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Exercises for Chapter 1

Exercises for Section 1.1: Describing a Set

1.1 Only (d) and (e) are sets.

1.2 (a) A = {1, 2, 3} = {x ∈ S : x > 0}.
(b) B = {0, 1, 2, 3} = {x ∈ S : x ≥ 0}.
(c) C = {−2,−1} = {x ∈ S : x < 0}.
(d) D = {x ∈ S : |x| ≥ 2}.

1.3 (a) |A| = 5. (b) |B| = 11. (c) |C| = 51. (d) |D| = 2. (e) |E| = 1. (f) |F | = 2.

1.4 (a) A = {n ∈ Z : −4 < n ≤ 4} = {−3,−2, . . . , 4}.
(b) B = {n ∈ Z : n2 < 5} = {−2,−1, 0, 1, 2}.
(c) C = {n ∈ N : n3 < 100} = {1, 2, 3, 4}.
(d) D = {x ∈ R : x2 − x = 0} = {0, 1}.
(e) E = {x ∈ R : x2 + 1 = 0} = {} = ∅.

1.5 (a) A = {−1,−2,−3, . . .} = {x ∈ Z : x ≤ −1}
(b) B = {−3,−2, . . . , 3} = {x ∈ Z : −3 ≤ x ≤ 3} = {x ∈ Z : |x| ≤ 3}.
(c) C = {−2,−1, 1, 2} = {x ∈ Z : −2 ≤ x ≤ 2, x 6= 0} = {x ∈ Z : 0 < |x| ≤ 2}.

1.6 (a) A = {2x + 1 : x ∈ Z} = {· · · ,−5,−3,−1, 1, 3, 5, · · ·}.
(b) B = {4n : n ∈ Z} = {· · · ,−8,−4, 0, 4, 8, · · ·}.
(c) C = {3q + 1 : q ∈ Z} = {· · · ,−5,−2, 1, 4, 7, · · ·}.

1.7 (a) A = {· · · ,−4,−1, 2, 5, 8, · · ·} = {3x + 2 : x ∈ Z}.
(b) B = {· · · ,−10,−5, 0, 5, 10, · · ·} = {5x : x ∈ Z}.
(c) C = {1, 8, 27, 64, 125, · · ·} = {x3 : x ∈ N}.

Exercises for Section 1.2: Subsets

1.8 (a) A = {1, 2}, B = {1, 2}, C = {1, 2, 3}.
(b) A = {1}, B = {{1}, 2}. C = {{{1}, 2}, 1}.
(c) A = {1}, B = {{1}, 2}, C = {1, 2}.

1.9 Let r = min(c − a, b − c) and let I = (c − r, c + r). Then I is centered at c and I ⊆ (a, b).

1.10 A = B = D = E = {−1, 0, 1} and C = {0, 1}.

1.11 See Figure 1.
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Figure 1: Answer for Exercise 1.11

1.12 (a) P(A) = {∅, {1}, {2}, {1, 2}}; |P(A)| = 4.

(b) P(A) = {∅, {∅}, {1}, {{a}}, {∅, 1}, {∅, {a}}, {1, {a}}, {∅, 1, {a}}}; |P(A)| = 8.

1.13 P(A) = {∅, {0}, {{0}}, A}.

1.14 P({1}) = {∅, {1}}, P(P({1})) = {∅, {∅}, {{1}}, {∅, {1}}}; |P(P({1}))| = 4.

1.15 P(A) = {∅, {0}, {∅}, {{∅}}, {0, ∅}, {0, {∅}}, {∅, {∅}}, A}; |P(A)| = 8.

1.16 (a) S = {∅, {1}}.
(b) S = {1}.
(c) S = {∅, {1}, {2}, {3}, {4, 5}}.
(d) S = {1, 2, 3, 4, 5}.

Exercises for Section 1.3: Set Operations

1.17 (a) A ∪ B = {1, 3, 5, 9, 13, 15}.
(b) A ∩ B = {9}.
(c) A − B = {1, 5, 13}.
(d) B − A = {3, 15}.
(e) A = {3, 7, 11, 15}.
(f) A ∩ B = {1, 5, 13}.

1.18 (a) A = {1}, B = {{1}}, C = {1, 2}.
(b) A = {{1}, 1}, B = {1}, C = {1, 2}.
(c) A = {1}, B = {{1}}, C = {{1}, 2}.

1.19 Let A = {1, 2}, B = {1, 3}, and C = {2, 3}. Then B 6= C but B − A = C − A = {3}.
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1.20 Let A = {1, 2, . . . , 6} and B = {4, 5, . . . , 9}. Then A − B = {1, 2, 3}, B − A = {7, 8, 9}, and

A ∩ B = {4, 5, 6}. Thus |A − B| = |A ∩ B| = |B − A| = 3. See Figure 2.
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Figure 2: Answer for Exercise 1.20

1.21 (a) and (b) are the same, as are (c) and (d).

1.22 Let U = {1, 2, . . . , 8} be a universal set, A = {1, 2, 3, 4}, and B = {3, 4, 5, 6}. Then A−B = {1, 2},
B − A = {5, 6}, A ∩ B = {3, 4}, and A ∪ B = {7, 8}. See Figure 3.
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Figure 3: Answer for Exercise 1.22

1.23 See Figures 4.
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Figure 4: Answers for Exercise 1.23

1.24 (a) The sets ∅, {∅} are elements of A.

(b) |A| = 3.

(c) All of ∅, {∅}, {∅, {∅}} are subsets of A.

(d) ∅ ∩ A = ∅.
(e) {∅} ∩ A = {∅}.
(f) {∅, {∅}} ∩ A = {∅, {∅}}.
(g) ∅ ∪ A = A.
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(h) {∅} ∪ A = A.

(i) {∅, {∅}} ∪ A = A.

Exercises for Section 1.4: Indexed Collections of Sets

1.25 Let U = {1, 2, . . . , 8}, A = {1, 2, 3, 5}, B = {1, 2, 4, 6}, and C = {1, 3, 4, 7}. See Figure 5.
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Figure 5: Answer for Exercise 1.25

1.26 (a)
⋃

α∈S Aα = A1 ∪ A2 ∪ A4 = {1} ∪ {4} ∪ {16} = {1, 4, 16}.
⋂

α∈S Aα = A1 ∩ A2 ∩ A4 = ∅.
(b)

⋃

α∈S Bα = B1 ∪ B2 ∪ B4 = [0, 2] ∪ [1, 3] ∪ [3, 5] = [0, 5].
⋂

α∈S Bα = B1 ∩ B2 ∩ B4 = ∅.
(c)

⋃

α∈S Cα = C1 ∪ C2 ∪ C4 = (1,∞) ∪ (2,∞) ∪ (4,∞) = (1,∞).
⋂

α∈S Cα = C1 ∩ C2 ∩ C4 = (4,∞).

1.27
⋃

X∈S X = A ∪ B ∪ C = {0, 1, 2, . . . , 5} and
⋂

X∈S X = A ∩ B ∩ C = {2}.

1.28
⋃

α∈A Sα = S1 ∪ S3 ∪ S4 = [0, 3] ∪ [2, 5] ∪ [3, 6] = [0, 6].
⋂

α∈A Sα = S1 ∩ S3 ∩ S4 = {3}.

