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Gábor Etesi
Department of Geometry, Mathematical Institute,
Budapest University of Technology and Economics,
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Abstract

Existence of θ-vacuum states in Yang–Mills theories defined over asymptotically flat
space-times examined taking into account not only the topology but the complicated causal
structure of these space-times, too. By a result of Galloway apparently causality makes all
vacuum states, seen by a distant observer, homotopically equivalent making the introduction
of θ-terms unnecessary.

But a more careful analysis shows that certain twisted classical vacuum states survive
even in this case eventually leading to the conclusion that the concept of “θ-vacua” is
meaningful in the case of general Yang–Mills theories. We give a classification of these
vacuum states based on Isham’s results showing that the Yang–Mills vacuum has the same
complexity as in the flat Minkowskian case hence the general CP-problem is not more
complicated than the well-known flat one. We also construct the θ vacua rigorously via
geometric quantization.
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1 Introduction: the Minkowskian Yang–Mills theory

The famous solution of the long-standing U(1)-problem in the Standard Model via instanton
effects was presented by ’t Hooft about three decades ago [13][14]. This solution demonstrated
that instantons i.e., finite-action self-dual solutions of the Euclidean Yang–Mills-equations dis-
covered by Belavin et al. [1] should be taken seriously in gauge theories. Another problem arose
in these models over the Minkowskian space-time, however: if instantons really exist, they induce
a P- hence CP-violating so-called θ-term in the effective Yang–Mills action. But according to
accurate experimental results, such a CP-violation cannot occur in QCD, for instance. The most
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accepted solution to this problem is the so-called Peccei–Quinn mechanism [19]. A consequence
of this mechanism is the existence of a light particle, the so-called axion. This particle has not
been observed yet, however.

The question naturally arises whether or not such problematic θ-term must be introduced
over more generic space-times. The aim of our paper is to claim that the answer is yes.

First, let us summarize the vacuum structure of a gauge theory over Minkowski space-time
following basic text books [2][18]. Let E be a complex vector bundle over an oriented and time
oriented Lorentzian manifold (M, g) belonging to a finite dimensional complex representation of
G. Without loss of generality we choose the gauge group G to be a compact Lie group. Consider
a G-connection ∇ on this bundle with curvature F∇; we take the usual Yang–Mills action (by
fixing the coupling to be 1):

S(∇, g) = − 1

8π2

∫
M

tr (F∇ ∧ ∗F∇) , (1)

whose Euler–Lagrange equations are

d∇F = 0, d∇ ∗ F = 0.

Here ∗ is the Hodge operation induced by the orientation and the metric on M . In our present
case M = R4 and usually the metric g is fixed and supposed to be the Minkowskian one on
R4. Moreover all G-bundles E are trivial consequently by choosing a particular frame on E, the
connection ∇ can be identified globally with a g-valued 1-form A.

The simplest solution is the vacuum i.e., a flat connection: F∇ = 0. By simply connectedness
of R4 such gauge fields can be written in the form A = f−1df , where f : R4 → G is a smooth
function.

But by the existence of a global temporal gauge on R4 (in this gauge flat connections are
independent of the “time” variable) it is enough to consider the restriction of f to a spacelike
submanifold of Minkowski space-time i.e., f : R3 → G. Minkowski space-time is asymptotically
flat as well, so there is a point i0 called spacelike infinity. This point represents the “infinity
of space” hence can be added to R3 completing it to the three-sphere R3 ∪ {i0} = S3. It is
well-known that vacuum fields (possibly after a null-homotopic gauge-transformation around i0)
extend to the whole S3 consequently classical vacua are classified by maps f : S3 → G. These
maps up to homotopy are given by elements of π3(G). For typical compact Lie groups π3(G)
is not trivial. This fact can be interpreted as classical vacua are separated from each other by
energy barriers of finite height i.e., it is impossible to deform two vacua of different winding
numbers into each other only through vacuum states. Hence homotopy equivalence reflects the
dynamical structure of the theory.

On the other hand, vacua are also acted upon by the gauge group. For simplicity assume
G ∼= SU(2). In this case π3(SU(2)) ∼= Z. If f1, f2 are vacua of winding numbers n1, n2

respectively, there is a gauge transformation g : S3 → SU(2) of winding number n2−n1 satisfying
gf1 = f2. Consequently we can see that the concept of dynamical equivalence of vacua reflecting
the dynamics of the theory (i.e., the homotopy equivalence of maps f : S3 → SU(2)) is different
from that of symmetry equivalence of vacua representing the symmetry of the gauge theory (i.e.,
the gauge equivalence of the above maps).

