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On the solvability of some special equations over finite
fields

By Balint Felszeghy

Abstract. Let F' be a polynomial over F, with n variables and of degree
d. Suppose that it is impossible to transform F' by invertible homogeneous linear
change of variables to a polynomial, which has less than n variables. Also suppose
that the degree of F' in each variable is less than p. Rédei conjectured that if d < n
then F' = 0 has at least one solution in IF,,. This was disproved in [5] by a collection
of counterexamples, but the cases deg F' = 3 and deg F' = 5 remained open. We
give a counterexample with deg F' = 5 over Fy;. On the positive side, we prove
the statement for symmetric polynomials of degree 3.

Along a related line, consider polynomials of the form F(z1,...,z,) = ajz¥+
cootanzk+g(z1,. .., 2,), where aas ...an #0, g € Fp[z1,...,2,] and deg g < k.

We will show, that if n > [ﬁ-‘ , then the equation F'(z1,...,z,) = 0is solvable
Tk

in F,". This is a generalization of a result of Carlitz ([2]).

1. Introduction

In 1946 Laszl6 Rédei formulated a conjecture (see [4]) about the solv-
ability of polynomial equations over finite fields. Although it turned out
that there are counterexamples, for some special polynomials the conjec-
ture holds. We give first a brief overview of the related results.
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Let p be a prime, F, be a field with p elements and F(z1,...,z,) €
Fp(z1,...,2,] be a polynomial, with n variables. We can assume that the
degree of F in z; is at most p — 1 for 1 <4 < n, that is the polynomial is
reduced. We denote the linear subspace (in the space of polynomials with
n variables over F,) spanned by the partial derivates of F' by V', so we put
V=Lin{8C : 1<i<n}. The rank of F is defined to be dimg, V.

We note that the original definition of rank in [4] is different. We will
use that rank F' is precisely the least positive integer r for which there
exists an invertible homogeneus linear change of variables which carries F
into a polynomial with r variables. The equivalence to the original notion
can be found in [5]. With this notion of the rank, the conjecture is the
following;:

Rédei’s Conjecture. Let F € Fy[z1,...,z,] be reduced, not con-
stant and deg F' < rank F'. Then F(z1,...,z,) = 0 is solvable.

In [5] Rényai disproved this by giving counterexamples. Let ¢ € F,

(2
i=1
It is clear, that F' = 0 cannot be solvable in [,. In the case n > 4, F
serves as a counterexample to the conjecture, as it is not difficult to see

that n» = rank F'. A similar polynomial can be constructed for p = 3. (The

2
n
(p > 5) be a quadratic nonresidue, and F(z1,...,z,) = (Z x2> —c.

conjecture is true if p = 2.) There are counterexamples for every degree
d > 6.

It is pointed out in [5] that the conjecture is valid for degrees 1 (this
case is trivial) and 2. The remaining cases (deg F' = 3 or 5) are still open.
In Section 2 we show a counterexample for deg F' =5 and p = 11, and, as
a positive result, we prove the conjecture for cubic symmetric polynomials.
We note that the counterexample given above for deg F' = 4 is symmetric.

Rédei’s conjecture holds also for some equations of diagonal type, see
[5]. We prove the conjecture in Section 3 for a class of generalized diagonal
polynomials.
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2. The cases of degree 3 and 5

Proposition 1. Let n > 5 be an integer, and let F' be the polynomial
over Fyq:

Then deg F = 5, rank F' = n, but F(z1,...,z,) = 0 has no solutions in
F,7, so Rédei’s conjecture is not true for degree 5 in general.

PROOF. Consider the polynomial f(z,y) = z° 4+ y% — 7. Since in Fy;
2% € {~1,0,1} and 9?2 € {0,1,3,4,5,9}, z° + y? never equals 7. So f =0
has no solutions, and hence nor has F' = 0.
It remains to show that rank F' = n, that is the partial derivates of F'
are linearly independent. Indeed, suppose that ai,as,...,a, € Fi1 and
n n
0=>" ai%. For a fixed j, we can regard )’ ai% as a polynomial in z;
i=1 ¢ i=1 ¢
(over the extension field Fy,(z1,...,2j-1,Zj+1,---,%n)), S0 it can be 0 for
all z; only if each coefficient of xé is zero. Since

n OF n
;aza—xz = 5041$A11+4($%+£L‘§+"'+£L‘i)iz:;ai.’lri,

the coefficient of :1:‘% is 5aq, so a3 = 0. Thus we have

n
Oz4(w%+z§+---+xi)2aixi
i=2

n

and 0 = " a;z;. This can happen only if @; = 0 (2 < 4 < n), which means
i=2

that rank F' = n. O

On the positive side, we prove the conjecture for symmetric cubic
polynomials. We are only interested in reduced polynomials, so for the
remaining part of this section we suppose that p > 5. We denote the rth
elementary symmetric function in variables x1,...,z, by o, for 1 <r < n.

