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Summary. Let F be a field, V ⊆ Fn be a set of points, and denote by I(V ) the van-
ishing ideal of V in the polynomial ring F[x1, . . . , xn]. Several interesting algebraic
and combinatorial problems can be formulated in terms of some finite V , and then
Gröbner bases and standard monomials of I(V ) yield a powerful tool for solving
them.

We present the Lex Game method, which allows one to efficiently compute the
lexicographic standard monomials of I(V ) for any finite set V ⊆ Fn. We apply this
method to determine the Gröbner basis of I(V ) for some V of combinatorial and
algebraic interest, and present four applications of this type. We give a new easy
proof of a theorem of Garsia on a generalization of the fundamental theorem of
symmetric polynomials. We also reprove Wilson’s theorem concerning the modulo
p rank of some inclusion matrices. By examining the Gröbner basis of the vanishing
ideal of characteristic vectors of some specific set systems, we obtain results in
extremal combinatorics. Finally, we point out a connection among the standard
monomials of I(V ) and I(V c), where V ⊆ {0, 1}n and V c = {0, 1}n \ V . This has
immediate consequences in combinatorial complexity theory.

The main results have appeared elsewhere in several papers. We collected them
into a unified account to demonstrate the usefulness of Gröbner basis methods in
combinatorial settings.
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1 Introduction

Throughout the paper n will be a positive integer, and [n] stands for the set
{1, 2, . . . , n}. The set of all subsets of [n] is denoted by 2[n]. Subsets of 2[n]

are called set families or set systems. Let
(

[n]
m

)

denote the family of all m-

subsets of [n] (subsets which have cardinality m), and
(

[n]
≤m

)

is the family of
those subsets that have at most m elements. By N we mean the nonnegative
integers, Z is the set of integers, Q is the field of rational numbers, and Fp is
the field of p elements, where p is a prime.

Let F be a field. As usual, we denote by F [x1, . . . , xn] = F [x] the ring of
polynomials in variables x1, . . . , xn over F. To shorten our notation, we write
f(x) for f(x1, . . . , xn). Vectors of length n are denoted by boldface letters, for
example y = (y1, . . . , yn) ∈ Fn. If w ∈ Nn, we write xw for xw1

1 . . . xwn
n ∈ F [x].

For a subset M ⊆ [n], the monomial xM is
∏

i∈M

xi (and x∅ = 1). We say that a

polynomial is multilinear if it is a linear combination of some xM (M ⊆ [n]).
Suppose that V ⊆ Fn. Then the vanishing ideal I(V ) of V consists of

polynomials in F [x], which as functions vanish on V . In our applications, we
consider finite sets V , and use the Gröbner bases, or standard monomials of
I(V ) (see the next subsection for the definitions) to prove claims on V .

Let vF ∈ {0, 1}n denote the characteristic vector of a set F ⊆ [n], that is
the ith coordinate of vF is 1 iff i ∈ F . For a system of sets F ⊆ 2[n], let us
put VF for the set of the characteristic vectors of elements of F . By I(F) we
understand the vanishing ideal I(VF ), as it will make no confusion.

In Section 2 we collected the definitions and basic facts we need about
Gröbner bases and Hilbert functions.

We develop a combinatorial description of the lexicographic standard
monomials of I(V ) in the subsequent Section via a two player game. Lea and
Stan play the Lex Game with some fixed parameters V ⊆ Fn and w ∈ Nn. We
show that xw is a lexicographic standard monomial of I(V ) if and only if Stan
has a winning strategy in the game. This description proves to be more then
just a toy. It yields a fast algorithm to determine the standard monomials of
I(V ) for an arbitrary finite V . On the other hand, it is also applicable in the
’symbolic’ computation of the standard monomials for some particular sets
V . We shall see several examples of such calculations in Section 4, which is
devoted to combinatorial and algebraic applications.

We give a new easy proof of a theorem of Garsia on a generalization of
the fundamental theorem of symmetric polynomials. We also reprove Wil-
son’s theorem concerning the modulo p rank of some inclusion matrices. In
the direction of extremal combinatorics, we obtain results on the maximal
cardinality of some set systems. To be a bit more specific, we will consider
modulo q L-avoiding L-intersecting families, and families that do not shatter
large sets. The last application is to point out a connection among the stan-
dard monomials and Hilbert functions of I(V ) and I(V c), where V ⊆ {0, 1}n
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and V c = {0, 1}n \ V . An immediate consequence of this in combinatorial
complexity theory is shown.

Much of the results described here have already appeared elsewhere, most
notably in [FRR06], [HNR04], [FR03], [FHR1], [FHR2], and [PR]. In some
cases the way of exposition, which is based primarily on the Lex Game, is new
and considerably simpler than the original one. We collected the material to
point out interesting combinatorial applications of Gröbner basis methods.

2 Preliminaries

2.1 Gröbner bases and standard monomials

We recall now some basic facts concerning Gröbner bases in polynomial rings
over fields. More detailed exposition can be found in the classic papers by
prof. Bruno Buchberger [B65], [B70], [B85], and in the textbook [CLO92].

A total order ≺ on the monomials composed from variables x1, x2, . . . , xn

is a term order, if 1 is the minimal element of ≺, and ≺ is compatible with mul-
tiplication with monomials. Two important term orders are the lexicographic
(lex for short) and the degree compatible lexicographic (deglex ) orders. We
have xw ≺lex xu if and only if wi < ui holds for the smallest index i such
that wi 6= ui. As for deglex, we have that a monomial of smaller degree is
smaller in deglex, and among monomials of the same degree lex decides the
order. Also in general, ≺ is degree compatible, if deg (xw) < deg (xu) implies
xw ≺ xu.

The leading monomial (or leading term) lm(f) of a nonzero polynomial f ∈
F [x] is the largest monomial (with respect to ≺) which appears with nonzero
coefficient in f , when written as the usual linear combination of monomials.
It is easy to verify that the leading monomial of a product f · g of nonzero
polynomials is lm(f) · lm(g). We denote the set of all leading monomials of
polynomials of a given ideal I E F [x] by Lm (I) = {lm(f) : f ∈ I}, and we
simply call them the leading monomials of I.

A monomial is called a standard monomial of I, if it is not a leading
monomial of any f ∈ I. Let Sm (I) denote the set of standard monomials of
I.