To avoid this discrepancy, we proceed as follows. Suppose we have constructed the Hilbert
spaceHR4 of the corresponding quantum gauge theory. If |n〉 ∈ HR4 denotes the quantum vacuum
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state belonging to a classical vacuum f of winding number n, the simplest way to construct a
state which is invariant (up to phase) under both dynamical (i.e., homotopy) and symmetry (i.e.,
gauge) equivalence is to formally introduce the quantum state

|θ〉 :=
∞∑

n=−∞

einθ|n〉 ∈ HR4 , θ ∈ R. (2)

These formal sums are referred to as “θ-vacua”.
From the physical point of view, the introduction of θ-vacua is also necessary. Although the

vacuum states of different winding numbers are separated classically, they can be joined semi-
classically i.e., by a tunneling induced by non-trivial instantons of the corresponding Euclidean
gauge theory. Indeed, as it is well known, the SU(2) instanton number is an element k ∈
H4(S4, Z) ' Z (here S4 is the one-point conformal compactification of the Euclidean flat R4. Note
that the notion of “instanton number” comes from a very different compactification compared
with the derivation of “vacuum winding number”). If two vacua, |n1〉, |n2〉 (n1, n2 ∈ π3(SU(2)) '
Z) are given then there is an instanton of instanton number n2 − n1 ∈ H4(S4, Z) ' Z tunneling
between them in temporal gauge [2][18]. In other words the true vacuum states are linear
combinations of the vacuum states of unique winding numbers yielding again (2).

But the value of θ cannot be changed in any order of perturbation i.e., it should be treated
as a physical parameter of the theory; this implies that tunnelings induce the effective term

θ

8π2

∫
R4

tr (F∇ ∧ F∇)

in addition to the action (1). But it is not difficult to see that such a term violates the parity
symmetry P of the theory resulting in the violation of the CP-symmetry.

In summary, we have seen that there are at least three different ways to introduce θ-parameters
in Yang–Mills theories over Minkowskian space-time:

(i) θ is introduced to fill in the gap between the notions of dynamical (i.e., homotopy) and
symmetry (i.e., gauge) equivalence of Yang–Mills vacua. This approach is pure mathematical in
its nature;

(ii) θ must be introduced because by instanton effects vacua of definite winding numbers are
superposed in the underlying semi-classical Yang–Mills theory;

(iii) θ must be introduced by “naturality arguments” i.e., nothing prevents us to extend the
Yang–Mills action at the full quantum level by a P -violating term tr (F∇ ∧ F∇) with coupling
constant θ.

There is a correspondence between the above three characterizations of the θ in flat Min-
kowskian space-time but in the case of general space-times, clear and careful distinction must be
made until a relation or correspondence between the three notions is established. Clearly, (i) is
related to the topology of the space-time and the gauge group hence it is relatively easy to check
whether or not it remains valid in the general case. Concept (ii) is related to the semi-classical
structure of the general Yang–Mills theory especially to the existence of instanton solutions in
the Wick-rotated theory and their relationship with vacuum tunneling. The validity of concept
(iii) is the most subtle one: we need lot of information on the global non-perturbative aspects
of a general quantum Yang–Mills theory to check if any θ-term survives quantum corrections.
In the present state of affairs, having no adequate general theory of Wick rotation, instantons
and their physical interpretation, non-perturbative aspects of general Yang–Mills theories etc.,
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we can examine only the validity of concept (i) in the general case. Its validity or invalidity may
serve as a good indicator for the existence and role of θ-terms in general Yang–Mills theories.

The analysis of the vacuum structure of general Yang–Mills theories over a space-time (M, g)
from the point of view of (i) was carried out by Isham et al. [4][15][16][17]. In these papers Isham
et al. argue that in the general case concept (i) for introducing θ-terms still continues to hold
due to the complicated topology of the spatial surface S ⊂ M and the gauge group G [15]. The
classical vacuum structure of these theories becomes more complicated and we cannot avoid the
introduction of various new CP-violating terms into the effective Lagrangian [4].