Proposition 2. If F(z1,...,z,) is a symmetric polynomial of degree
3, then there exists a uniquely determined polynomial f in F,[y1,y2,y3] of
the form

fy1,y2,y3) = ays + ya(byr + ¢) + g(y1),
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with a, b, c € F, and g(y1) € Fp[y1], degg < 3, such that F(z1,...,z,) =
f(01502303)'

PROOF. The fundamental theorem of symmetric polynomials yields
that there exists a uniquely determined fi(yi,...,yn) € Fply1,---,n)
such that F(z1,...,zn) = fi(01,...,0p). The algebraic independence of
o; implies that if y’f 1y§2 ...y¥" is a monomial of f; with nonzero coefficient,

n
then F' has nonzero terms, with degree ) ik;. It follows from degF = 3

i=1
that the only products with nonzero coefficients in f; can be y3, y2y1, Yo,

yi”, y%, Y1, 1, thus f(y1,92,y3) := fi(y1,--.,yn) completes the proof. O

The main part of the next statement is a corollary of Hasse’s Theorem
(see [6] or Hasse’s original paper [3]) on elliptic curves over finite fields.

Proposition 3. Let p > 5, and h(z) be a polynomial in F,[z], and
suppose that 1 < degh < 3. Then the equation y?> = h(z) is always
solvable in 2.

PROOF. If degh < 2, then y? — h(z) is a polynomial with rank 2, so
it has a root in ]FPQ.

Suppose that degh = 3. If o € F, is a root of h, then (z9,0) is a
solution of the above equation. If h has no roots in [, then h is irreducible,
and so h has three distinct roots (in s ), which means that y* = h(z) is an
equation of a (nonsingular) elliptic curve over [F,,. Hasse’s Theorem yields
that for the number E of the projective points of the curve the inequality
|E — (p+1)| < 2,/p holds. Consequently E > p+1—2,/p, which is greater
than one, if p is greater than 4, and so the curve has at least 2 projective
points. Since an elliptic curve with equation of type y? = h(z) has exactly
one point at infinity, this proves the statement. O

We apply the two propositions above to prove Rédei’s conjecture for
cubic symmetric polynomials.

Theorem 4. Let p > 5, and F(z1,...,z,) be a symmetric polynomial
over I, of degree 3 withrank F' > 3. Then F(z1,...,z,) = 0 has a solution
in F,".

PRrOOF. It suffices to show the statement for n = 3. Using Proposition
2 we obtain that F'(z1, z2,z3) = ao3+ 02 (bo1 + ¢)+g (01)- Finding a root
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for F' is equivalent to find a solution (in z1, 2, 3, y1, Y2, y3) for the
following system of equations.

ays +y2(by1 +¢) +g(y1) =0 (1)
1+ 22 +T3=1Y1 (2)
T1To + T1T3 + ToT3z = Y2 (3)
T1T2T3 = Y3 (4)
By (2), we eliminate first 21 from (3) and (4).
(y1 — (322 + £E3))(£132 + £E3) + Tox3 = Y2 (3’)
(y1 — (w2 + 23)) 223 = Y3 (4"

From (1), (3') and (4') we infer

a(yr — (2 + z3))z2x3 + ((y1 — (22 + 23)) (22 + 23) + 2273) (by1 + €)
+9(y1) =0. (5)

It is obvious that (5) is solvable iff the initial system of equations has a
solution. Now let u = x9 4+ x3, v = x93 and y = y;. With these variables
(5) takes the form

a(y —u)v + ((y —uwu +v)(by +¢) + g(y) = 0.

Thus we have
(y —wulby +¢) +9(y) _ (6)
(a+by—au+c )
Since rank F' = 3, at least one of a, b and c is nonzero, so (a +b)y —au+c
is not identically 0. If we can solve (6) then z2 and z3 have to be the two

roots of the polynomial z2 — uz + v. So precisely those solutions of (6)
2

. . 2
are satisfactory for which (%) —v=2z
equation

is solvable. Together, we have the

(y —wulby+c)+9(y) | (u\2_ »

—] =2z (7)
(a+b)y —au+c 2

to solve. Let d € F, be 1 or 2. If a # 0 then choose u = < ((a + b)y + ¢ — d).

If a = 0, but b # 0 then choose y = % (d — ¢). In both cases the denom-

inator of (6) becomes d, so the left hand side of (7) is a polynomial A in

one indeterminate (y or u) of degree at most 3. It is clear, that for d =1
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or d = 2 h is not constant. If a = b = 0, then choose u = 1 or u =0
according as g is constant or not, respectively.