Obviously, Sm (I) is a downset with respect to division, that is, a divisor
of a standard monomial is again in Sm (I).

A finite subset G ⊆ I is a Gröbner basis of I, if for every f ∈ I there exists
a g ∈ G such that lm(g) divides lm(f).

Using that ≺ is a well founded order, it follows that G is actually a basis
of I, that is, G generates I as an ideal of F [x]. It is a fundamental fact that
every nonzero ideal I of F [x] has a Gröbner basis.

A Gröbner basis G ⊆ I is reduced if for all g ∈ G, the leading coefficient
of g (i.e. the coefficient of lm(g)) is 1, and g 6= h ∈ G implies that no nonzero
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monomial in g is divisible by lm(h). This is clearly equivalent to saying that
every g ∈ G has leading coefficient 1, {lm(g) : g ∈ G} is the set of minimal
elements of Lm (I) (with respect to division), and the polynomial g − lm(g)
is a linear combination of standard monomials. For any fixed term order and
any nonzero ideal of F [x] there exists a unique reduced Gröbner basis.

Suppose that f ∈ F [x] contains a monomial xw · lm(g), where g is some
other polynomial with leading coefficient c. Then we can reduce f with g
(and get f̂), that is, we can replace xw · lm(g) in f with xw ·

(

lm(g) − 1
c
g
)

.

Clearly if g ∈ I, then f and f̂ represent the same coset in F [x] /I. Also note
that lm

(

xw ·
(

lm(g) − 1
c
g
))

≺ xw · lm(g). As ≺ is a well founded order, this
guarantees that if we reduce f repeatedly with a set of polynomials G, then
we end up with a reduced f̂ in finitely many steps, that is a polynomial such
that none of its monomials is divisible by any lm(g) (g ∈ G).

Assume now that G is a Gröbner basis of some ideal I. In this case, it can
be shown that the reduction of any polynomial with G is unique. We see from
the definitions that the reduction f̂ of a polynomial f is a linear combination
of standard monomials of I. From these, it follows directly that for a nonzero
ideal I the set Sm (I) is a linear basis of the F-vectorspace F [x] /I. If I(V )
is a vanishing ideal of a finite set V of points in Fn, then F [x] /I(V ) can be
interpreted as the space of functions V → F. An immediate consequence is
that the number of standard monomials of I(V ) is |V |. In particular for every
family of sets we have |F| = |Sm (I(F))|.

Another property of the standard monomials of I(F) will be needed several
times: for an arbitrary set family F , one has x2

i − xi ∈ I(F), therefore all the
elements of Sm (I(F)) are multilinear monomials.

2.2 The Hilbert function

We write F [x]≤m for the vector space of polynomials over F with degree at
most m. Similarly, if I E F [x] is an ideal then I≤m = I ∩ F [x]≤m stands for
the linear subspace of polynomials from I with degree at most m. The Hilbert
function of the F-algebra F [x] /I is HI : N → N, where

HI(m) = dimF

(

F [x]≤m

/

I≤m

)

.

Let ≺ be any degree compatible term ordering (deglex for instance). One
can easily see that the set of standard monomials with respect to ≺ of degree
at most m forms a linear basis of F [x]≤m

/

I≤m. Hence we can obtain HI(m)
by determining the set Sm (I) with respect to any degree compatible term
ordering.

When F is a system of sets, we call HI(F)(m) the Hilbert function of F and
denote it by HF (m), as it makes no confusion. In the combinatorial literature
HF (m) is usually given in terms of inclusion matrices.
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For two families F ,G ⊆ 2[n] the inclusion matrix I(F ,G) is a matrix of
size |F| × |G|, whose rows and columns are indexed by the elements of F and
G, respectively. The entry at position (F, G) is 1 if G ⊆ F and 0 otherwise
(F ∈ F , G ∈ G).

It is a simple matter to verify that the Hilbert function of F is given by

HF(m) = dimF

(

F [x]≤m

/

I(F)≤m

)

= rankF I

(

F ,

(

[n]

≤ m

))

. (1)

We will benefit from a similar statement in Subsection 4.2, which claims that

dimF (PF ,m) = rankF I

(

F ,

(

[n]

m

))

, (2)

where PF ,m is the linear space of functions from VF to F which can be rep-
resented as homogeneous multilinear polynomials of degree m. (With a slight
abuse of notation we could have written PF ,m = F [x]=m

/

I(F)=m.)
Incidence matrices and their ranks are important in the study of finite

geometries as well. Standard monomials and Hilbert functions are also useful
in that setting. The reader is referred to Moorhouse [M] in the present volume
for an account on applications of this type.

3 Computation of the lex standard monomials

In this section we sketch a purely combinatorial description of the lexico-
graphic standard monomials of vanishing ideals of finite sets of points. This is
the main tool which can be applied to compute lex standard monomials of sets
of combinatorial interest. The original source is [FRR06], and the interested
reader can find an extension to general zero dimensional ideals in [FB06].

Throughout the section, we use the lexicographic ordering, so—even if it
is not stated explicitly—Sm(I) and Lm (I) is defined with respect to lex.

As before, let F be a field, V ⊆ Fn a finite set and w = (w1, . . . , wn) ∈ Nn

an n dimensional vector of natural numbers. With these data fixed, we define
the Lex Game Lex(V ;w), which is played by two persons, Lea and Stan.
Both Lea and Stan know V and w.

1 Lea chooses wn elements of F.
Stan picks a value yn ∈ F, different from Lea’s choices.

2 Lea now chooses wn−1 elements of F.
Stan picks a yn−1 ∈ F, different from Lea’s (last wn−1) choices.

. . . (The game goes on in this same fashion.)
n Lea chooses w1 elements of F.

Stan finally picks a y1 ∈ F, different from Lea’s (last w1) choices.
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The winner is Stan if he could pick y = (y1, . . . , yn) such that y ∈ V , otherwise
Lea wins the game. (Also, if in any step there is no proper choice yi for Stan,
then Lea wins.)

Example 1. Let n = 5, and α, β ∈ F be different elements. Let V be the set of
all α-β sequences in F5 in which the number of the α coordinates is 1, 2 or 3.
We claim that Lea can win with the question vector w = (11100), but with
w = (01110) Stan has a chance to win.