We have to emphasize that the approach of Isham et al. to the problem is pure topological
in its nature, however. By a result of Witt [24] every oriented, connected three-manifold S
appears as a Cauchy surface of a physically reasonable initial data set. It is well-known that the
complicated topology of the spacelike submanifold S leads to appearance of singularities in space-
time if it arises as the Cauchy development of S. Indeed, an early result of Gannon [11] shows that
the Cauchy development of a non-simply connected Cauchy surface is geodesically incomplete
i.e., singularities occur. If we accept the Cosmic Censorship Hypothesis, these singularities are
hidden behind event horizons resulting in a non-trivial causal structure for these space-times,
too. A theorem of Galloway [9] (cf. an earlier version assumming stationarity by Chruściel–Wald
[3]) shows that distant observers can observe only simply connected portions of asymptotically
flat space-times: all topological properties are hidden behind event horizons, eventually resulting
again in a topologically simple effective space-time. Hence one may doubt if Isham’s conclusions
remain valid.

In Section 2 we formulate Yang–Mills theories with an arbitrary compact gauge group over
general asymptotically flat space-times satisfying the null energy condition with a single globally
hyperbolic domain of outer communication. This model provides a good framework for analysing
classical Yang–Mills vacua over causally non-trivial space-times. In this setup we simply mimic
the above analysis concerning classical Yang–Mills vacua and find that although all vacua are
topologically equivalent on the causally connected regime of the space-time, the appearance of
a natural boundary condition on the event horizon (also a consequence of the causal structure)
introduces non-trivial homotopy classes again.

In Section 3 we calculate explicitly the homotopy classes of vacua for the classical groups.
A modification appears compared with Isham and other’s pure topological considerations in the
sense that generally the vacuum structure in our case has exactly the same complexity as in the
flat Minkowskian case, a surprising result. This demonstrates the “stability” of the θ-problem
and justifies concept (i) even in the more general case.

The idea of studying relationship between micro- or virtual black holes, wormholes and θ-
vacua is not new. For example, see Hawking [12] and Preskil et al. [20]. An earlier, still
incomplete version of this paper appeared in [5].

2 Asymptotically flat Yang–Mills theory

The general reference for this chapter is [23]. Let (M, g) be a four dimensional, oriented and
time oriented smooth Lorentzian manifold i.e., a space-time; choose a complex vector bundle E
over M associated to a principal bundle with compact gauge group G via a finite dimensional
complex representation. Consider a G-connection ∇ on E and a Yang–Mills theory with action
(1) over (M, g). We will focus on vacuum solutions on a gravitational background i.e., pairs (∇, g)
where ∇ is a smooth flat G-connection on the bundle E while g is a smooth Lorentzian metric
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on M . We will suppose that g is a solution of the vacuum or the coupled Einstein’s equation
with a matter field given by a stress-energy tensor T obeying the null energy condition. We will
refer the collection (E,∇, M, g) to as an Yang–Mills vacuum setup.

We impose two restrictions. First, we will assume that (M, g) contains a single asymptotically
flat region. At a first look (for the precise definitions see e.g. [23]) this means that there

is a conformal embedding i : (M, g) → (M̃, g̃) such that the infinitely distant points of M are
represented by the connected set ∂i(M) in the inclusion; furthermore this set is divided naturally
into three subsets: the future and past null infinities I± and the spatial infinity i0. We remark
that g̃ is not supposed to be smooth in i0, even if (M, g) is smooth.

Now consider the domain of outer communication Ñ ⊆ M̃ defined as Ñ := J−(I+)∩ J+(I−)

and N := Ñ ∩ i(M). (Here J±(X) denote the causal future and past of a subset X in a space-
time, respectively). Notice that N = M \ (B ∪W ) where B and W are the black hole and white
hole regions of M , respectively. The boundary ∂(B ∪ W ) is called the event horizon of these
regions. Our second assumption is that (N, g|N) is globally hyperbolic. Consequently N ∼= S ×R
with S being a Cauchy surface for the domain of outer communication N such that the image
of the Cauchy surface can be completed to a maximal spacelike submanifold S̃ in M̃ by adding
the spacelike infinity i0 ∈ M̃ to it: i(S) ∪ {i0} = S̃.

Before proceeding further we fix notation. Let V be a smooth, compact, oriented three-
manifold (possibly with non-empty boundary), x0 ∈ V \ ∂V and assume there is a homeomor-

phism ϕ : V \ ∂V → S̃ such that ϕ(x0) = i0. In this case we will say that S is homeomorphic
to the interior of V . By global hyperbolicity, there is a global time function T : N → R. Let
St := T−1(t) (t ∈ R) be a Cauchy surface which is the interior of a compact three-manifold V
(notice that St

∼= St′ for all t, t′ ∈ R). Consider a map ϕt : V \ (∂V ∪ {x0}) → N whose image is
ϕt(V \ (∂V ∪ {x0})) = St ⊂ N . The points ϕt(x) = (x, t) of St will be denoted as xt. Clearly V

represents the compactification of a particular Cauchy surface since V ∼= ϕ−1
t (St) ∼= i(St) ∪ {i0}

for all t ∈ R. Therefore by abuse of notation we will often think St ⊂ V for all t ∈ R.
Now we are in a position to address the problem of describing the topology of Yang–Mills

vacua seen by an observer in the domain of outer communication of the space-time (M, g).
Clearly, at least classically, only this part of the space-time can be relevant for ordinary macro-
scopic observers. To achieve our goal, we refer to a general result of Galloway [9] (for an earlier
version assuming stationarity cf. Chruściel and Wald [3]).

