suppose τ(LX) < +∞ allowing a unique
extension of the Lie derivative, also written as LX ∈ End(Ω2

c(M;C))∩R, implying that the commutator
exists. Therefore Ṗ(0) = [Px,LX ] ∈ R. If {Ψt}t∈(−ε,+ε) is another similar family with corresponding
projector curve Q(t) = iMΨt(x) then we can pick an intertwining diffeomorphism having the prop-
erty Λ(Φt(x)) = Ψt(x) for every t hence Q(t) = (Λ−1)∗P(t)Λ∗ such that (Λ−1)∗P(0)Λ∗ = P(0) and
(Λ−1)∗Ṗ(0)Λ∗ = Ṗ(0). Consequently Q̇(0) = d

dt ((Λ
−1)∗P(t)Λ∗)|t=0 = (Λ−1)∗Ṗ(0)Λ∗ = Ṗ(0). Thus

iM∗ : T M→R ⫋ TR defined by iM∗X := [Px,LX ] for every x ∈M and X ∈ TxM is well-defined i.e. is
independent of how X ∈ TxM has been extended to an X ∈C∞

c (M;T M). Finally assume that X ̸= 0 hence
LX ̸= 0 however [Px,LX ] = 0. This would imply that the image Vx of Px is invariant under LX however
this is not possible for if e.g. ϕx is any 2-form vanishing at x ∈M hence belongs to Vx then in general
LX ϕx does not vanish there hence is not in Vx. All of these allow us to use the non-degenerate scalar
product (A,B) := τ(AB⋇) on R (completing it to H as above) to obtain a non-degenerate Riemannian
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metric g on M via pullback i.e. put g(X ,Y ) := Re(iM∗X , iM∗Y ) yielding

gx(X ,Y ) := Re τ
(
[Px,LX ][Px,LY ]

⋇)
for X ,Y ∈ TxM and x ∈ M. This metric therefore does not depend on the particular extensions to
X ,Y ∈C∞

c (M;T M) and is canonical in many senses.4 Finally we remark that (8) in its improved version
(M,g)⊂ (R,Reτ) is analogous to embedding Riemannian manifolds into Hilbert spaces via heat kernel
techniques [3].

The Einstein condition. Having constructed a canonical Riemannian metric g on M, one can intro-
duce more structures on R. Consider the complexified Hodge operator ∗ ∈C∞(M;End(∧2T ∗M⊗C))
acting on 2-forms along (M,g). It induces a pointwise g-orthogonal splitting of 2-forms into self-dual
and anti-self-dual parts and looks like

∗=
(

1 0
0 −1

)
:

Ω+
c (M;C)⊕

Ω−c (M;C)
−→

Ω+
c (M;C)⊕

Ω−c (M;C)
(13)

with respect to this splitting. This simple algebraic operator gives rise to an element in R. Take an
ascending orthonormal sub-base sequence {ϕ1, . . . ,ϕ2n}n=1,2... in Ω2

c(M;C) having the property that
its first 2n−1-tuple forms a sub-basis of Ω+

c (M;C) while the rest gives a sub-basis in Ω−c (M;C). With
respect to this sequence there is a decomposition into 2×2 complex matrices

∗=
(

1 0
0 −1

)
⊗
(

1 0
0 1

)
⊗
(

1 0
0 1

)
⊗ . . .

thus, recalling the infinite tensor product decomposition of the Clifford algebra C(M) as well as its
embedding (3), we obtain an element ∗ ∈ C(M) hence ∗ ∈ R. Moreover ∗ is self-adjoint, continues
to satisfy ∗2 = 1 and (6) immediately yields τ(∗) = 0. This simple algebraic operator generates a
dynamics on R.

Definition 3.1. Let M be a connected oriented smooth 4-manifold with its induced Riemannian metric
g and corresponding Hodge operator ∗ ∈ R as above. The condition that ∗ ̸= 1 is self-adjoint and
satisfies ∗2 = 1 implies that there exists a basis in R in which ∗ =

(
1 0
0 −1

)
. Therefore introducig the

skew-Hermitian operator log∗ :=
(

0 0
0
√
−1π

)
for every t ∈ R we can set ∗t := et log∗ which is a unitary

in R. The corresponding 1-parameter family of C-linear inner ⋇-automorphisms on R given by

A 7−→ ∗tA∗−t

for all A ∈ R and t ∈ R introduces a non-trivial periodic dynamics on R what we call the Hodge
dynamics. Accordingly

(
R,{Ad∗t}t∈R

)
is a Hodge dynamical system on the hyperfinite II1 factor.