Indeed, let w = (11100). To have y ∈ V , Stan is forced to select values
from {α, β}. If Stan gives only β for the last 2 coordinates, then Lea will
choose α in the first three, therefore y cannot contain any α coordinates.
However if Stan gives at least one α for the last 2 coordinates, then Lea, by
keeping on choosing β, can prevent y to have at least two β coordinates.

In the case w = (01110) Stan’s winning strategy is to pick y5 = β, and
choose from {α, β} (for the 4th, 3rd and 2nd coordinates). One can easily
check that y1 then can always be taken such that y ∈ V .

It is quite clear that, being a finite deterministic game, in Lex(V ;w) either
Lea or Stan has a winning strategy. We will simply say that Lea or Stan wins
Lex(V ;w) accordingly. The main theorem of this section is the following.

Theorem 2. Let V ⊆ Fn be a finite set and w ∈ Nn. Stan wins Lex(V ;w) if
and only if xw ∈ Sm (I(V )).

An immediate consequence is that Lea wins the game iff xw is a leading
monomial for I(V ).

There is a fast algorithm1 which lists those w ∈ Nn, for which Stan wins
Lex(V ;w) for a given V . In view of Theorem 2, it actually computes the lex
standard monomials of I(V ). In this paper we intend to use the Theorem
to obtain explicit combinatorial description of Sm (I(V )) for some interesting
sets V .

Also, note that the game does not use anything more from the properties
of the base field than its cardinality. That is, we can conclude that the set of
lex standard monomials of a vanishing ideal is rather a combinatorial object,
than an algebraic one.

In line with the recursive nature of the game, we will use induction on n
to prove the theorem. The following notation will be useful.

For y = (y1, . . . , yn) ∈ Fn we set y = (y1, . . . , yn−1), if n ≥ 2. We shall
also use y for denoting a vector of length n − 1, even if it is not a prefix of a
vector of length n. Similarly we shall write sometimes w, or even xw instead
of xw1

1 . . . x
wn−1

n−1 .

1 It uses constant times |V |nk comparisons of field elements in the worst case,
where k is the maximum number of different elements which appear in a fixed
coordinate of points of V ; see [FRR06].
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Let y ∈ F, suppose that n ≥ 2, and set

Vy =
{

y ∈ Fn−1 : (y, y) ∈ V
}

.

It is clear that if Stan picks yn = y in the first step, then they continue as if
they have just started a Lex(Vy ;w) game.

Proof (Theorem 2). We prove the statement by induction on n.
The case n = 1 is easy. Let w ≥ 0 be an integer. Then xw ∈ Sm (I(V ))

if and only if w < |Sm (I(V ))| = |V | by the fact that Sm (I(V )) is a downset
with respect to division. But this means precisely that there has to be a y ∈ V
which is not among Lea’s guesses, thus Stan wins the game by picking that y.

Suppose that n ≥ 2, and that the theorem is true for n − 1. Set

Z =
{

y ∈ F : xw ∈ Sm (I(Vy))
}

.

The inductive hypothesis yields that Stan wins Lex(I(Vy);w) if and only if
y ∈ Z. From what we said about the connection between the games Lex(V ;w)
and Lex(Vy ;w) it follows that Stan wins Lex(V ;w) if and only if wn < |Z|.
Therefore it is enough to show that

xw ∈ Sm (I(V )) ⇐⇒ wn <
∣

∣

{

y ∈ F : xw ∈ Sm (I(Vy))
}∣

∣ .

Suppose first that xw ∈ Lm(I(V )), and let f(x) ∈ I(V ) be a witness of
this fact, that is lm(f) = xw. By collecting together the terms of the form
xwxi

n (i ∈ N) we get a decomposition f(x) = xwg(xn) + h(x), where all
monomials of h(x) are lexicographically smaller than xw, and deg(g) = wn.

If y ∈ F is not a root of g(xn), then f̂(x) = xwg(y)+h(x, y) is a polynomial

which vanishes on Vy, and has the property that lm(f̂) = xw. Thus, if y is
not a root of g, then xw ∈ Lm(I(Vy)). In other words there are at most
deg(g) = wn elements y ∈ F such that xw ∈ Sm (I(Vy)).

For the other direction, assume that xw ∈ Sm (I(V )). First note that
by the finiteness of V , we have Vy = ∅ (and then Sm (I(Vy)) = ∅) with
finitely many exceptions y ∈ F, hence |Z| < ∞. Now, it suffices to show that

xwx
|Z|
n ∈ Lm(I(V )), since in this case xwx

|Z|
n cannot be a divisor of xw, that

is wn < |Z|.
Set F = {y ∈ F : Vy 6= ∅} and y ∈ F \ Z. On one hand, xw ∈ Lm(I(Vy))

implies the existence of a polynomial fy(x) such that all monomials of f(x)
are less than xw, and xw + fy(x) ∈ I(Vy). On the other hand, let χy(xn) be
a polynomial such that for y′ ∈ F \ Z

χy(y′) =

{

1, y′ = y
0 otherwise

. (3)

Since F is finite, such a polynomial does exist.
And finally let
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s(x) =



xw +
∑

y∈F\Z

χy(xn)fy(x)



 ·
∏

y∈Z

(xn − y).

By the properties of the lex order lm

(

xw +
∑

y∈F

χy(xn)fy(x)

)

= xw,

therefore we have that the leading monomial of s(x) is xwx
|Z|
n . It remains to

verify s(x) ∈ I(V ).
Let y = (y, y) ∈ V be arbitrary. Clearly Vy 6= ∅, that is y ∈ F . We may

suppose that y 6∈ Z for otherwise the second term of s(x) vanishes on y.
Property (3) of the polynomials χy′(xn) gives (for some α ∈ F)

s(x, y) =



xw +
∑

y′∈F\Z

χy′(y)fy′(x)



 · α =
(

xw + fy(x)
)

· α,

which vanishes on y ∈ Vy by the definition of fy, thus s(x) is zero on y. This
completes the proof. ⊓⊔

For those, who do not like playing whilst doing math, we emphasize below
the main point of Theorem 2, a fact first noted by Cerlienco and Mureddu
[CM92].

Corollary 3. If V ⊆ Fn is finite, n ≥ 2, and w ∈ Nn then

xw ∈ Smlex (I(V )) ⇐⇒ wn <
∣

∣

{

y ∈ F : xw ∈ Smlex (I(Vy))
}∣

∣ .