Theorem 2.1 (Galloway, 1995). Let (M, g) be an asymptotically flat space-time containing
a single asymptotically flat region whose domain of outer communication (N, g|N) is globally
hyperbolic. Suppose that the null energy condition holds.

Then N is simply connected i.e., π1(N) = 1.
Assume there is a Cauchy surface St of N homeomorphic to the interior of a compact three-

manifold V . Then if ∂V 6= ∅, each connected component of ∂V is homeomorphic to S2. 3

This rather surprising observation is a consequence of the so-called Topological Censorship The-
orem of Friedman–Schleich–Witt [8].

We can see that V , the compactification of a Cauchy surface St for N , is a simply connected
(hence orientable) three-manifold. If M contains black or white hole domains then ∂V 6= ∅ and
all boundary components are homeomorphic to a two-sphere S2 (“the event horizon of a black
or white hole in an asymptotically flat space-time has no handles”).
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The following simple lemma ensures us that from a technical viewpoint the vacuum structure
at least over the relevant part (N, g|N) is exactly the same as in the Minkowskian case.

Lemma 2.2 Let (M, g) be a space-time as in Theorem 2.1 and (E,∇, M, g) be a Yang–Mills
vacuum setup over it. Consider the domain of outer communication with the restricted Yang–
Mills data (E|N ,∇|N , N, g|N). Then

(i) If ∇|N is flat and smooth then it can be identified with a g-vauled 1-form A over N and
there is a smooth function f : N → G such that A = f−1df ;

(ii) There is a smooth gauge transformation g : N → G transforming ∇|N into temporal
gauge i.e., there is an A′ = gAg−1 + gdg−1 such that A′

0 = 0 where A′
0 = A′(gradT ). If A′ is flat

then the corresponding f does not depend on t;
(iii) Fix a t ∈ R and consider the restriction f |St =: ft : St → G. Then ft extends smoothly

across the spacelike infinity i0 i.e., there is a smooth function f̃t : S̃t → G, homotopic to ft on
St.

Proof. Concerning (i), the restricted bundle E|N is trivial hence any G-connection on it can be
identified with a g-valued 1-form A; simply connectedness of N implies that any flat connection
∇|N must be the trivial connection hence in any gauge it can be represented in the form A =
f−1df as claimed.

To see (ii) we can write down the required gauge transformation by solving the ordinary
differential equation

gA0g
−1 + g

∂g−1

∂t
= 0

over N ∼= S × R. The solution over a chart U ⊂ S is

g(x, t) = exp

 t∫
0

A0(x, τ)dτ


with x ∈ U , t ∈ R and exp: g → G being the exponential map. This solution exists for finite t’s.

The case of part (iii) is also very simple. Notice that there is a neighbourhood U ⊂ S̃t of
i0 such that U \ {i0} ∼= S2 × [0, 1). Consider the restriction ft|S2×{0} and take the function
id: S2 × [1/2, 0) → G sending all elements to the unit e ∈ G. Then, taking into account that
π2(G) = 0 for compact Lie groups, there is a smooth homotopy from S2 to G along S2 × [0, 1/2]
connecting ft|S2×{0} with id|S2×{1/2}. But this deformed function f̃t extends as the identity to

the whole S̃t and is homotopic to ft on St. 3

A pure Yang–Mills theory being conformally invariant, we may consider our Einstein-matter
theory together with a Yang–Mills field over (M̃, g̃) instead of the original space-time. The

restriction of the extended flat Yang–Mills bundle Ẽ| eN is trivial even in this case. Certain

physical quantities of the extended theory may suffer from singularities on the boundary ∂i(M)

but classical Yang–Mills vacua in temporal gauge extend smoothly over the whole (M̃, g̃) as we
have seen by the above lemma. In other words the studying of the vacuum sector of the extended
Yang–Mills theory is correct.