This naturally appearing dynamical system on R can be used to characterize not only the plain em-
bedding M ⊂ R but even the geometric properties of the Riemannian embedding (M,g) ⊂ (R,Reτ)
using the terminology of dynamical systems. The Hodge star as an element ∗ ∈R is self-adjoint, sat-
isfies 1 ̸= ∗ but 1 = ∗2 hence generates an Abelian von Neumann subalgebra ⟨∗⟩ ⊂ R isomorphic to
C1⊕C∗; consequently its relative commutant F(M,g) := ⟨∗⟩′ ∩R extends ⟨∗⟩ to a by construction
normal subalgebra of R (i.e. is equal to its double relative commutant). It can be identified with the
fixed-point-subalgebra of the Hodge dynamics: F(M,g) =

{
A ∈R |Ad∗t A = A for every t ∈ R

}
. Con-

veresely, every normal subalgebra of R arises as the fixed-point-subalgebra of a periodic inner C-linear
⋇-automorphism of R, cf. [29, Theorem 3.1].

4For instance if M is compact then with this metric the functional FM,g in Lemma 2.1 is normalized i.e. FM,g(1) = 1.
Morever one can compute that τ(Px) =

1
Vol(M,g) holds for the trace of the projections in (8) hence Vol(M,g)> 1.
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Lemma 3.1. Let M be a connected oriented smooth 4-manifold and consider its embedding (8) into
R. Take the induced Riemannian metric g on M and Hodge dynamics {Ad∗t}t∈R on R as well as the
subfactor I(M)⫅R as in (12) and the Riemannian curvature tensor Rg; assume that Rg ∈R.

The projections of the embedding satisfy Px ∈ F(M,g) for every x ∈ M i.e., M ⊂ R is pointwise
preserved by the Hodge dynamics; moreover Ad∗t (I(M)) = I(M) for every t ∈ R i.e., the subfactor
itself generated by M is also invariant under the Hodge dynamics however not pointwise. Finally
Rg ∈ F(M,g) if and only if (M,g) is Einstein.

Proof. The complexified Hodge star is a bundle morphism of ∧2T ∗M⊗C hence we know from the
general theory summarized in (9) that it leaves M pointwise fixed. However let us exhibit another, more
direct proof. Consider the embedding (8) given by x 7→Px. An important observation is that ∗ commutes
with the projection Px ∈R for every x ∈M. Indeed, take H = Vx⊕V ⊥x with respect to Px : H → Vx;
then ∗ obviously preserves Ω2

c(M,x;C) ⊂ Ω2
c(M;C) hence C(M,x) consequently ∗Vx = Vx; likewise

0=(Vx,V ⊥x )= (∗2Vx,V ⊥x )= (∗Vx,∗V ⊥x )= (Vx,∗V ⊥x ) therefore ∗V ⊥x =V ⊥x yielding [Px,∗] = 0 hence
Px ∈ F(M,g). Moreover using the decomposition (12) pick A ∈ I(M) =C1⊕ I(M)⊕ I(M)⋇; if A ∈C1
then obviously A ∈ F(M,g); if A ∈ I(M) then by (11) this condition is equivalent to APx = 0 for every
x ∈M but (∗tA∗−t)Px = ∗t(APx)∗−t = 0 for every x ∈M consequently ∗tA∗−t ∈ I(M) too and likewise
for A ∈ I(M)⋇. Therefore ∗t(I(M))∗−t = I(M). Finally the assertion on the Einstein condition is
straightforward, as following [27] we notice at once comparing (4) and (13) that g is Einstein i.e. the
traceless Ricci part of Rg vanishes if and only if [Rg,∗] = 0 hence Rg ∈ F(M,g).

Proof of Theorem 1.3. Taking into account the construction of the metric g above, Definition 3.1 and
Lemma 3.1 the theorem follows. □

Comparison of representations and physics. Lemma 3.1 can be regarded as a sort of compatibility result
between two pieces of data on the hyperfinite II1 factor namely a subfactor I(M) ⫅ R and a normal
subalgebra F(M,g) ⫅ R. A different, somewhat more physical way of understanding compatibility
between these two structures is as follows. A connected, compact, oriented, smooth 4-manifold M also
gives rise to a representation ρM of R as in Lemma 2.1 and a Hodge dynamical system