Theorem 2 has the immediate consequence that the standard monomials
are largely independent of the base field F and of the precise embedding of
V into Fn. As here we consider more than one field, let us temporarily put
IF(V ) for the polynomial ideal I(V ) in F [x].

Corollary 4. Assume that V ⊆ V1 × · · · ×Vn for some finite sets Vi ⊆ F. Let
F̂ be any field and suppose that ϕi : Vi → F̂ are injective maps for i ∈ [n]. Let
V̂ be the image of V , that is

V̂ = {(ϕ1(y1), . . . , ϕn(yn)) : y ∈ V } .

Then Sm (IF(V )) = Sm
(

IF̂

(

V̂
))

. In particular, if V ⊆ {0, 1}n then the set

Sm (IF(V )) is independent of the base field F.

Proof. The Lex(V ;w) game is essentially the same as the Lex(V̂ ;w) game
since we have changed only the names of the elements (bijectively). The second
part follows from the first, because 0 6= 1 in F for any field F. ⊓⊔
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The second part of the corollary concerning sets V ⊆ {0, 1}n has been
proven in [ARR02] by a different method. We now show that the reduced
lexicographic Gröbner basis of IF(V ) for a set V ⊆ {0, 1}n is essentially the
same over any field. We remark that this can be generalized to finite sets with
more than two integer coordinate values.

If f ∈ Z[x], then for all fields F of characteristic 0 we clearly have f ∈ F [x],
but also if the characteristic of F is p > 0, we can still consider f as an element
of F [x] by reducing its integer coefficients modulo p.

Corollary 5. If V ⊆ {0, 1}n, then the reduced lex Gröbner basis G of IQ(V )
has integer coefficients. For an arbitrary field F, the set in F [x] corresponding
to G is the reduced lex Gröbner basis of the ideal IF(V ).

Proof. Let xw+g(x) be an element of the reduced lex Gröbner basis of IQ(V ),
where every monomial of g ∈ Q[x] is smaller than xw, and is contained in
Sm (IQ(V )). Suppose by contradiction that g 6∈ Z[x].

Let z ∈ Z such that zg(x) has relatively prime integer coefficients. If a
prime p divides z, then reduce zg ∈ Z[x] modulo p to get a polynomial over
Fp. It is a nonzero polynomial which (modulo p) vanishes on V , as zxw +
zg(x) vanishes on V and p | z. Thus the leading monomial of zg(x) is in
Lm

(

IFp
(V )
)

= Lm(IQ(V )), by Corollary 4. That is a contradiction.
For the second statement, let F be an arbitrary field and let us think of

G as a subset of F [x]. Obviously G ⊆ IF(V ) is still true and the leading
monomials of G remain the same. By Lm (IF(V )) = Lm (IQ(V )), we have that
G is a Gröbner basis of IF(V ). As the elements of G, except for their leading
monomials, are linear combinations of standard monomials, G is also reduced.

⊓⊔

Before going on to present mathematical (mostly combinatorial) applica-
tions of the Lex Game, we briefly comment on the algorithmic problem of actu-
ally computing standard monomials, or more generally a basis of Sm (IF(V ))
over F. The problem has had a long history starting with the outstanding
paper by Buchberger and Möller [BM82]. Their algorithm, as well as the sub-
sequent methods of Marinari, Möller and Mora [MMM93] and Abbott, Bigatti,
Kreuzer and Robbiano [ABKR00] give also a Gröbner basis of IF(V ). For the
arithmetic complexity of these methods we have the bound O(n2m3) when V
is a subset of Fn and |V | = m (see Section 3 in [FG06] for a related discus-
sion). The Lex Game provides only the standard monomials, but in return it
appears to lead to a much faster algorithm (see [FRR06] for the details). In
general we have the bound O(nm2). In some important special cases, such as
the case of small finite ground fields which appear naturally in coding appli-
cations, one can even have a linear bound O(nm) on the time demand of the
algorithm.
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4 Applications

4.1 Generalization of the fundamental theorem of symmetric

polynomials

Following [HNR04], we present an easy proof of a theorem by Garsia [G03],
which is a generalization of the fundamental theorem of symmetric polynomi-
als.

The ith elementary symmetric polynomial is

σi(x) =
∑

w∈{0,1}n

deg(xw)=i

xM ,

provided that 0 ≤ i ≤ n. Later we will also use the complete symmetric
polynomial of degree i ≥ 0, which is

hi(x) =
∑

w∈Nn

deg(xw)=i

xw.

The fundamental theorem of symmetric polynomials claims that if f(x) is
a symmetric polynomial, then it can be written uniquely as a finite sum

f(x) =
∑

u∈Nn

αuσ(x)
u

,

where αu ∈ F, and σ(x)u stands for
n
∏

i=1

σi(x)ui .

We intend to prove the following generalization, which was obtained by
A. Garsia [G03].

Theorem 6. Any polynomial f(x) ∈ F[x] can be written uniquely as a finite
sum

f(x) =
∑

w∈Nn

w≤v

∑

u∈Nn

αw,ux
wσ(x)u,

where v = (0, 1, . . . , n−1), w ≤ v is understood coordinatewise, and αw,u ∈ F.

We need some preparations before the proof. Let z1, . . . , zn be different
elements of a field and set

V = {(zπ(1), . . . , zπ(n)) : π ∈ Sn}

the set of all permutations of the sequence z1, . . . , zn.
We first show that the lexicographic standard monomials of I(V ) are ex-

actly the divisors of x2x
2
3 . . . xn−1

n . In other words, the minimal lex leading
monomials are of the form xi

i for i ∈ [n].
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Proposition 7. For the set of points V defined above, we have that xw is a
lexicographic standard monomial of I(V ) if and only if w ≤ (0, 1, . . . , n − 1).

Proof. One can get the lexicographic standard monomials of V using the
Lex Game (Theorem 2). Suppose that w ≤ (0, 1, . . . , n − 1). Then Stan’s
strategy will be to pick in the (n − i + 1)th step (for yi) any element from
the set {z1, . . . , zn} \ {yn, . . . , yi+1}. This set has exactly i elements, so wi < i
guarantees that Lea cannot choose all of them, that is there will always be a
proper choice for Stan.