Summing up, we can see that dynamically (i.e., homotopically) inequivalent vacua of the
Yang–Mills theory are classified by the homotopy classes of smooth maps f : V → G satisfying
f(i0) = e ∈ G, usually written as [

(V, i0), (G, e)
]
. (3)



G. Etesi: Causal classification of Yang–Mills vacua 7

Now suppose that (M, g) contains black and white hole(s). In this case V is a simply connected
compact three manifold with boundary by the theorem of Galloway. Such manifolds, considered
as CW-complexes, have only cells of dimension less than three. Hence by the Cellular Approx-
imation Theorem [22], every map f : V → G descends to a homotopic map with values only
on the cells of G having dimension less than three. Being π2(G) = 0, G can be approximated
by the simple Postnikov-tower P2 = K(π1(G), 1) where K(π1(G), 1) is an Eilenberg–Mac Lane
space yielding [

(V, i0), (G, e)
] ∼= [V, K(π1(G), 1)] ∼= H1(V, π1(G)) = 0. (4)

The result is zero because V is simply connected. For details, see for instance [22]. Consequently
all vacuum states are homotopy-equivalent i.e., can be deformed into each other only through
vacuum states over the domain of outer communication N of the space-time (M, g). Clearly,
classically only this part is relevant for a distant observer.

This result can be explained from a different point of view as well. Since the outer part N of
M is globally hyperbolic by assumption, the spacelike submanifold S forms a Cauchy surface for
N . Consequently if we know the initial values of two gauge fields, A and A′ say, on S ⊂ N , we
can determine their values over the whole outer space-time N ⊂ M by using the field equations.
This implies that the values of the fields A and A′ “beyond” the event horizon in a moment
are irrelevant for an observer outside the black hole. But we just proved that every vacuum
fields restricted to V ⊃ S are homotopic. Roughly speaking, homotopical differences between
Yang–Mills vacua “can be swept” into a black hole.

Via (4) for arbitrary smooth functions f, g : V → G there is a homotopy

FT : V × [0, 1] → G (5)

satisfying FT (x, 0) = f(x) and FT (x, 1) = g(x) and FT (i0, t) = e for all (x, t) ∈ V × [0, 1]. Taking
two Cauchy surfaces T−1(t0) =: S0 and T−1(t1) =: S1 we can regard the two functions as vacua
f |S0 := f0 : S0 → G and g|S1 := f1 : S1 → G. In the homotopy FT the subscript “T” shows that
the “time” required for the homotopy is measured by the time function T naturally associated
to the globally hyperbolic space-time (M, g).

But on physical grounds, such a deformation or homotopy is effective only if the vacuum
states, corresponding to the inital and final stages of the homotopy, can be compared by an
observer in finite proper time. This means the following. Let k = 0, 1 and for all xk ∈ Sk for
which f0(x0) 6= f1(x1) there must exist an observer γ : R → N moving forward in the region
N who can measure hence compare f0(x0) and f1(x1) i.e., there are τk ∈ R such that a future
directed light beam starting from xk meets γ in γ(τk), and the proper time between γ(τ0) and
γ(τ1) measured by γ is finite. In other words, there is a τ− ∈ R such that C ⊂ J−(γ(τ−)) where
C ⊂ S0×S1 contains the set of all points where f0(x0) 6= f1(x1) with xk ∈ Sk. Because our space-
time may contain white hole regions too, we require the existence of another τ+ < τ− satisfying
C ⊂ J+(γ(τ+)) as well. The formal definition of such “effective” or “observable” homotopies is
the following.

Definition 2.3 Let (M, g) be an asymptotically flat space-time with a single globally hyperbolic
domain of outer communication (N, g|N) and let T : N → R be an associated time-function.
Consider a homotopy of the form (5) and let C ⊂ S0 × S1 be such that f0(x0) 6= f1(x1) with
(x0, x1) ∈ C.

Then (5) is called an effective homotopy or observable homotopy if there is a future directed
non-spacelike piecewise smooth curve γ : R → N and fixed numbers τ± ∈ R such that C ⊂
J±(γ(τ±)).
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Remark. We can see that in Minkowski space-time all homotopies of the form (5) are effec-
tive homotopies establishing the structure of the Minkowskian Yang–Mills vacuum also from a
physical viewpoint.

The following lemma is straightforward.

Lemma 2.4 Let (M, g) be a space-time as in Definition 2.3 and consider a continuous curve
x : [0, ε] → V satisfying x(0) ∈ ∂V . Then we have induced spacelike curves xk : [0, ε] → Sk

(k = 0, 1) given by xk(s) = (x(s), k) and satisfy xk(0) ∈ H.
The (abstract) homotopy (5) is effective if and only if there is a 0 < δ such that

FT (x0(s), t) = FT (x1(s), t)

for all 0 ≤ s < δ < ε and t ∈ [0, 1] that is, the homotopy is trivial in the vicinity of H.