(
R,{Ad∗t}t∈R

)
introduced in Definition 3.1. The mathematical fact that R admits many inequivalent representations
(i.e. the failure of the Stone–von Neumann representation theorem in this case) can be interpreted in
the framework of algebraic quantum field theory as saying that R is an operator algebra of a quantum
system possessing infinitely many degrees of freedom like a quantum statistical ensemble [4, 16]. In
this context, as well as recalling [9], the temptation here to interprete R as the operator algebra of a
relativistic quantum field theory at non-zero temperature involving gravity, is supported by the follow-
ing further observations (also cf. [7]). On the one hand R contains curvature tensors, the key objects
of general relativity. On the other hand the periodicity of the Hodge dynamics on this operator algebra
i.e., the plain mathematical property ∗2 = 1 of the Hodge star on 2-forms in 4 dimensions, can also be
interpreted along these lines in the well-known way, as the presence of a temperature in a statistical
ensemble (cf. e.g. [20]). This temperature is the inverse of the period hence is equal to 1

2TPlanck in nat-
ural units. This permits one to analyse the interference between the aforementioned structures within
the realm of the theory of thermal equilibium states in algebraic quantum field theory. For stationarity
and stability are expected properties of physical thermal equilibrium states (see e.g. [16, Section V.3]),
as a first step in this analysis we record here the following stationarity and stability property of the
representations, more precisely their corresponding states on R, against their induced Hodge dynamics
and their perturbations on R.
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Lemma 3.2. Assume that M is compact and consider its embedding M ⊂ R together with the in-
duced oriented Riemannian 4-manifold (M,g). Also consider the associated Hodge dynamical system(
R,{Ad∗t}t∈R

)
.

Then the state FM,g : R→ C in the proof of Lemma 2.1 provided by (M,g) is stationary under the
Hodge dynamics i.e. FM,g(∗tA∗−t) = FM,g(A) for every A ∈R and t ∈ R.

Moreover take a unitary element ∗′ ∈R and let
(
R,{Ad(∗′)t}t∈R

)
be a “nearby” dynamical system

in the sense that it preserves M ⊂ R and satisfies (∗′)p = 1 i.e. is periodic with 1 ≦ p < +∞. Then
there exists a corresponding “nearby” state FM,g′ on R, yet inducing the same representation ρM of R,
which is stationary under the “nearby” dynamics.

Proof. Recall that FM,g : R→ C has been defined in Lemma 2.1 as FM,g(A) =
∫

M i∗Mτ(APx)µg. Taking
into account that ∗ commutes with Px as in Lemma 3.1 and using the cyclic property of the trace it
readily follows at once that FM,g(∗tA∗−t) = FM,g(A) for every A ∈R and t ∈ R.

The “perturbed” dynamics generated by ∗′ as a 1-parameter inner ⋇-automorphisms of R preserves
M by assumption hence admits a unique decomposition into a 1-parameter family of gauge transfor-
mations and diffeomorphisms according to (10) hence Ad(∗′)t = Adγ t AdΦ∗−t

. Being the ”perturbed”
dynamics periodic along M its orbits are compact consequently there exists a ∗′-averaged metric g′ on
M whose volume form µg′ is preserved by the perturbed dynamics. Thus

FM,g′
(
(∗′)tA(∗′)−t) =

∫
x∈M

i∗Mτ
(
(Ad(∗′)t A)Px

)
µg′(x) =

∫
x∈M

i∗Mτ
(
A(Ad(∗′)−t Px)

)
µg′(x)

=
∫

x∈M

i∗Mτ
(
A(Adγ−t AdΦ∗t Px)

)
µg′(x) =

∫
x∈M

i∗Mτ
(
APΦ−t(x)

)
µg′(x)

=
∫

Φ−t(x)∈M

i∗Mτ
(
APΦ−t(x)

)
µg′(Φ−t(x))

= FM,g′(A)

demonstrating that FM,g′ is stationary under the ”perturbed” dynamics. Finally we have observed al-
ready in the proof of Lemma 2.1 that the ideal 0 ̸= I(M)⫋R in (11) consisting of elements satisfying
FM,g′(A⋇A) = 0 is independent of the metric g′ hence the representation of R induced by FM,g′ coin-
cides with that one induced by FM,g i.e. with the representation ρM of R constructed in Lemma 2.1
hence the result.