1.29 Since |A| = 26 and |Aα| = 3 for each α ∈ A, we need to have at least nine sets of cardinality 3

for their union to be A; that is, in order for
⋃

α∈S Aα = A, we must have |S| ≥ 9. However, if we

let S = {a, d, g, j, m, p, s, v, y}, then
⋃

α∈S Aα = A. Hence the smallest cardinality of a set S with
⋃

α∈S Aα = A is 9.

1.30 (a) An =
[

1, 2 + 1
n

)

,
⋃

n∈N
An = [1, 3), and

⋂

n∈N
An = [1, 2].

(b) An =
(

− 2n−1
n , 2n

)

,
⋃

n∈N
An = (−2,∞), and

⋂

n∈N
An = (−1, 2).

1.31 (a) {An}n∈N, where An = {x ∈ R : 0 ≤ x ≤ 1/n} = [0, 1/n].

(b) {An}n∈N, where An = {a ∈ Z : |a| ≤ n} = {−n,−(n− 1), . . . , (n − 1), n}.

Exercises for Section 1.5: Partitions of Sets
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1.32 (a) S1 is a partition of A.

(b) S2 is not a partition of A because g belongs to no element of S2.

(c) S3 is a partition of A.

(d) S4 is not a partition of A because ∅ ∈ S4.

(e) S5 is not a partition of A because b belongs to two elements of S5.

1.33 (a) S1 is not a partition of A since 4 belongs to no element of S1.

(b) S2 is a partition of A. S2 can be written as {{1, 2}, {3, 4, 5}}.
(c) S3 is not a partition of A because 2 belongs to two elements of S3.

(d) S4 is not a partition of A since S4 is not a set of subsets of A.

1.34 S = {{1, 2, 3}, {4, 5}, {6}}; |S| = 3.

1.35 A = {1, 2, 3, 4}. S1 = {{1}, {2}, {3, 4}} and S2 = {{1, 2}, {3}, {4}}.

1.36 A = {1, 2, 3, 4}, S1 = {{1}, {2}, {3, 4}} and S2 = {{{1}, {2}}, {{3, 4}}}.

1.37 Let S = {A1, A2, A3}, where A1 = {x ∈ Q : x > 1}, A2 = {x ∈ Q : x < 1}, and A3 = {1}.

1.38 Let S = {A1, A2, A3}, where A1 = {x ∈ N : x > 5}, A2 = {x ∈ N : x < 5}, and A3 = {5}.

1.39 Let S = {A1, A2, A3, A4}, where

A1 = {x ∈ Z : x is odd and x is positive},
A2 = {x ∈ Z : x is odd and x is negative},
A3 = {x ∈ Z : x is even and x is nonnegative},
A4 = {x ∈ Z : x is even and x is negative}.

1.40 Let S = {{1}, {2}, {3, 4, 5, 6}, {7, 8, 9, 10}, {11, 12}} and T = {{1}, {2}, {3, 4, 5, 6}, {7, 8, 9, 10}}.

Exercises for Section 1.6: Cartesian Products of Sets

1.41 A × B = {(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)}.

1.42 A × A = {(1, 1), (1, {1}), (1, {{1}}), ({1}, 1), ({1}, {1}), ({1}, {{1}}), ({{1}}, 1), ({{1}}, {1}),
({{1}}, {{1}})}.

1.43 P(A) = {∅, {a}, {b}, A},
A × P(A) = {(a, ∅), (a, {a}), (a, {b}), (a, A), (b, ∅), (b, {a}), (b, {b}), (b, A)}.

1.44 P(A) = {∅, {∅}, {{∅}}, A},
A × P(A) = {(∅, ∅), (∅, {∅}), (∅, {{∅}}), (∅, A), ({∅}, ∅), ({∅}, {∅}), ({∅}, {{∅}}), ({∅}, A)}.

1.45 P(A) = {∅, {1}, {2}, A}, P(B) = {∅, B}, A × B = {(1, ∅), (2, ∅)},
P(A) × P(B) = {(∅, ∅), (∅, B), ({1}, ∅), ({1}, B), ({2}, ∅), ({2}, B), (A, ∅), (A, B)}.

8



1.46 {(x, y) : x2 + y2 = 4}, which is a circle centered at (0, 0) with radius 2.

1.47 S = {(3, 0), (2, 1), (1, 2), (0, 3), (−3, 0), (−2, 1), (−1, 2), (2,−1), (1,−2), (0,−3), (−2,−1), (−1,−2)}.
See Figure 6.
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Figure 6: Answer for Exercise 1.47

Additional Exercises for Chapter 1

1.48 (a) A = {x ∈ S : |x| ≥ 1} = {x ∈ S : x 6= 0}.
(b) B = {x ∈ S : x ≤ 0}.
(c) C = {x ∈ S : −5 ≤ x ≤ 7} = {x ∈ S : |x − 1| ≤ 6}.

(d) D = {x ∈ S : x 6= 5}.

1.49 (a) {0, 2,−2} (b) { } (c) {3, 4, 5} (d) {1, 2, 3}
(e) {−2, 2} (f) { } (g) {−3,−2,−1, 1, 2, 3}

1.50 (a) |A| = 6 (b) |B| = 0 (c) |C| = 3

(d) |D| = 0 (e) |E| = 10 (f) |F | = 20

1.51 A × B = {(−1, x), (−1, y), (0, x), (0, y), (1, x), (1, y)}.

1.52 (a) (A ∪ B) − (B ∩ C) = {1, 2, 3}− {3} = {1, 2}.
(b) A = {3}.
(c) B ∪ C = {1, 2, 3} = ∅.
(d) A × B = {(1, 2), (1, 3), (2, 2), (2, 3)}.

1.53 Let S = {{1}, {2}, {3, 4}, A} and let B = {3, 4}.

9



1.54 P(A) = {∅, {1}}, P(C) = {∅, {1}, {2}, C}. Let B = {∅, {1}, {2}}.

1.55 Let A = {∅} and B = P(A) = {∅, {∅}}.

1.56 Only B = C = ∅ and D = E.

1.57 U = {1, 2, 3, 5, 7, 8, 9}, A = {1, 2, 5, 7}, and B = {5, 7, 8}.

1.58 (a) Ar is the set of all points in the plane lying on the circle x2 + y2 = r2.
⋃

r∈I Ar = R × R (the plane) and
⋂

r∈I Ar = ∅.
(b) Br is the set of all points lying on and inside the circle x2 + y2 = r2.

⋃

r∈I Br = R × R and
⋂

r∈I Br = {(0, 0)}.
(c) Cr is the set of all points lying outside the circle x2 + y2 = r2.

⋃

r∈I Cr = R × R − {(0, 0)} and
⋂

r∈I Cr = ∅.

1.59 Let A1 = {1, 2, 3, 4}, A2 = {3, 5, 6}, A3 = {1, 3}, A4 = {1, 2, 4, 5, 6}. Then |A1 ∩ A2| = |A2 ∩ A3| =

|A3 ∩ A4| = 1, |A1 ∩ A3| = |A2 ∩ A4| = 2, and |A1 ∩ A4| = 3.

1.60 (a) (i) Give an example of five sets Ai (1 ≤ i ≤ 5) such that |Ai ∩ Aj | = |i − j| for every two

integers i and j with 1 ≤ i < j ≤ 5.