So finally we have an equation of the form 22 = h(u), and application
of Proposition 3 completes the proof. O

3. Generalized diagonal equations

In this section we give some more positive examples. We consider
polynomials F(z1,...,z,) € Fp[z1,...,z,] of form

n
F(z1,...,zq) = Zaixf+g(x1,...,xn) ,
i=1

where p is a prime, F, is the field with p elements, 1 < k < p — 1,
ai,...,an € Fp, a1a2...an # 0 and g(z1,...,2,) € Fplz1,...,2y] is an
arbitrary polynomial with degg < k. Then we call F' a generalized diago-
nal polynomial. Our goal is to prove the following theorem.

p—1

Theorem 5. Suppose that n > ’Vﬁ-‘ Then F(zi,...,zn) =
k

a;iz¥ + g(z1,...,2n) = 0 is solvable in F,".
1

n

=

To compare this to Rédei’s conjecture, we observe that if kK = 1 then
rank F' = 1, otherwise we have rank F' = n. Indeed, put
OF dg

Fi(%1y- @) i= (21, Tp) = kagzf L 4 =2 (21, ..., 20).

Suppose that there exist some o; such that Y . | o Fj(z1,...,2,) = 0

holds for all (z1,...,z,) € F,". Since degg—i < k — 1, the coefficient

of w;?_l is ajka;, hence o;j = 0 for each j, which means that the F; are
linearly independent, and rank F' = n.

Rédei’s conjecture predicts that there is a solution (z1,...,z,) € F,"
for F(z1,...,z,) =0, in case n > k. We cannot prove this in general, but
if k|p — 1, then this is an immediate consequence of Theorem 5. Carlitz
proved this special case in [2] in a way different from ours. It could happen
that for a fixed p and k there would be polynomials g,(z1,...,z,), such
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that Fp(21,...,2n) = Yoy aniz? + gn(z1,...,2,) and none of the F-s
have solution, however big n we would choose. Theorem 5 shows that it is
impossible by presenting an upper bound < p — 1 for n.

Now recall a consequence of Alon’s Combinatorial Nullstellensatz, that
can be found in [1].

Theorem 6. Let G(z1,...,z,) € Fy[z1,...,2,] be a polynomial, as-
n n
sume that degG = > t; > 1, the coefficient of [] :z:fl is not 0, and

=1 =1
0 <t <p-—1 for each i. Choose for all i an arbitrary S; C F, with
|Si| =t; + 1. Then G cannot be constant on S; X Sg X --- X Sy,.

Theorem 6 allows a simple proof of Theorem 5.

PROOF OF THEOREM 5. We can assume that n = ’Vﬁ-‘, because
%

otherwise we can get a similar polynomial in [ﬁ-‘ variables by sub-
&
stituting zeros in place of some z;. Let G(x1,...,2,) = F(z1,...,2,)P L

We intend to show, using Alon’s Theorem, that G is not constant on F,".
Since the value of G(z1,...,z,) can be either 0 or 1, this will imply that
there exists a root of G. Let

ti:[p%leforlgign—land

th=(p—1)k—(n—1) V%J k.

It is obvious that 0 < ¢; <p—1lforalll <i<n-—1and )  t; =
(p — 1)k = deg G. The following simple calculation

b=p-1k- [ |2=1] -1 {EJk
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gives that %, is also suitable.
k p-1
In G there is a monomial m = [[}"_, z}' contributed by (Z amf) ;

p—1 _1—(p—1)| 21
since 37? = (ﬂdc)L * Ja and zlp = (xfl)p =% J The coefficient of

m 1S

%Ha? # 0.

4y

k=1
The conditions of Theorem 6 are satisfied. G is not constant, hence there
exists an (71,...,Z,) € F," such that G(1,...,z,) = 0, and equivalently
F(z1,...,2n) = 0. The theorem is proved. O

If £ | p— 1 then the statement is also true in an arbitrary finite field.

Theorem 7. Assume that ¢ = p" is a prime power. If k divides
n

p—1,n>kand F(zy,...,2,) = Y, 2¥ + g(z1,...,2,) then the equation
i=1
F(z1,...,zy) = 0 is solvable in F,".

PROOF. In the preceding proof we used only once that p is a prime,
namely when we stated that the corresponding coefficient is not zero. Using
klp — 1 we can easily verify that (= L /k),k # 0 in F,;. The largest power
of p which divides the numerator is

i[prpzlJ :’ilpr_i_ﬂzg(pr_i_l) |

i=1 i=1

This is the same for the denominator. Indeed

o | pr—1 Tl i i
= -1 p'—-1
EF] gl
a LY k 'k

i=1

1

<
|

—

S
|

;_A

i=1 1=

-1

implies that 2 kl =L is an integer. O
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