On the other hand, if for example wi ≥ i, then in the (n − i + 1)th step
Lea can choose all the elements of {z1, . . . , zn} \ {yn, . . . , yi+1}, thus yi will
either be the same as a previously selected yj (and then y 6∈ V ) or an element
different from all zj (again y 6∈ V ). ⊓⊔

We use the following easy fact without proof (see for example [CLO92])
which holds for all i ∈ [n]:

i
∑

j=0

(−1)jhi−j(xi, . . . , xn)σj(x) = 0. (4)

Let i ∈ [n] and set

fi(x) =

i
∑

j=0

(−1)jhi−j(xi, . . . , xn)σj(z).

Proposition 8. The set of polynomials {fi : i ∈ [n]} is the reduced Gröbner
basis of V for all term orders, such that the order of the variables is x1 ≻
x2 ≻ · · · ≻ xn.

Proof. Clearly, if x1 ≻ x2 ≻ · · · ≻ xn holds for a term order, then lm(fi) = xi
i.

It is also obvious by Proposition 7 that every monomial of fi(x) − xi
i is a

lex standard monomial. Equation (4) implies that fi vanishes on V . As the
minimal lex leading monomials (again by Proposition 7) are {xi

i : i ∈ [n]},
we have that {fi : i ∈ [n]} is indeed a reduced lex Gröbner basis. But the
leading monomials of the fi for all term orders ≺ considered in the statement
are the same, thus Smlex (I(V )) ⊇ Sm≺ (I(V )). Due to the equality of the
cardinalities of the two sides, we have that the standard monomials are the
same for all term orders considered. We conclude that {fi : i ∈ [n]} is a
reduced Gröbner basis also with respect to ≺. ⊓⊔

Proof (Theorem 6). We had a good reason for not choosing base field for V
until now. Let F(z) be the function field over F in n variables z1, . . . , zn and
let V ⊆ F(z) be the set of all permutations of these variables, as before.

Let f(x) ∈ F [x] ⊆ F(z)[x] be any polynomial, and reduce f(x) by the
Gröbner basis {fi(x) ∈ F(z)[x] : i ∈ [n]} of V . The result is an F(z)-linear
combination of monomials xw ∈ Sm (I(V )). Furthermore, since actually fi ∈
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F [z] [x], and fi is symmetric in the variables z1, . . . , zn, the coefficients of the
xw ∈ Sm (I(V )) in this F(z)-linear combination are symmetric polynomials
from F[z]. Thus as functions on V , we have an equality

f(x) =
∑

x
w∈Sm(I(V ))

xwgw(z),

where gw(z) ∈ F[z] is a symmetric polynomial. Therefore putting z in the
place of x (since z ∈ V ) we get the equation

f(z) =
∑

z
w∈Sm(I(V ))

zwgw(z)

of elements of F(z). An application of the fundamental theorem of symmetric
polynomials, together with Sm (I(V )) = {xw : w ≤ (0, 1, . . . , n − 1)} yields
the existence of the required form for f .

Uniqueness now follows: suppose that

f(x) =
∑

x
w∈Sm(I(V ))

∑

u∈Nn

αw,ux
wσ(x)

u

.

Then as functions on V we have

f(x) =
∑

x
w∈Sm(I(V ))

∑

u∈Nn

αw,ux
wσ(z)

u

=
∑

x
w∈Sm(I(V ))

xwg̃w(z),

for some polynomials g̃w(z) ∈ F[z]. We expressed f(x) as an F(z)-linear com-
bination of standard monomials. But this is unique, hence g̃w(z) = gw(z),
and so (using the uniqueness part of the fundamental theorem of symmetric
polynomials) the claim follows. ⊓⊔

It is instructive to compare our approach here to the one followed by Buch-
berger and Elias in [BE92]. They used Gröbner bases to detect and guess iden-
tities among polynomials, which involved Fermat polynomials and elementary
symmetric polynomials. Subsequently they went on, generalized these to ob-
tain conjectures and then proved these conjectures by traditional inductive
means. Here we employ Gröbner bases as a proof technique to establish the
generalized identity constituting Theorem 6.

4.2 Wilson’s rank formula

Consider the inclusion matrix A = I
(

(

[n]
d

)

,
(

[n]
m

)

)

, where m ≤ d ≤ n − m.

A famous theorem of Richard M. Wilson [W90, Theorem 2] describes a
diagonal form of A over Z. A is shown to be row-column equivalent over Z to
a diagonal matrix with diagonal entries

(

d−i
m−i

)

with multiplicity
(

n
i

)

−
(

n
i−1

)

for 0 ≤ i ≤ m. As a corollary, the following rank formula holds:
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Theorem 9. Let p be a prime. Then

rankFp
(A) =

∑

0≤i≤m

p∤( d−i

m−i)

(

n

i

)

−

(

n

i − 1

)

.

We shall outline a simple proof which uses polynomial functions, and some
simple notions related to Gröbner bases. We note first that the rank of A is
exactly the dimension of the linear space Pd,m over Fp of the functions from
V([n]

d ) to Fp which are spanned by the monomials xM with |M | = m.

Let Pm denote the subspace of homogeneous multilinear polynomials in
Fp [x] of degree m. Suppose that m ≤ n/2, and for a set M ⊆ [n], |M | ≤ m
we define the multilinear polynomial

yM =
∑

M ′⊇M
|M ′|=m

xM ′ ∈ Pm.

To simplify our notation, we write I for the vanishing ideal I
(

(

[n]
m

)

)

of
(

[n]
m

)

.

Lemma 10. The collection of polynomials yM , where xM ∈ Sm (I), is a linear
basis of Pm over Fp.

Proof. Since {xM + I : xM ∈ Sm (I)} is a linear basis of Fp [x] /I, and xM +
I = yM + I (they represent the same function on V([n]

m)), we obtain that

{yM + I : xM ∈ Sm (I)} is a basis of Fp [x] /I. As yM ∈ Pm, it is also clear
that Pm + I = Fp [x]. From the fact that Pm ∩ I = {0}, we have a natural
isomorphism Pm → Fp [x] /I which sends yM to yM + I. We conclude that
{yM : xM ∈ Sm (I)} is indeed a basis of Pm. ⊓⊔

We can state Wilson’s rank formula in this setting as follows.