(ii) Determine the minimum positive integer k such that there exist four sets Ai (1 ≤ i ≤ 4)

satisfying the conditions of Exercise and |A1 ∪ A2 ∪ A3 ∪ A4| = k.

(b) (i) A1 = {1, 2, 3, 4, 7, 8, 9, 10},
A2 = {3, 5, 6, 11, 12, 13},
A3 = {1, 3, 14, 15},
A4 = {1, 2, 4, 5, 6, 16},
A5 = {7, 8, 9, 10, 11, 12, 13, 14, 15, 16}.

(ii) The minimum positive integer k is 5. The example below shows that k ≤ 5.

Let A1 = {1, 2, 3, 4}, A2 = {1, 5}, A3 = {1, 4}, A4 = {1, 2, 3, 5}.
If k = 4, then, since |A1 ∩ A4| = 3, A1 and A4 have exactly three elements in common,

say 1, 2, 3. So each of A1 and A4 is either {1, 2, 3} or {1, 2, 3, 4}. They cannot both be

{1, 2, 3, 4}. Also, they cannot both be {1, 2, 3} because A3 would have to contain two of

1, 2, 3, and so |A3 ∩ A4| ≥ 2, which is not true. So we can assume that A1 = {1, 2, 3, 4}
and A4 = {1, 2, 3}. However, A2 must contain two of 1, 2, 3, and so |A1 ∩ A2| ≥ 2, which

is impossible.

1.61 (a) |S| = |T | = 10.

(b) |S| = |T | = 5.

(c) |S| = |T | = 6.

1.62 Let A = {1, 2, 3, 4}, A1 = {1, 2}, A2 = {1, 3}, A3 = {3, 4}. These examples show that k ≤ 4. Since

|A1−A3| = |A3−A1| = 2, it follows that A1 contains two elements not in A3, while A3 contains two

elements not in A2. Thus |A| ≥ 4 and so k = 4 is the smallest positive integer with this property.

10



Exercises for Chapter 2

Exercises for Section 2.1: Statements

2.1 (a) A false statement.

(b) A true statement.

(c) Not a statement.

(d) Not a statement (an open sentence).

(e) Not a statement.

(f) Not a statement (an open sentence).

(g) Not a statement.

2.2 (a) A true statement since A = {3n − 2 : n ∈ N} and so 3 · 9 − 2 = 25 ∈ A.

(b) A false statement. Starting with the 3rd term in D, each element is the sum of the two

preceding terms. Therefore, all terms following 21 exceed 33 and so 33 /∈ D.

(c) A false statement since 3 · 8 − 2 = 22 ∈ A.

(d) A true statement since every prime except 2 is odd.

(e) A false statement since B and D consist only of integers.

(f) A false statement since 53 is prime.

2.3 (a) False. ∅ has no elements.

(b) True.

(c) True.

(d) False. {∅} has ∅ as its only element.

(e) True.

(f) False. 1 is not a set.

2.4 (a) x = −2 and x = 3.

(b) All x ∈ R such that x 6= −2 and x 6= 3.

2.5 (a) {x ∈ Z : x > 2}

(b) {x ∈ Z : x ≤ 2}

2.6 (a) A can be any of the sets ∅, {1}, {2}, {1, 2}, that is, A is any subset of {1, 2, 4} that does not

contain 4.

(b) A can be any of the sets {1, 4}, {2, 4}, {1, 2, 4}, {4}, that is, A is any subset of {1, 2, 4} that

contains 4.

(c) A = ∅.

11



2.7 3, 5, 11, 17, 41, 59.

Exercises for Section 2.2: The Negation of a Statement

2.8 (a)
√

2 is not a rational number.

(b) 0 is a negative integer.

(c) 111 is not a prime number.

2.9 See Figure 7.

∼ Q∼ P

F

FF

F

FF

F

F

T

T

T

T

P Q

TT T

T

T

Figure 7: Answer for Exercise 2.9

Exercises for Section 2.3: The Disjunction and Conjunction of Statements

2.10 (a) P ∨ Q: 15 is odd or 21 is prime. (True)

(b) P ∧ Q: 15 is odd and 21 is prime. (False)

(c) (∼ P ) ∨ Q: 15 is not odd or 21 is prime. (False)

(d) P ∧ (∼ Q): 15 is odd and 21 is not prime. (True)

2.11 (a) True, (b) False, (c) False, (d) True, (e) True.

2.12 See Figure 8.

∼ Q P ∧ (∼ Q)

F

F

T

F

T

F

T

F

FF

F

F

P Q

TT T

T

T

Figure 8: Answer for Exercise 2.12

2.13 (a) All nonempty subsets of {1, 3, 5}.
(b) All subsets of {1, 3, 5}.
(c) There are no subsets A of S for which (∼ P (A)) ∧ (∼ Q(A)) is true.

Exercises for Section 2.4: The Implication
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2.14 (a) ∼ P : 17 is not even (or 17 is odd). (True)

(b) P ∨ Q: 17 is even or 19 is prime. (True)

(c) P ∧ Q: 17 is even and 19 is prime. (False)

(d) P ⇒ Q: If 17 is even, then 19 is prime. (True)

2.15 See Figure 9.

F

T

∼ P

F T

F

T

T

F

T

T

T

P ⇒ QQP (P ⇒ Q) ⇒ (∼ P )

T

TT T

T

T

F

F

F F

Figure 9: Answer for Exercise 2.15

2.16 (a) P ⇒ Q: If
√

2 is rational, then 22/7 is rational. (True)

(b) Q ⇒ P : If 22/7 is rational, then
√

2 is rational. (False)

(c) (∼ P ) ⇒ (∼ Q): If
√

2 is not rational, then 22/7 is not rational. (False)

(d) (∼ Q) ⇒ (∼ P ): If 22/7 is not rational, then
√

2 is not rational. (True)

2.17 (a) (P ∧ Q) ⇒ R: If
√

2 is rational and 2
3 is rational, then

√
3 is rational. (True)

(b) (P ∧ Q) ⇒ (∼ R): If
√

2 is rational and 2
3 is rational, then

√
3 is not rational. (True)

(c) ((∼ P ) ∧ Q) ⇒ R: If
√

2 is not rational and 2
3 is rational, then

√
3 is rational. (False)

(d) (P ∨ Q) ⇒ (∼ R): If
√

2 is rational or 2
3 is rational, then

√
3 is not rational. (True)

Exercises for Section 2.5: More On Implications

2.18 (a) P (n) ⇒ Q(n): If 5n + 3 is prime, then 7n + 1 is prime.

(b) P (2) ⇒ Q(2): If 13 is prime, then 15 is prime. (False)

(c) P (6) ⇒ Q(6): If 33 is prime, then 43 is prime. (True)

2.19 (a) P (x) ⇒ Q(x): If |x| = 4, then x = 4.

P (−4) ⇒ Q(−4) is false.

P (−3) ⇒ Q(−3) is true.

P (1) ⇒ Q(1) is true.

P (4) ⇒ Q(4) is true.

P (5) ⇒ Q(5) is true.

(b) P (x) ⇒ Q(x): If x2 = 16, then |x| = 4. True for all x ∈ S.

(c) P (x) ⇒ Q(x): If x > 3, then 4x − 1 > 12. True for all x ∈ S.

2.20 (a) All x ∈ S for which x 6= 7.
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(b) All x ∈ S for which x > −1.