Proof. We rerstrict our attention first to the case H+ = ∂B, the future event horizon of the black
hole regime B. Take a homotopy of the form (5) with FT (xk(s), k) = fk(xk(s)) (k = 0, 1) and
assume FT is effective. By construction xk(0) ∈ H+ and if f0(x0(0)) 6= f1(x1(0)) then there must
exist a future directed non-spacelike curve γ : R → N such that {x0(0), x1(0)} ⊂ J−(γ(τ−)) for
some τ− ∈ R. However this contradicts the definition of the domain of outer communication N
consequently we must have xk(0) /∈ H+. We get the same result for the past white hole horizon
H− = ∂W . Therefore xk(0) /∈ H = H+ ∪H− as claimed. 3

From here we can see that given an abstract homotopy (5), it gives rise to an effective homotopy
if and only if FT is constant along H. This result can be interpreted as a natural boundary
condition on each connected component of ∂V for effectively deformable vacua dictated by the
causal structure. Since each boundary component in a “moment” is homeomorphic to the two-
sphere S2 and π2(G) = 0 we can extend f0, f1 within their homotopy classes in the spirit of
part (iii) of Lemma 2.2 to functions f, g : V → G obeying f(∂V ) = g(∂V ) = e ∈ G. The
same argumentation yields the conditions f(i0) = g(i0) = e. We just remark that exactly this is
the physical reason for keeping the functions as identity in spacelike infinity i0 when we discuss
homotopy classes of vacua over Minkowskian space-time: the spacelike infinity is invisible for an
observer in N .

Therefore the classes of effectively deformable vacua are given by the homotopy classes of
functions f : V → G with the property f(∂V ) = f(i0) = e ∈ G. The homotopy is also restricted
to obey these boundary conditions. This set is denoted by[

(V, ∂V, i0), (G, e)
]

(6)

and replaces (3). To get a more explicit description of this set, we proceed as follows.

3 Homotopic classification

First taking into account that a function f : V → G we are interested in satisfies that it sends each
connected component of ∂V into the unit element e ∈ G, we can replace the simply connected,
compact three-manifold-with-boundary V with a closed, simply connected three-manifold W in
the following way. Let us denote by k > 0 the number of connected components of ∂V (i.e., the
number of black holes and white holes). As we have seen, all such component is an S2. Hence
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we can glue to each such component a three-ball B3 using the identity function of S2 to get a
three-manifold without boundary

W := V ∪∂V B3 ∪ . . . ∪B3︸ ︷︷ ︸
k

.

Clearly, f extends as the identity to each ball giving rise to the function f : W → G. Conse-
quently, if we fix a point xn in each ball (n ≤ k), then we may equivalently consider functions
obeying f(x1) = . . . = f(xk) = f(i0) = e. Modifying the allowed homotopies to obey this
constraint, we can replace the homotopy set (6) by[

(W, x1, . . . , xk, i0), (G, e)
]

(of course if k = 0 then no point except i0 is distinguished in W ). We prove the following
proposition:

Proposition 3.1 Fix a number k > 0 and consider the connected, closed, simply connected
three-manifold with k + 1 distinguished points (W, x1, . . . , xk, i0) constructed above. Denote by
(W, i0) the same space with only one distinguished point. Then there is a natural bijection[

(W, x1, . . . , xk, i0), (G, e)
] ∼= [

(W, i0), (G, e)
]

by forgetting the points x1, . . . , xk ∈ W and modifying the allowed homotopies accordingly.

Proof. Fix a number k ≥ 0. First it is straightforward that if two functions, f0 and f1 are homo-
topic in

[
(W, x1, . . . , xk, i0), (G, e)

]
then they represent the same homotopy class in [(W, i0), (G, e)]

i.e., they are homotopic in the later set as well. This is because the allowed homotopies in
[(W, i0), (G, e)] are less restrictive than in

[
(W, x1, . . . , xk, i0), (G, e)

]
.

Conversely, it is not difficult to see that in each class [f ] ∈ [(W, i0), (G, e)] there is a repre-
sentant which belongs to

[
(W, x1, . . . , xk, i0), (G, e)

]
. Indeed, choose an arbitrary representant

f ∈ [f ] ∈ [(W, i0), (G, e)] and consider the pre-image f−1(e) ⊂ W . This pre-image contains
the point i0 ∈ W by construction. Taking into account that W is path connected, we can de-
form f−1(e) to contain the points x1, . . . , xk as well producing a representant which belongs to[
(W, x1, . . . , xk, i0), (G, e)

]
.