Theorem 11. Let p be a prime, suppose that m ≤ d ≤ n − m and put I =

I
(

(

[n]
m

)

)

. A basis of the space Pd,m of Fp-valued functions on V([n]
d ), which are

Fp-linear combinations of monomials xM , |M | = m is

B =

{

yM : xM ∈ Sm (I) , p ∤

(

d − |M |

m − |M |

)}

.

In particular,

dimFp
Pd,m = |B| =

∑

0≤i≤m

p∤( d−i

m−i)

(

n

i

)

−

(

n

i − 1

)

.
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Proof. Let vF be the characteristic vector of a d-subset of [n]. It is immediate
that

yM (vF ) =

(

d − |M |

m − |M |

)

· xM (vF ). (5)

We obtain that, as a function on V([n]
d ), yM is a scalar multiple of xM . This, to-

gether with the linear independence of the xM gives that B is an independent
set. Also, B spans Pd,m, because Pm spans Pd,m by definition, and the yM

span Pm by Lemma 10. To conclude, it remains to verify that for 0 ≤ i ≤ m
there are exactly

(

n

i

)

−
(

n

i−1

)

monomials of degree i in Sm (I). This will be
proven in Lemma 12. ⊓⊔

Lemma 12. For an arbitrary term order and any integers 0 ≤ i ≤ m ≤ n
2 ,

there are exactly
(

n
i

)

−
(

n
i−1

)

monomials of degree i in Sm
(

I
(

(

[n]
m

)

))

.

Proof. We will restrict ourselves to the lex order. Note that this is enough for
completing the proof of Theorem 11. The full proof could be carried out by
the same ideas we use in Proposition 8 or outline after Theorem 13.

We say that a vector w ∈ {0, 1}n is a ballot sequence if in every prefix of
w there are at least as many 0, as 1 coordinates. We shall prove that xw is a

lex standard monomial for I = I
(

(

[n]
m

)

)

iff deg (xw) ≤ m and w is a ballot

sequence. By Theorem 2, we can use the Lex Game Lex
(

V([n]
m);w

)

to show

this.
If the number of 1 coordinates in w is more than m, then Lea will choose

0 at each of her guesses. This way, Stan has to put yi = 1 for more than m
times, therefore y 6∈ V([n]

m) at the end, and Lea wins. That is, if deg (xw) > m,

then xw ∈ Lm(I).
Suppose now, that deg (xw) ≤ m and w is not a ballot sequence. Let

i ∈ [n] be such that (w1, . . . , wi) is the shortest prefix of w that violates the
ballot condition. It is easy to see that i is odd, and there are exactly i+1

2
coordinates equal to 1. Assume that when in the game Stan picked yi+1 then
there are m−k ones among yn, . . . , yi+1. Stan would win only if he could pick
the remaining yi, . . . , y1, such that k of them was 1, i− k of them was 0. But
if k ≤ i−1

2 , then Lea always chooses 0, thus there will be at least i+1
2 > k ones

among yi, . . . , y1. And when k > i−1
2 , then i − k ≤ i−1

2 , so if Lea keeps on

choosing 1, then Stan has to claim at least i+1
2 > i − k zero coordinates, and

hence he loses the game.
Next we show how Stan can win if w is a ballot sequence with at most m

ones. Set J = {j ∈ [n] : wj = 1}. For all j ∈ J let us pick an ℓ(j) ∈ [n], such
that wℓ(j) = 0, ℓ(j) < j, and ℓ : J → [n] is injective. (This can be done if w

is a ballot sequence.) Let us put L = {ℓ(j) : j ∈ J}, and K = [n] \ (J ∪ L).
Stan’s strategy to choose yi is the following. If i ∈ J , then Lea will guess
something, so he just claims the opposite (in {0, 1}). If i ∈ L, say i = ℓ(j),
then he picks yℓ(j), such that {yj , yℓ(j)} = {0, 1}. (Note that when choosing
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the ℓ(j)th coordinate, he already fixed yj by ℓ(j) < j.) This way, Stan will
have exactly |J | ones in (yi : i ∈ J ∪L). Therefore he picks m−|J | ones from
the yk (k ∈ K), and wins.

Now it follows immediately, that the lex standard monomials of I
(

(

[n]
m

)

)

of degree at most i are the same as the lex standard monomials of I
(

(

[n]
i

)

)

.

In particular, there are
(

n
i

)

of them, and then there are
(

n
i

)

−
(

n
i−1

)

standard
monomials of degree i. This proves the lemma. ⊓⊔

The approach given here allows a considerable generalization of the rank
formula. We present without proof a result of this type (for details, see [FR03]).
Suppose that 0 ≤ m1 < m2 · · · < mr ≤ d ≤ n − mr and let p be a prime.
Consider the set family F =

(

[n]
m1

)

∪
(

[n]
m2

)

∪ · · · ∪
(

[n]
mr

)

. Then

rankFp

(

I

((

[n]

d

)

,F

))

=
∑

0≤i≤mr

p∤ni

(

n

i

)

−

(

n

i − 1

)

,

where ni = gcd
(

(

d−i
m1−i

)

,
(

d−i
m2−i

)

, . . . ,
(

d−i
mr−i

)

)

.

4.3 Applications to modulo q ℓ-wide families

In this subsection we give two applications of the Gröbner methods to extremal
set theory. We prove upper bounds on the cardinality of a family of subsets
of [n] with certain restrictions: we will consider modulo q L-intersecting, L-
avoiding families, and families that do not shatter large sets. We shall omit a
part of the proof, but give the ideas. A detailed proof can be found in [FHR1].

Let us consider the following family of sets. Let q, d, and ℓ be integers,
such that 1 ≤ ℓ < q. Then the modulo q complete ℓ-wide family is

G = {G ⊆ [n] : ∃ g ∈ Z such that d ≤ g < d + ℓ, and |G| ≡ g (mod q)} .

In other words, G contains all subsets of [n] which have cardinality modulo q
in the interval [d, d + ℓ − 1] (of length ℓ). The restrictions on the parameters
ℓ and q tell us exactly that if |G| ≡ d + ℓ (mod q), then G 6∈ G (that is, G is
in fact ℓ-wide). Subfamilies of G are called modulo q ℓ-wide families.

The following theorem will be crucial in both applications.