(c) All x ∈ S.

(d) All x ∈ S.

2.21 (a) True for (x, y) = (3, 4) and (x, y) = (5, 5), false for (x, y) = (1,−1).

(b) True for (x, y) = (1, 2) and (x, y) = (6, 6), false for (x, y) = (2,−2).

(c) True for (x, y) ∈ {(1,−1), (−3, 4), (1, 0)} and false for (x, y) = (0,−1).

Exercises for Section 2.6: The Biconditional

2.22 P ⇔ Q: 18 is odd if and only if 25 is even. (True)

2.23 (a) ∼ P (x): x 6= −2. True if x = 0, 2.

(b) P (x) ∨ Q(x): x = −2 or x2 = 4. True if x = −2, 2.

(c) P (x) ∧ Q(x): x = −2 and x2 = 4. True if x = −2.

(d) P (x) ⇒ Q(x): If x = −2, then x2 = 4. True for all x.

(e) Q(x) ⇒ P (x): If x2 = 4, then x = −2 True if x = 0,−2.

(f) P (x) ⇔ Q(x): x = −2 if and only if x2 = 4. True if x = 0,−2.

2.24 (a) True for all x ∈ S − {−4}.
(b) True for x ∈ S − {3}.
(c) True for x ∈ S − {−4, 0}.

2.25 x is odd if and only if x2 is odd.

That x is odd is a necessary and sufficient condition for x2 to be odd

2.26 The real number |x − 3| < 1 if and only if x ∈ (2, 4).

That |x − 3| < 1 is a necessary and sufficient condition for x ∈ (2, 4).

2.27 (a) True for (x, y) ∈ {(3, 4), (5, 5)}.
(b) True for (x, y) ∈ {(1, 2), (6, 6)}.
(c) True for (x, y) ∈ {(1,−1), (1, 0)}.

2.28 P (1) ⇒ Q(1) is false (since P (1) is true and Q(1) is false).

Q(3) ⇒ P (3) is false (since Q(3) is true and P (3) is false).

P (2) ⇔ Q(2) is true (since P (2) and Q(2) are both true).

2.29 (i) P (1) ⇒ Q(1) is false;

(ii) Q(4) ⇒ P (4) is true;

(iii) P (2) ⇔ R(2) is true;
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(iv) Q(3) ⇔ R(3) is false.

Exercises for Section 2.7: Tautologies and Contradictions

2.30 The compound statement P ⇒ (P ∨ Q) is a tautology since it is true for all combinations of truth

values for the component statements P and Q. See the truth table below.

P Q P ∨ Q P ⇒ (P ∨ Q)
T T T T

T F T T

F T T T

F F F T

2.31 The compound statement (P ∧(∼ Q))∧(P ∧Q) is a contradiction since it is false for all combinations

of truth values for the component statements P and Q. See the truth table below.

P Q ∼ Q P ∧ Q P ∧ (∼ Q) (P ∧ (∼ Q)) ∧ (P ∧ Q)
T T F T F F

T F T F T F

F T F F F F

F F T F F F

2.32 The compound statement (P ∧ (P ⇒ Q)) ⇒ Q is a tautology since it is true for all combinations of

truth values for the component statements P and Q. See the truth table below.

P Q P ⇒ Q P ∧ (P ⇒ Q) (P ∧ (P ⇒ Q)) ⇒ Q
T T T T T

T F F F T

F T T F T

F F T F T

(P ∧ (P ⇒ Q)) ⇒ Q: If P and P implies Q, then Q.

2.33 The compound statement ((P ⇒ Q) ∧ (Q ⇒ R)) ⇒ (P ⇒ R) is a tautology since it is true for all

combinations of truth values for the component statements P , Q, and R. See the truth table below.

P Q R P ⇒ Q Q ⇒ R (P ⇒ Q) ∧ (Q ⇒ R) P ⇒ R ((P ⇒ Q) ∧ (Q ⇒ R)) ⇒ (P ⇒ R)
T T T T T T T T

T F T F T F T T

F T T T T T T T

F F T T T T T T

T T F T F F F T

T F F F T F F T

F T F T F F T T

F F F T T T T T

((P ⇒ Q) ∧ (Q ⇒ R)) ⇒ (P ⇒ R): If P implies Q and Q implies R, then P implies R.

Exercises for Section 2.8: Logical Equivalence
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2.34 (a) See the truth table below.

P Q ∼ P ∼ Q P ⇒ Q (∼ P ) ⇒ (∼ Q)
T T F F T T

T F F T F T

F T T F T F

F F T T T T

Since P ⇒ Q and (∼ P ) ⇒ (∼ Q) do not have the same truth values for all combinations of

truth values for the component statements P and Q, the compound statements P ⇒ Q and

(∼ P ) ⇒ (∼ Q) are not logically equivalent. Note that the last two columns in the truth table

are not the same.

(b) The implication Q ⇒ P is logically equivalent to (∼ P ) ⇒ (∼ Q).

2.35 (a) See the truth table below.

P Q ∼ P ∼ Q P ∨ Q ∼ (P ∨ Q) (∼ P ) ∨ (∼ Q)
T T F F T F F

T F F T T F T

F T T F T F T

F F T T F T T

Since ∼ (P ∨ Q) and (∼ P ) ∨ (∼ Q) do not have the same truth values for all combinations

of truth values for the component statements P and Q, the compound statements ∼ (P ∨ Q)

and (∼ P ) ∨ (∼ Q) are not logically equivalent.

(b) The biconditional ∼ (P ∨Q) ⇔ ((∼ P )∨ (∼ Q)) is not a tautology as there are instances when

this biconditional is false.

2.36 (a) The statements P ⇒ Q and (P ∧ Q) ⇔ P are logically equivalent since they have the same

truth values for all combinations of truth values for the component statements P and Q. See

the truth table.

P Q P ⇒ Q P ∧ Q (P ∧ Q) ⇔ P
T T T T T

T F F F F

F T T F T

F F T F T

(b) The statements P ⇒ (Q ∨ R) and (∼ Q) ⇒ ((∼ P ) ∨ R) are logically equivalent since they

have the same truth values for all combinations of truth values for the component statements

P , Q, and R. See the truth table.

P Q R ∼ P ∼ Q Q ∨ R P ⇒ (Q ∨ R) (∼ P ) ∨ R (∼ Q) ⇒ ((∼ P ) ∨ R)
T T T F F T T T T

T F T F T T T T T

F T T T F T T T T

F F T T T T T T T

T T F F F T T F T

T F F F T F F F F

F T F T F T T T T

F F F T T F T T T

2.37 The statements Q and (∼ Q) ⇒ (P ∧ (∼ P )) are logically equivalent since they have the same truth

values for all combinations of truth values for the component statements P and Q. See the truth

table below.
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P Q ∼ P ∼ Q P ∧ (∼ P ) (∼ Q) ⇒ (P ∧ (∼ P ))
T T F F F T

T F F T F F

F T T F F T

F F T T F F

2.38 The statements (P ∨ Q) ⇒ R and (P ⇒ R) ∧ (Q ⇒ R) are logically equivalent since they have the

same truth values for all combinations of truth values for the component statements P , Q, and R.

See the truth table.