Now suppose that there are two functions f0 and f1 which are homotopic in [(W, i0), (G, e)]
i.e., there is a continuous function F : (W, i0)× [0, 1] → (G, e) with

F (x, 0) = f0(x), F (x, 1) = f1(x), F (i0, t) = e for all t ∈ [0, 1] and x ∈ (W, i0).

For the sake of simplicity, assume they represent elements in
[
(W, x1, . . . , xk, i0), (G, e)

]
, too.

Then we have to prove that they are also homotopic in
[
(W, x1, . . . , xk, i0), (G, e)

]
i.e., there is a

function F ′ : (W, x1, . . . , xk, i0)× [0, 1] → (G, e) with the property

F ′(x, 0) = f0(x), F ′(x, 1) = f1(x), F ′(x1, t) = . . . = F ′(xk, t) = F ′(i0, t) = e

for all t ∈ [0, 1] and x ∈ (W, x1, . . . , xk, i0). From here we can see that the orbit of an arbitrary
distinguished point xn is a loop ln : [0, 1] → G under the homotopy F while the constant loop
in the case of F ′. Hence if these loops are homotopically trivial in G then we can deform F into
the homotopy F ′ by shrinking the loops l1,. . . ,lk.

Now we prove that this is always possible. First, if π1(G) = 1 i.e., the compact Lie group is
simply connected then certainly each loop ln is homotopic to the constant loop. Consequently
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assume π1(G) 6= 1. Consider a distinguished point xn ∈ W and two paths an : [0, 1/2] → W
with an(0) = i0 and an(1/2) = xn and bn : [1/2, 1] → W with bn(1/2) = xn and bn(1) = i0.
These give rise to a continuous loop bn ∗ an : [0, 1] → W with bn ∗ an(0) = bn ∗ an(1) = i0.
Here ∗ refers to the juxtaposition of curves, loops, etc. The loop bn ∗ an is homotopic to the
trivial loop since W is simply connected. Consider the maps αn

0 := f0 ◦ an : [0, 1/2] → G and
βn

0 := f0 ◦ bn : [1/2, 1] → G. These are loops in G hence so is their product βn
0 ∗ αn

0 . Construct
the same kind of loops αn

1 := f1 ◦ an and βn
1 := f1 ◦ bn. The product loop βn

1 ∗ αn
1 is homotopic

in G to βn
0 ∗ αn

0 i.e., [βn
0 ∗ αn

0 ] = [βn
1 ∗ αn

1 ] because f0 is homotopic to f1. It is clear that

βn
1 ∗ αn

1 = βn
0 ∗ ln ∗ αn

0 .

Consequently we can write for the homotopy classes in question

[βn
1 ∗ αn

1 ] = [βn
0 ∗ ln ∗ αn

0 ] = [βn
0 ][ln][αn

0 ] = [βn
0 ][αn

0 ][ln] = [βn
0 ∗ αn

0 ][ln] = [βn
1 ∗ αn

1 ][ln].

In the third step we have exploited the fact that a topological group always has commutative
fundamental group [21]. This shows that [ln] = 1 that is the loop ln is contractible in G for all
0 ≤ n ≤ k in other words the homotopy F is deformable into a homotopy F ′ yielding f0 and f1

are homotopic in
[
(W, x1, . . . , xk, i0), (G, e)

]
as well. 3

The above proposition enables us to give a more explicit description of the set (6).

Theorem 3.2 Let (M, g) be a space-time obeying the null energy condition. Assume it contains a
single asymptotically flat region with globally hyperbolic domain of outer communication. Suppose
this region contains a Cauchy surface homeomorphic to the interior of a compact three-manifold
V . Let G be a typical compact Lie group i.e., let G be U(n) with n ≥ 2, or SO(n), Spin(n) with
n 6= 4, or SU(n), Sp(n) for all n, or G2, F4, E6, E7, E8. Then we have[

(V, ∂V, i0), (G, e)
] ∼= Z.

Moreover we have [
(V, ∂V, i0), (U(1), e)

] ∼= 0,

and [
(V, ∂V, i0), (SO(4), e)

] ∼= [
(V, ∂V, i0), (Spin(4), e)

] ∼= Z⊕ Z
for the remaining cases.

Proof. In light of the above considerations and Proposition 3.1, we have

[(V, ∂V, i0), (G, e)] ∼= [(W, x1, . . . , xk, i0), (G, e)] ∼= [(W, i0), (G, e)].