Theorem 13. Let p be a prime, and q be a power of p. Denote by HG(m) the
Hilbert-function over Fp of a modulo q complete ℓ-wide family G. If 0 ≤ m ≤
n+ℓ
2 , then

HG(m) ≤
∞
∑

j=0

ℓ−1
∑

k=0

(

n

m − jq − k

)

.
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A sketch of the proof is the following. One can obtain the lex standard
monomials of I(G) by the Lex Game method. Then also the lexicographic
Gröbner basis can be constructed: for each minimal lex leading monomial xw,
we can exhibit a polynomial fw in the ideal, such that lm(fw) = xw. It turns
out that the lex and deglex leading monomials of these polynomials are the
same. From this fact it follows that what we got is a deglex Gröbner basis as
well, and that the lex and deglex standard monomials are the same. (This is
the same way to compute the deglex Gröbner basis as in Proposition 8.) This
is good news, since by counting the deglex standard monomials of degree at
most m, we obtain the exact value of HG(m). The formula in Theorem 13 is
then a convenient upper bound of that value.

One may compare this result to Lemma 12, noting that if q > n and ℓ = 1,
then the modulo q complete ℓ-wide family is just

(

[n]
d

)

.

Modulo q L-intersecting, L-avoiding families

Let L be a subset of integers and F be a system of sets. We say that F is
modulo q L-avoiding if F ∈ F and f ∈ L implies |F | 6≡ f (mod q). We call F
modulo q L-intersecting if for any two distinct sets F1, F2 ∈ F a congruence
|F1 ∩ F2| ≡ f (mod q) holds for some f ∈ L.

The maximum number of sets a modulo q L-avoiding, L-intersecting set
family can contain has been studied extensively, see [FHR1] for more details.
We have the following result in this direction.

We call a set L ⊆ {0, . . . , q − 1} a modulo q interval if it is either an
interval of integers, or a union of two intervals L1 and L2, such that 0 ∈ L1

and q − 1 ∈ L2.

Theorem 14. Let q be a power of a prime, L be a modulo q interval and F ⊆
2[n] be a modulo q L-avoiding, L-intersecting family of sets. If |L| ≤ n− q +2,
then

|F| ≤

q−1
∑

k=|L|

(

n

k

)

.

The following lemma is left as an exercise for the reader.

Lemma 15. If f is an integer, q is a power of a prime p, then

(

f − 1

q − 1

)

≡

{

0 (mod p), if f 6≡ 0 (mod q)
1 (mod p), if f ≡ 0 (mod q).

Proof (Theorem 14). Put ℓ = q − |L|. If L is an interval of integers, then set
d = maxL + 1, otherwise, when L is the union of two (separate) intervals
L1, L2 and 0 ∈ L1, set d = max L1 + 1. Denote by G the modulo q complete
ℓ-wide family with this parameter d. Then by the definitions F ⊆ G.

For any F ∈ F we define the polynomial f̂F (x) ∈ Q[x] to be
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f̂F (x) =









q−1
∑

k=0
k 6∈L

(

x · vF − k − 1

q − 1

)









reduced by x2
i − xi (i ∈ [n]),

where x · v =
n
∑

i=1

xivi is the usual scalar product of row vectors.

We claim that f̂F ∈ Z[x]. Since we have reduced with x2
i −xi, we have that

f̂F (x) is multilinear, thus f̂F =
∑

G⊆[n]

αGxG with some coefficients αG ∈ Q.

If f̂F 6∈ Z[x], then let G be a minimal set with respect to inclusion, such
that αG 6∈ Z. Clearly, the reduction with the polynomials x2

i − xi does not
change the value of the original polynomial on 0-1 vectors, therefore fF (vG)
is an integer. Thus substituting vG we get that fF (vG) =

∑

G′(G

αG′ + αG,

a contradiction since the coefficients αG′ are integers. We have proven that
f̂F ∈ Z[x].

Suppose that q is a power of a prime p and let F ′ ∈ F be a set. Then

f̂F (vF ′) =

q−1
∑

k=0
k 6∈L

(

|F ′ ∩ F | − k − 1

q − 1

)

. (6)

If F ′ 6= F , then, as F is modulo q L-intersecting, |F ′ ∩ F | − k cannot be
congruent to 0 modulo q for k 6∈ L. That is (by Lemma 15), if F ′ 6= F , then
all terms of the sum in (6) are zero modulo p. If F ′ = F , then using that F
is modulo q L-avoiding, we have exactly one nonzero term modulo p, which is
actually congruent to 1. Write fF for the polynomial in Fp [x] we obtain from

f̂F by reducing its integer coefficients modulo p. The above argument yields

fF (vF ′) =

{

0 if F 6= F ′

1 if F = F ′ .

Since the degree of f̂F is at most q − 1, the same is true for fF as well.
Using our earlier notation, this means that fF ∈ Fp [x]≤q−1. We claim that the

images fF of the fF in the quotient space Fp [x]≤q−1

/

I(G)≤q−1 are linearly
independent over Fp. Indeed, suppose that

∑

F∈F

αF fF = 0 (7)

for some αF ∈ Fp. The elements of Fp [x] /I(G) are functions on the charac-
teristic vectors of G. In particular equation (7) still holds if we substitute vF

for some F ∈ F ⊆ G. The substitution gives αF = 0 immediately.
To conclude, note that the number of the polynomials fF is bounded by

the dimension of Fp [x]≤q−1

/

I(G)≤q−1, that is
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|F| ≤ dimFp

(

Fp [x]≤q−1

/

I(G)≤q−1

)

= HG(q − 1) ≤

∞
∑

j=0

ℓ−1
∑

k=0

(

n

q − 1 − jq − k

)

=

q−1
∑

k=|L|

(

n

k

)

.

by Theorem 13 (which we are allowed to use as |L| ≤ n − q + 2 implies the
assumption q − 1 ≤ n+ℓ

2 of the Theorem). ⊓⊔

Set families which do not shatter large sets

Consider a family F of subsets of [n]. We say that F shatters M ⊆ [n] if

{F ∩ M : F ∈ F} = 2M .

The system of sets F is an ℓ-antichain if it does not contain ℓ + 1 distinct
sets F0, F1, . . . , Fℓ such that F0 ( F1 ( · · · ( Fℓ.

Frankl [F89] conjectured that if an ℓ-antichain F shatters no set of size

m + 1 for some integer 0 ≤ m ≤ n+ℓ
2 − 1, then |F| ≤

ℓ−1
∑

k=0

(

n

m−k

)

must hold.