P Q R P ∨ Q (P ∨ Q) ⇒ R P ⇒ R Q ⇒ R (P ⇒ R) ∧ (Q ⇒ R)
T T T T T T T T

T F T T T T T T

F T T T T T T T

F F T F T T T T

T T F T F F F F

T F F T F F T F

F T F T F T F F

F F F F T T T T

Exercises for Section 2.9: Some Fundamental Properties of Logical Equiv-

alence

2.39 (a) The statement P ∨ (Q ∧ R) is equivalent to (P ∨ Q) ∧ (P ∨ R) since the last two columns in

the truth table below are the same.

F

T

T

F

F

T

T

T

T

T

T

F

T

T

T

P ∨ (Q ∧ R)Q ∧ RP ∨ RP ∨ Q

F

T

F

(P ∨ Q) ∧ (P ∨ R)

F

F

FF

F

F

T

T

T

T

T

T

T

T

TT

F

F

F

F

TF

T

F

F

T

T
..........................................................................................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................................................................................















T

T

R

FF F

F

F

F

T

T

T

T

QP

F

F T

T

TT

F

Figure 10: Answer for Exercise 2.39(a)

(b) The statement ∼ (P ∨ Q) is equivalent to (∼ P ) ∧ (∼ Q) since the last two columns in the

truth table below are the same.

T

∼ P ∼ Q

F

T

F

T

P ∨ Q ∼ (P ∨ Q) (∼ P ) ∧ (∼ Q)

T

T

T

F

F

F

F F

F

F

T T

T

P

T

T

F

F

T

F

T

F

Q

F

F

Figure 11: Answer for Exercise 2.39(b)

2.40 (a) Both x 6= 0 and y 6= 0.
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(b) Either the integer a is odd or the integer b is odd.

2.41 (a) x and y are even only if xy is even.

(b) If xy is even, then x and y are even.

(c) Either at least one of x and y is odd or xy is even.

(d) x and y are even and xy is odd.

2.42 Either x2 = 2 and x 6=
√

2 or x =
√

2 and x2 6= 2.

Exercises for Section 2.10: Quantified Statements

2.43 ∀x ∈ S, P (x) : For every odd integer x, the integer x2 + 1 is even.

∃x ∈ S, Q(x) : There exists an odd integer x such that x2 is even.

2.44 Let R(x) : x2 + x + 1 is even. and let S = {x ∈ Z : x is odd}.
∀x ∈ S, R(x) : For every odd integer x, the integer x2 + x + 1 is even.

∃x ∈ S, R(x) : There exists an odd integer x such that x2 + x + 1 is even.

2.45 (a) There exists a set A such that A ∩ A 6= ∅.
(b) For every set A, we have A 6⊆ A.

2.46 (a) There exists a rational number r such that 1/r is not rational.

(b) For every rational number r, r2 6= 2.

2.47 (a) False, since P (1) is false.

(b) True, for example, P (3) is true.

2.48 (a) T (b) T (c) F (d) T (e) T (f) F (g) T (h) F

2.49 (a) ∃a, b ∈ Z, ab < 0 and a + b > 0.

(b) ∀x, y ∈ R, x 6= y implies that x2 + y2 > 0.

(c) For all integers a and b, either ab ≥ 0 or a + b ≤ 0.

There exist real numbers x and y such that x 6= y and x2 + y2 ≤ 0.

(d) ∀a, b ∈ Z, ab ≥ 0 or a + b ≤ 0.

∃x, y ∈ R, x 6= y and x2 + y2 ≤ 0.

2.50 (a) For all real numbers x, y, and z, (x − 1)2 + (y − 2)2 + (z − 2)2 > 0.

(b) False, since P (1, 2, 2) is false.

(c) ∃x, y, z ∈ R, (x − 1)2 + (y − 2)2 + (z − 2)2 ≤ 0. (∃x, y, z ∈ R, ∼ P (x, y, z).)

(d) There exist real numbers x, y, and z such that (x − 1)2 + (y − 2)2 + (z − 2)2 ≤ 0.

(e) True, since (1 − 1)2 + (2 − 2)2 + (2 − 2)2 = 0.

2.51 Let S = {3, 5, 11} and P (s, t) : st − 2 is prime.
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(a) ∀s, t ∈ S, P (s, t).

(b) True since P (s, t) is true for all s, t ∈ S.

(c) ∃s, t ∈ S, ∼ P (s, t).

(d) There exist s, t ∈ S such that st − 2 is not prime.

(e) False since the statement in (a) is true.

Exercises for Section 2.11: Characterizations of Statements

2.52 (a) Two lines in the plane are defined to be perpendicular if they intersect at right angles.

Two lines in the plane are perpendicular if and only if the product of their slopes is −1 or one

line is vertical and the other is horizontal.

(b) A rational number is a real number that can be expressed as a/b, where a, b ∈ Z and b 6= 0.

A real number is rational if and only if it has a repeating decimal expansion.

2.53 An integer n is odd if and only if n2 is odd.

2.54 Only (f) is a characterization; (a), (c), and (e) are implications only; (b) is a definition; and (d) is

false.

2.55 (a) A characterization.

(b) A characterization.

(c) A characterization.

(d) A characterization. (Pythagorean theorem)

(e) Not a characterization. (Every positive number is the area of some rectangle.)

Additional Exercises for Chapter 2

2.56 See the truth table below.

P Q ∼ P Q ⇒ (∼ P ) P ∧ (Q ⇒ (∼ P ))
T T F F F
T F F T T
F T T T F
F F T T F

2.57 Statements R and P are both true.

2.58 P ∨ (∼ Q)

2.59 (a) T (b) T (c) F (d) F (e) T (f) F

2.60 (a) (1) A function f is differentiable only if f is continuous.

(2) That a function f is differentiable is sufficient for f to be continuous.

19



(b) (1) The number x = −5 only if x2 = 25.

(2) That x = −5 is sufficient for x2 = 25.

2.61 (a) For S = {1, 2, 3, 4}, ∀n ∈ S, P (n) is true, ∃n ∈ S,∼ P (n) is false

(b) For S = {1, 2, 3, 4, 5}, ∀n ∈ S, P (n) is false, ∃n ∈ S,∼ P (n) is true.

(c) The truth value of ∀n ∈ S, P (n) (or ∃n ∈ S,∼ P (n)) depends on the domain S as well as the

open sentence P (n).

2.62 (a) can be verified by a truth table and similarly for (b).

P Q R ∼ Q ∼ R P ∧ Q (P ∧ Q) ⇒ R P ∧ (∼ R) (P ∧ (∼ R)) ⇒ (∼ Q)
T T T F F T T F T

T F T T F F T F T

F T T F F F T F T

F F T T F F T F T

T T F F T T F T F

T F F T T F T T T

F T F F T F T F T

F F F T T F T F T

2.63 If n is a prime and n is even, then n ≤ 2.

If n > 2 and n is even, then n is not a prime.

2.64 If m is even and m + n is even, then n is even.

If n is odd and m + n is even, then m is odd.

2.65 If f ′(x) = 3x2 − 2x and f(x) 6= x3 − x2 + 4, then f(0) 6= 4.

If f(0) = 4 and f(x) 6= x3 − x2 + 4, then f ′(x) 6= 3x2 − 2x.

2.66 Consider the open sentences

P (n) : n2+3n
2 is odd; Q(n) : (n − 2)2 > 0; R(n) : (n + 1)n−1 is odd.