Following [2, Chapter 8] appropriately finite representations of the hyperfinite II1 factor are classified
by their Murray–von Neumann coupling constants or R-dimensions, taking all possible values in the
real half-line [0,+∞), see [2, Proposition 8.6.1]. A representation, uniquely characterized by its R-
dimension y ∈ [0,+∞) as its numerical invariant, naturally decomposes according to y = [y]+{y} i.e.
splits into its integer part with R-dimension [y] ∈ {0,1,2, . . .} ⊂ [0,+∞) containing copies of the rep-
resentation having R-dimension precisely 1 and into its fractional part given by {y} ∈ (0,1)⊂ [0,+∞)
describing another representation whose R-dimension falls within the open unit interval. Consequently
it is enough to understand those representations which belong to the closed unit interval [0,1]⊂ [0,+∞)
only. Of course the representation characterized by 0 ∈ [0,1] is just the trivial representation. The rep-
resentation having R-dimension precisely 1 ∈ [0,1] is the standard representation π of R on itself
by (left-)multiplications (as above). This is the best-known non-trivial representation possessing the
following remarkable properties:
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(i) within the framework of the Gelfand–Naimark–Segal (GNS) construction, the unique standard
representation π of R on a Hilbert space H can be obtained from a distinguished faithful state,
namely the unique finite trace τ on R;

(ii) the Tomita–Takesaki modular theory is applicable to π and the corresponding modular operator
∆ renders R a dynamical system, however this modular dynamics is trivial because τ is tracial;

(iii) the state τ is a Kubo–Martin–Schwinger (KMS) state on R with respect to the modular dynamics,
however in a trivial way and the formal KMS temperature of this state is infinite, both because τ

is tracial.

In Section 2 using smooth 4-manifolds M we have constructed an immense class of geometric rep-
resentations ρM whose R-dimensions γ(M) fall into [0,1). What about properties (i)-(iii) concerning
these fractional representations? Interestingly, we can can exhibit a list of analogous properties:

(iv) within the GNS construction every connected compact oriented smooth 4-manifold M gives rise
to a representation ρM of R on a Hilbert space I (M)⊥ obtained from a non-faithful state FM,g
on R (cf. Lemma 2.1);

(v) to every ρM as above there exists a unitary operator ∗ ∈R which renders R a dynamical system
such that this Hodge dynamics is already non-trivial nevertheless always satisfies ∗2 = 1 (cf.
Definition 3.1);

(vi) the state FM,g is invariant under, and the corresponding representation ρM is stable against small
perturbations of, the Hodge dynamics hence FM,g describes a thermal equilibrium state with
respect to this periodic dynamics at a uniform formal temperature 1

2TPlanck (cf. Lemma 3.2 and
the discussion before it).

This comprehensive view of representations strongly motivates the following physical picture: there
exists a unique physical system whose operator algebra is R but this system possesses different physical
phases corresponding to inequivalent representations of R. Therefore, as a working hypothesis, it is
challenging to physically interprete the quite circular interaction between R and M unfolded here, by
saying that the unique abstract triple (R,H ,π) describes the quantum phase of, while a highly non-
unique triple (R,I (M)⊥,ρM) giving rise to a 4 dimensional vacuum space-time (M,g), describes a
paritulcar state from the usual classical phase of Riemannian vacuum general relativity precisely in 4
dimensions. (A usual choice for (M,g) is the FLRW solution with or without cosmological constant.)
We can display symbolically this passage as

(R,H ,π) =⇒
(
{Px}x∈M ∪{Rg} ⊂R,I (M)⊥ ⊂H ,ρM = π|I (M)⊥

)
⇕ ⇕

The “quantum space-time” A particular 4 dimensional Riemannian vacuum space-time (M,g)
at infinite temperature at temperature 1

2TPlanck

having in mind a sort of phase transition from the quantum to the classical phase of the theory via
spontaneous symmetry breaking driven by cooling (or by a spontaneous jump from the unique Tomita–
Takesaki to a particular Hodge dynamics on R). Note that this transition from the unique quantum
regime (R,H ,π) to a particular 4 dimensional classical vacuum regime (M,g) given by another rep-
resentation (R,I (M)⊥,ρM) has been captured in the framework of algebraic quantum field theory
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[4, 16] as switching from the unique representation π to a different particular representation ρM of the
same algebra R. One can also formally label the transition with 1

2TPlanck ≈ 7.06×1031 K which is the
formal temperature associated with ρM; this high temperature is reasonable if we keep in mind that
π corresponds to infinite temperature. Finally observe that during this spontaneous symmetry break-
ing procedure the original gauge group U(H )∩R ⊂ AutR breaks down to its subgroup Diff+(M)
justifying the terminology.
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