Hence we can use the results of Isham who classified the set [(W, i0), (G, e)] and it is summarized
in [15] in Table 1 on p. 207. But in our case W is a connected, closed, simply connected
three-manifold hence the above result follows. 3

Remark. We mention that assuming the validity of the three dimensional Poincaré conjecture
i.e., if W ∼= S3, then our theorem can be derived without using Isham’s result since in this case
we have simply [(V, ∂V, i0), (G, e)] ∼= π3(G).

We can see by this result that although the homotopy set (6) of effectively deformable vacua
is typically non-trivial, it is remarkable more simple than in the original calculations of Isham
et al. based on topological considerations only. The homotopy sets listed in Theorem 3.2 are
exactly the same as for the flat Minkowskian case. Being all these vacua gauge equivalent (since
N is simply connected) we have to introduce again linear combinations like (2) in this more
general situation. Consequently we can see that approach (i) to the θ-parameter, mentioned in
the Introduction, still makes sense in the general case.
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4 Conclusion and outlook

In this paper we have studied the concept of θ-vacua in general Yang–Mills theories. In light
of our results, we can see that for outer observers in asymptotically flat space-times θ-vacua
do occur in a Yang–Mills theory and they can be constructed in a rigorous way by referring to
geometric quantization as follows.

For simplicity we restrict attention to a simple gauge group G. For the moduli space V of
classical vacuum solutions of a Yang–Mills theory over an asymptotically flat region (N, g|N) we
have the identification V ∼= [(V, ∂V, i0), (G, e)] as we have seen. Furtheromore Theorem 3.2 says
that as a set we have a homeomorphism V ∼= Z. This space, regarded as a noncompact zero
dimensional manifold is naturally identified with its cotangent bundle T ∗V . This setup resembles
the situation of a real polarization in geometric quantization. Within this framework then the
Hilbert space of the vacuum sector of the corresponding quantum Yang–Mills theory is identified
with the space of L2 functions on V :

HN = {f : V → C | ‖f‖L2(V) < ∞}.

This means that an element f ∈ HN is described by complex numbers an with −∞ < n < ∞
satisfying simply

∞∑
n=−∞

|an|2 < ∞.

Assigning to this function f the convergent Fourier series

f(θ) :=
∞∑

n=−∞

aneinθ

we identify naturally this vacuum Hilbert space with the space of square integrable functions on
the circle

H(S1) := {f : S1 → C | ‖f‖L2(S1) < ∞}.

The isomorphism HN
∼= H(S1) provides a very straightforward, natural introduction of a θ

parameter into the vacuum sector of Yang–Mills theories as was done heuristically in (2). More-
over we can see that the whole quantum vacuum is just linear combination of θ-vacua. The
generalization to non-simple gauge groups is clear. Observe however that in this picture the
role of causality is extremely important: without it the classical moduli V considered over the
whole original space-time (M, g) would be complicated topologically in the sense that in general
even the connected components of V would be non-zero dimensional manifolds with non-trivial
topology introducing some degeneracy into the vacuum sector.

In summary we can say that despite the possible complicated topology of the underlying
Cauchy surface of an asymptotically flat space-time, the vacuum structure is similar to the flat
Minkowskian case, due to the causal structure of these space-times which is complicated in the
general case, too. Hence the introduction of the various new CP-violating terms studied in [4]
are unnecessary. Taking seriously the causal structure experienced by an observer also fits with
the Heisenberg dictum that quantum field theory should be formulated in terms of observers.

The suppression of the topology of the underlying Cauchy surface is due to the result of
Galloway or Chruściel–Wald which is a consequence of the so-called Topological Censorship
Theorem of Friedman–Schleich–Witt [8]. Consequently, the reduction of the problem of the
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general CP-violation to the flat Minkowskian case is essentially due to this result. However
Topological Censorship remains valid in a more general (i.e., not only an asymptotically flat)
setting [10]; therefore we may expect that our attack on the first approximation of the CP-
problem may continue to hold in these more general situations.

Finally, natural questions arise: Are there instanton solutions in the corresponding Wick-
rotated theories? Recent results on constructing SU(2) instanton solutions over various gravi-
tational instantons may point towards this possibility [6][7]. What is the physical relevance of
these solutions? Do they induce semi-classical tunnelings between vacuum states of different
effective winding numbers? If the answer for these questions is yes, beyond (i) we have another,
more physical, reason to introduce θ-vacua by concept (ii), also mentioned in the Introduction.
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