The statement P (n) is true for n = 2, 3; Q(n) is true for n = 1, 3; and R(n) is true for n = 1, 2.

Thus the implications P (1) ⇒ Q(1), Q(2) ⇒ R(2), and R(3) ⇒ P (3) are true and their respective

converses are false.

2.67 No. Since Q(a) ⇒ P (a), R(b) ⇒ Q(b), and P (c) ⇒ R(c) are false, it follows that

P (a), Q(b), and R(c) are false and Q(a), R(b), and P (c) are true.

At least two of the three elements a, b, and c are the same. If a = b, then Q(a) and Q(b) are both

true and false. This is impossible for a statement. If a = c, then P (c) and P (a) are both true and

false, again impossible. If b = c, then R(b) and R(c) are both true and false, which is impossible.

2.68 Observe that

(1) P (x) is true for x = 1, 3, 5 and false for x = 2, 4, 6,

(2) Q(y) is true for y = 2, 4, 6 and false for y = 1, 3, 5, 7,

(3) P (x) ⇒ Q(y) is false if P (x) is true and Q(y) is false.

Thus |S| = 3 · 4 = 12.
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Exercises for Chapter 3

Exercises for Section 3.1: Trivial and Vacuous Proofs

3.1 Proof. Since x2 − 2x + 2 = (x− 1)2 + 1 ≥ 1, it follows that x2 − 2x + 2 6= 0 for all x ∈ R. Hence

the statement is true trivially.

3.2 Proof. Let n ∈ N. Then |n − 1| + |n + 1| ≥ 0 + 2 = 2. Thus |n − 1| + |n + 1| ≤ 1 is false for all

n ∈ N and so the statement is true vacuously.

3.3 Proof. Note that r2+1
r = r + 1

r . If r ≥ 1, then r + 1
r > 1; while if 0 < r < 1, then 1

r > 1 and so

r + 1
r > 1. Thus r2+1

r ≤ 1 is false for all r ∈ Q+ and so the statement is true vacuously.

3.4 Proof. Since x2 − 4x + 5 = (x2 − 4x + 4) + 1 = (x− 2)2 + 1 ≥ 0, it follows that x2 − 4x + 3 ≥ −2

and so (x − 1)(x − 3) ≥ −2. Thus the statement is true trivially.

3.5 Proof. Since n2 − 2n + 1 = (n− 1)2 ≥ 0, it follows that n2 + 1 ≥ 2n and so n + 1
n ≥ 2. Thus the

statement is true vacuously.

Exercises for Section 3.2: Direct Proofs

3.6 Proof. Let x be an odd integer. Then x = 2a+1 for some integer a. Thus 9x+5 = 9(2a+1)+5 =

18a + 14 = 2(9a + 7). Since 9a + 7 is an integer, 9x + 5 is even.

3.7 Proof. Let x be an even integer. Then x = 2a for some integer a. Thus

5x − 3 = 5(2a) − 3 = 10a− 4 + 1 = 2(5a − 2) + 1.

Since 5a − 2 is an integer, 5x − 3 is odd.

3.8 Proof. Assume that a and c are odd integers. Then a = 2x + 1 and c = 2y + 1 for some integers

x and y. Thus ab + bc = b(a + c) = b(2x + 1 + 2y + 1) = 2b(x + y + 1). Since b(x + y + 1) is an

integer, ab + bc is even.

3.9 Proof. Let 1 − n2 > 0. Then n = 0. Thus 3n − 2 = 3 · 0 − 2 = −2 is an even integer.

3.10 Observe that 22x = 4x for all x ∈ Z.

3.11 Proof. Assume that (n + 1)2(n + 2)2/4 is even, where n ∈ S. Then n = 2. For n = 2, (n + 2)2(n +

3)2/4 = 100, which is even.

Exercises for Section 3.3: Proof by Contrapositive

3.12 Proof. Assume that x is odd. Then x = 2a + 1 for some integer a. So 7x + 5 = 7(2a + 1) + 5 =

14a + 12 = 2(7a + 6). Since 7a + 6 is an integer, 7x + 5 is even.
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3.13 First, we prove a lemma.

Lemma Let n ∈ Z. If 15n is even, then n is even.

(Use a proof by contrapositive to verify this lemma.)

Then use this lemma to prove the result.

Proof of Result. Assume that 15n is even. By the lemma, n is even and so n = 2a for some

integer a. Hence 9n = 9(2a) = 2(9a). Since 9a is an integer, 9n is even.

[Note: This result could also be proved by assuming that 15n is even (and so 15n = 2a for some

integer a) and observing that 9n = 15n − 6n = 2a − 6n.]

3.14 Proof. Assume first that x is odd. Then x = 2a + 1 for some integer a. Thus

5x − 11 = 5(2a + 1) − 11 = 10a− 6 = 2(5a − 3).

Since 5a − 3 is an integer, 5x − 11 is even.

For the converse, assume that x is even. Then x = 2b for some integer b. Now

5x − 11 = 5(2b) − 11 = 10b − 12 + 1 = 2(5b − 6) + 1.

Since 5b − 6 is an integer, 5x − 11 is odd.

3.15 Lemma Let x ∈ Z. If 7x + 4 is even, then x is even. (Use a proof by contrapositive to verify this

lemma.)

Proof of Result. Assume that 7x + 4 is even. Then by the lemma, x is even and so x = 2a for

some integer a. Hence

3x − 11 = 3(2a) − 11 = 6a − 12 + 1 = 2(3a− 6) + 1.

Since 3a − 6 is an integer, 3x − 11 is odd.

3.16 To verify the implication “If 3x + 1 is even, then 5x− 2 is odd.”, we could first prove the lemma: If

3x + 1 is even, then x is odd. (The converse of the implication must also be verified. The lemma

used to prove the converse depends on whether a direct proof or a proof by contrapositive of the

converse is used.) One possibility is to prove the following lemma:

Let x ∈ Z. Then 3x + 1 is even if and only if x is odd.

3.17 The proof would begin by assuming that n2(n + 1)2/4 is odd, where n ∈ S. Then n = 2 and so

n2(n − 1)2/4 = 1 is odd.

3.18 To verify the implication “If n is even, then (n + 1)2 − 1 is even.”, we use a direct proof. For the

converse, “If (n + 1)2 − 1 is even, then n is even.”, we use a proof by contrapositive.

Exercises for Section 3.4: Proof by Cases
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3.19 Proof. Let n ∈ Z. We consider two cases.

Case 1. n is even. Then n = 2a for some integer a. Thus

n2 − 3n + 9 = 4a2 − 3(2a) + 9 = 2(2a2 − 3a + 4) + 1.

Since 2a2 − 3a + 4 is an integer, n2 − 3n + 9 is odd.

Case 2. n is odd. Then n = 2b + 1 for some integer b. Observe that

n2 − 3n + 9 = (2b + 1)2 − 3(2b + 1) + 9

= 4b2 + 4b + 1 − 6b − 3 + 9 = 4b2 − 2b + 7

= 2(2b2 − b + 3) + 1.

Since 2b2 − b + 3 is an integer, n2 − 3n + 9 is odd.

3.20 Proof. Let n ∈ Z. We consider two cases.

Case 1. n is even. Then n = 2a for some integer a. Thus

n3 − n = 8a3 − 2a = 2(4a3 − a).