An ℓ-wide family (which of course can be understood as a modulo q ℓ-wide
family for some q large enough) is an ℓ antichain. In their manuscript [FHR2],
Friedl, Hegedűs and Rónyai showed that the upper bound is valid for ℓ-wide
families. The next theorem is a generalization of that result, the special case
follows by choosing q > n.

Theorem 16. Let F ⊆ 2[n] be a modulo q ℓ-wide family of sets, where q is a
prime power. If F shatters no set of size m+1 for some integer 0 ≤ m ≤ n+ℓ

2 ,
then

|F| ≤
∞
∑

j=0

ℓ−1
∑

k=0

(

n

m − jq − k

)

.

Proof. We first prove that if xM is a standard monomial of any set system F ,
then F shatters M . Suppose that N ⊆ M , but N 6∈ {F ∩ M : F ∈ F}. Let
v = vN be the characteristic vector of N . Then the polynomial

∏

i∈M

(xi + vi − 1)

vanishes on VF and its leading monomial is xM , thus xM ∈ Lm(I(F)). We
conclude that xM ∈ Sm (I(F)) implies |M | ≤ m for a family F which does
not shatter any set of size m + 1.

Recall that F ⊆ G, where G is a modulo q complete ℓ-wide family. This
gives Sm (I(F)) ⊆ Sm (I(G)), and so we can bound the cardinality of the stan-
dard monomials of F with the number of standard monomials of G of degree
at most m. This latter is exactly HG(m), if we consider a degree compatible
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term ordering. (Actually, in this case, we can take any term order, see the
discussion after Theorem 13.) Therefore

|F| = |Sm (I(F))| ≤ HG(m),

and hence Theorem 13 gives the desired bound. ⊓⊔

The inequality in Theorem 16 is sharp. Choose d = m+ ℓ−1 for a modulo
q complete ℓ-wide family G, and put F = G ∩

(

[n]
≤m

)

. Then the fact that F
does not contain any set of size m + 1 implies that it cannot shatter any set

of cardinality m + 1. The size of F is precisely
∞
∑

j=0

ℓ−1
∑

k=0

(

n
m−jq−k

)

.

4.4 Harima’s theorem for set families

Here we prove an important special case of a theorem by T. Harima. It estab-
lishes a connection among the Hilbert functions of complementary set families.

Theorem 17. Suppose F ⊆ 2[n] and G = 2[n] \ F are nonempty set families.
Then for their Hilbert functions we have

m
∑

i=0

(

n

i

)

= |G| + HF (m) − HG(n − 1 − m)

for every m = 0, 1, . . . , n.

Theorem 17 was proved by Tadahito Harima for much more general point
sets. In formula (3.1.5) of [H95] the result is given for two disjoint finite point
sets X, Y ⊂ Pn(F) in the projective n-space over F, instead of VF and VG ,
such that X∪Y is a complete intersection. The formula was used in his char-
acterization of the Hilbert functions of Artinian Gorenstein algebras with the
weak Stanley property.

Here we focus on 0,1-vectors only. Our approach is based on direct com-
putations with polynomial functions.

Proof. For a subset M ⊆ [n], let M c stand for the set [n] \ M .
We claim that a monomial xM is a leading monomial for I(F) if and only

if xMc is a standard monomial for I(G).
Among the monomials of the form xM , the number of leading monomials

for I(F) is the same as the number of standard monomials for I(G), namely
2n − |F| = |G|, hence the claim will follow if we show that xM ∈ Lm(I(F))
implies xMc ∈ Sm (I(G)). Indeed, suppose for contradiction that we have
polynomials f ∈ I(F) and g ∈ I(G) with leading terms xM and xMc , re-
spectively. Then f · g vanishes on V2[n] and its leading term is x[n]. This is

impossible, because
∣

∣Sm
(

I
(

2[n]
))∣

∣ = 2n = |{xM ′ : M ′ ⊆ [n]}| implies that
every multilinear monomial is a standard monomial for V2[n] .
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Let ≺ be a degree compatible term order on F [x]. Now the number of
multilinear leading monomials of degree i for I(F) is

(

n

i

)

−(HF (i)−HF (i−1)).
By the claim above, this is HG(n− i)−HG(n− i−1), the number of standard
monomials of degree n − i for I(G). We have

(

n

i

)

= HF(i) − HF (i − 1) + HG(n − i) − HG(n − i − 1),

for every 0 ≤ i ≤ n (we use the convention HF (−1) = HG(−1) = 0). By
adding these up for i = 0, . . . , m, we obtain

m
∑

i=0

(

n

i

)

= HF(m) + HG(n) − HG(n − m − 1).

The Theorem follows now from HG(n) = |G|. ⊓⊔

Theorem 17 allows us to formulate an interesting min-max relation. Let
F ⊂ 2[n] be a family different from ∅ and 2[n]. Let a(F) stand for the smallest
degree of a nonzero multilinear polynomial from F [x] which vanishes on VF .
We have 1 ≤ a(F) ≤ n.

Also, we define b(F) to be the smallest integer k such that HF (k) = |F|.
In other words, b(F) is the smallest degree k such that every function from
VF to F can be represented by a polynomial from F [x] of degree at most k.
We have 0 ≤ b(F) ≤ n.

It is easily seen that any polynomial χv ∈ F [x] which is 1 on the vector
v ∈ {0, 1}n, and 0 on all other vectors from {0, 1}n must have degree at least
n. From that we readily infer that

a(F) + b(2[n] \ F) ≥ n. (8)

Theorem 17 implies that, in fact, we have an equality here.

Corollary 18. Let F ⊂ 2[n] and G = 2[n] \ F . Assume that both F and G are
nonempty. Then we have

a(F) + b(G) = n.

Proof. We apply Theorem 17 with m = a(F) − 1. Note first, that m ≥ 0 and
HF (m) = H2[n](m), because the multilinear monomials of degree ≤ m are
linearly independent over F, as functions on VF . Theorem 17 gives now that
HG(n−m−1) = |G|, hence b(G) ≤ n−m−1 = n−a(F). This, together with
(8) proves the assertion. ⊓⊔

In [PR] Theorem 17 is proved over more general coefficient rings, rather
than fields, which include the rings Zk = Z/kZ, where k is a positive integer.
An application to the (modular weak degree) complexity of Boolean functions
is also given there.
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