Since 4a3 − a is an integer, n3 − n is even.

Case 2. n is odd. Then n = 2b + 1 for some integer b. Observe that

n3 − n = (2b + 1)3 − (2b + 1)

= 8b3 + 12b2 + 6b + 1 − 2b − 1

= 8b3 + 12b2 + 4b = 2(4b3 + 6b2 + 2b).

Since 4b3 + 6b2 + 2b is an integer, n3 − n is even.

3.21 Proof. Assume that x or y is even, say x is even. Then x = 2a for some integer a. Thus

xy = (2a)y = 2(ay). Since ay is an integer, xy is even.

3.22 Assume that a, b ∈ Z such that ab is odd. By Exercise 3.21, a and b are both odd and so a2 and b2

are both odd by Theorem 3.12. Thus a2 + b2 is even.

3.23 One possibility is to begin by proving the implication “If x and y are of the same parity, then x− y

is even.” Use a direct proof and consider two cases, according to whether x and y are both even or

x and y are both odd.

For the converse of this implication, use a proof by contrapositive and consider two cases, where

say

Case 1. x is even and y is odd. and Case 2. x is odd and y is even.

3.24 Proof. Assume that a or b is odd, say a is odd. Then a = 2x+1 for some integer x. We consider

two cases.
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Case 1. b is even. Then b = 2y for some integer y. Thus ab = a(2y) = 2(ay). Since ay is an integer,

ab is even. Also,

a + b = (2x + 1) + 2y = 2(x + y) + 1.

Since x + y is an integer, a + b is odd. Hence ab and a + b are of opposite parity.

Case 2. b is odd. Then b = 2y + 1 for some integer y. Thus

a + b = (2x + 1) + (2y + 1) = 2x + 2y + 2 = 2(x + y + 1).

Since x + y + 1 is an integer, a + b is even. Furthermore,

ab = (2x + 1)(2y + 1) = 4xy + 2x + 2y + 1 = 2(2xy + x + y) + 1.

Since 2xy + x + y is an integer, ab is odd. Hence ab and a + b are of opposite parity.

3.25 (a) Use the following facts:

(1) Let x, y ∈ Z. Then x + y is even if and only if x and y are of the same parity.

(2) Let x ∈ Z. Then x2 is even if and only if x even.

(b) Let x and y be integers. Then (x + y)2 is odd if and only if x and y are of opposite parity.

3.25 (a) Because S2 ∩ S3 6= ∅.

(b) Because at least one of a and b must be even.

(c) We can consider the three cases:

Case 1. a and b are both even.

Case 2. a is even and b is odd.

Case 3. a is odd and b is even.

Exercises for Section 3.5: Proof Evaluations

3.27 (3) is proved.

3.28 Let x ∈ Z. Then x is even if and only if 3x2 − 4x − 5 is odd. (This can also be restated as: Let

x ∈ Z. Then x is odd if and only if 3x2 − 4x − 5 is even.)

3.29 The converse of the result has been proved. No proof has been given of the result itself.

3.30 This proposed proof contains major logical errors. A proof of this result requires a proof of an

implication and its converse. Nowhere in the proposed proof is it indicated which implication is

being considered and what is being assumed.

Additional Exercises for Chapter 3
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3.31 Proof. Assume that x is odd. Thus x = 2k + 1 for some integer k. Then

7x − 8 = 7(2k + 1) − 8 = 14k − 1 = 14k − 2 + 1 = 2(7k − 1) + 1.

Since 7k − 1 is an integer, 7x − 8 is odd.

3.32 Prove the implication “If x is even, then x3 is even.” using a direct proof and the converse using a

proof by contrapositive.

3.33 Lemma 1 Let x ∈ Z. If 3x3 is even, then x is even.

Lemma 2 Let x ∈ Z. If 5x2 is even, then x is even.

Both lemmas can be proved using a proof by contrapositive.

Use Lemma 1 to show that if 3x3 is even, then 5x2 is even; and use Lemma 2 to show that if 5x2

is even, then 3x3 is even.

One possible choice with a single lemma is:

Lemma Let x ∈ Z. Then 3x3 is even if and only if x is even.

3.34 Proof. Assume that 11x − 5 is odd. Then 11x− 5 = 2a + 1, where a ∈ Z. Thus

x = (11x − 5) + (−10x + 5) = (2a + 1) − 10x + 5

= 2a − 10x + 6 = 2(a − 5x + 3).

Since a − 5x + 3 is an integer, x is even.

3.35 Use a proof by contrapositive. Assume that x and y are of the same parity. Thus x and y are both

even or both odd. Consider these two cases.

3.36 Proof. Assume that x and y are of opposite parity. We consider two cases.

Case 1. x is even and y is odd. So x = 2a and y = 2b + 1 for integers a and b. Therefore,

3x + 5y = 3(2a) + 5(2b + 1) = 6a + 10b + 5 = 2(3a + 5b + 2) + 1.

Since 3a + 5b + 2 is an integer, 3x + 5y is odd.

Case 2. x is odd and y is even. Thus x = 2a + 1 and y = 2b for integers a and b. Therefore,

3x + 5y = 3(2a + 1) + 5(2b) = 6a + 10b + 3 = 2(3a + 5b + 1) + 1.

Since 3a + 5b + 1 is an integer, 3x + 5y is odd.

3.37 Proof. Assume first that x is odd or y is even. We consider these two cases.

Case 1. x is odd. Then x = 2a + 1 for some integer a. Thus

(x + 1)y2 = (2a + 2)y2 = 2(a + 1)y2.

Since (a + 1)y2 is an integer, (x + 1)y2 is even.

Case 2. y is even. Then y = 2b for some integer b. Now
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(x + 1)y2 = (x + 1)(2b)2 = 2[2b2(x + 1)].

Since 2b2(x + 1) is an integer, (x + 1)y2 is even.

For the converse, assume that x is even and y is odd. Then x = 2a and y = 2b + 1, where

a, b ∈ Z. Now observe that

(x + 1)y2 = (2a + 1)(2b + 1)2 = 8ab2 + 8ab + 2a + 4b2 + 4b + 1

= 2(4ab2 + 4ab + a + 2b2 + 2b) + 1.

Since 4ab2 + 4ab + a + 2b2 + 2b is an integer, (x + 1)y2 is odd.

3.38 Assume that x or y is odd, say x is odd. We then consider two cases, according to whether y is

even or y is odd. When y is even, x + y is odd; while when y is odd, xy is odd.

3.39 Let x ∈ Z. We consider two cases.

Case 1. x is even. Then x = 2a for some integer a. Observe that 3x + 1 = 3(2a) + 1 = 2(3a) + 1 is

odd; while 5x + 2 = 5(2a) + 2 = 2(5a + 1) is even. Thus 3x + 1 and 5x + 2 are of opposite parity.

Case 2. x is odd. Then x = 2b + 1 for some integer b. (An argument similar to that used in Case

1 shows that 3x + 1 and 5x + 2 are of opposite parity.)

3.40 Proof. Assume that some pair, say a, b, of integers of S are of opposite parity. Hence we may

assume that a is even and b is odd. There are now four possibilities for c and d.

Case 1. c and d are even. Consider a ∈ S. Since b+ c is odd and c+d is even, neither condition (1)

nor (2) is satisfied.

Case 2. c is even and d is odd. Consider a ∈ S. Since c + d is odd and b + d is even, neither

condition (1) nor (2) is satisfied.

Case 3. c is odd and d is even. Consider a ∈ S. Since c + d is odd and b + c is even, neither

condition (1) nor (2) is satisfied.

Case 4. c and d are odd. Consider b ∈ S. Since a + c is odd and c + d is even, neither condition (1)

nor (2) is satisfied.

3.41 Since x and y are of opposite parity, either x is even and y is odd or x is odd and y is even. This

second case was never considered and it was never stated that we could consider the first case only

without loss of generality.

3.42 Proof. Assume that a and b are even integers. Then a = 2k and b = 2ℓ for some integers k and ℓ.

Then ax + by = (2k)x + (2ℓ)y = 2(kx + ℓy). Since kx + ℓy is an integer, ax + by is even.

3.43 Proof. Since a and b are distinct, either a < b or b < a, say the former. Then (a+b)/2 > (a+a)/2 =

a.

3.44 Proof. Assume that ab = 4. Then either a = b = 2, a = b = −2, or (a, b) is one of (4, 1), (−4,−1),

(1, 4), (−1,−4). If a = b = 2 or a = b = −2, then a − b = 0 and so (a − b)3 − 9(a − b) =

0. If (a, b) ∈ {(4, 1), (−4,−1), (1, 4), (−1,−4)}, then a − b = 3 or a − b = −3. In either case,

(a − b)3 − 9(a − b) = 0.
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3.45 Proof. Since (a − b)2 = a2 − 2ab + b2 ≥ 0, it follows that a2 + b2 ≥ 2ab and so 2a2 + 2b2 ≥ 4ab.

Because a and b are two positive integers,

a2(b + 1) + b2(a + 1) ≥ a2(1 + 1) + b2(1 + 1) = 2a2 + 2b2 ≥ 4ab,

as desired.

3.46 (a) Proof. Assume that n is an odd integer. Then n = 2k + 1 for some integer k. So

n3 = (2k + 1)3 = 8k3 + 12k2 + 6k + 1 = 2(4k3 + 6k2 + 3k) + 1.

Since 4k3 + 6k2 + 3k is an integer, n3 is odd.

(b) Proof. Assume that n is an odd integer. By Result A, n3 is an odd integer. By Result A

again, (n3)3 = n9 is an odd integer. Then n9 = 2ℓ + 1 for some integer ℓ. Thus

5n9 + 13 = 5(2ℓ + 1) + 13 = 10ℓ + 18 = 2(5ℓ + 9).

Since 5ℓ + 9 is an integer, 5n9 + 13 is even.

3.47 Proof. Since T is a right triangle, it follows by the Pythagorean theorem that c2 = a2 + b2. Cubing

both sides, we have

c6 = a6 + 3a4b2 + 3a2b4 + b6 = a6 + 3a2b2(a2 + b2) + b6

= a6 + 3a2b2c2 + b6.

Solving for (abc)2 gives us the desired result.
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Exercises for Chapter 4

Exercises for Section 4.1: Proofs Involving Divisibility of Integers

4.1 Proof. Assume that a | b. Then b = ac for some integer c. Then b2 = (ac)2 = a2c2. Since c2 is

an integer, a2 | b2.

4.2 Proof. Assume that a | b and b | a. Then b = ax and a = by, where x, y ∈ Z. Thus a = by =

(ax)y = a(xy), implying that xy = 1. So x = y = 1 or x = y = −1. Therefore, a = b or a = −b.

4.3 (a) Proof. Assume that 3 | m. Then m = 3q for some integer q. Hence m2 = (3q)2 = 9q2 =

3(3q2). Since 3q2 is an integer, 3 | m2.

(b) Let m ∈ Z. If 3 ∤ m2, then 3 ∤ m.

(c) Start with the following: Assume that 3 6 | m. Then m = 3q + 1 or m = 3q + 2, where q ∈ Z.

Consider these two cases.

(d) Let m ∈ Z. If 3 | m2, then 3 | m.

(e) Let m ∈ Z. Then 3 | m if and only if 3 | m2.

4.4 Assume that 3 ∤ x and 3 ∤ y. Then x = 3p + 1 or x = 3p + 2 for some integer p and y = 3q + 1 or

y = 3q + 2 for some integer q. We then consider the following four cases.

Case 1. x = 3p + 1 and y = 3q + 1. Then

x2 − y2 = (3p + 1)2 − (3q + 1)2 = (9p2 + 6p + 1) − (9q2 + 6q + 1)

= 3(3p2 + 2p − 3q2 − 2q).

Since 3p2 + 2p − 3q2 − 2q is an integer, 3 | (x2 − y2).

(Use similar arguments for the remaining cases.)

Case 2. x = 3p + 1 and y = 3q + 2.

Case 3. x = 3p + 2 and y = 3q + 1.

Case 4. x = 3p + 2 and y = 3q + 2.

4.5 Proof. Assume that a | b or a | c, say the latter. Then c = ak for some integer k. Thus bc =

b(ak) = a(bk). Since bk is an integer, a | bc.

4.6 [Use a proof by contrapositive.] Assume that 3 ∤ a. We show that 3 ∤ 2a. Since 3 ∤ a, it follows

that a = 3q + 1 or a = 3q + 2 for some integer q. We consider these two cases.

Case 1. a = 3q + 1. Then 2a = 2(3q + 1) = 3(2q) + 2. Since 2q is an integer, 3 ∤ 2a.

Case 2. a = 3q + 2. (Use an argument similar to that in Case 1.)

4.7 For the implication “If 3 ∤ n, then 3 | (2n2 + 1).”, use a direct proof. Assume that 3 ∤ n. Then

n = 3q + 1 or n = 3q + 2 for some integer q. Then consider these two cases.

For the converse “If 3 | (2n2 + 1), then 3 ∤ n.” use a proof by contrapositive.
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4.8 Proof. Assume first that 4 | (n2 + 3). Then n2 + 3 = 4x for some integer x. Hence n2 = 4x − 3

and so

n4 − 3 = (4x − 3)2 − 3 = 16x2 − 24x + 6 = 2(8x2 − 12x + 3).

Since 8x2 − 12x + 3 is an integer, 2 | (n4 − 3).

For the converse, assume that 2 | (n4 − 3). Hence n4 − 3 = 2a for some integer a. Thus

n4 = 2a + 3 = 2(2a + 1) + 1. Since 2a + 1 ∈ Z, it follows that n4 is odd. By Theorem 3.12, n2 is

odd; and by Theorem 3.12 again, n is odd. So n = 2b + 1, where b ∈ Z. Hence

n2 + 3 = (2b + 1)2 + 3 = 4b2 + 4b + 4 = 4(b2 + b + 1).

Since b2 + b + 1 is an integer, 4 | (n2 + 3).

4.9 Proof. Let n ∈ Z with n ≥ 8. Then n = 3q, where q ≥ 3, or n = 3q+1, where q ≥ 3, or n = 3q +2,

where q ≥ 2. We consider these three cases.

Case 1. n = 3q, where q ≥ 3. Then n = 3a + 5b, where a ≥ 3 and b = 0.

Case 2. n = 3q + 1, where q ≥ 3. Then n = 3(q − 3) + 10, where q − 3 ≥ 0. Thus n = 3a + 5b,

where a = q − 3 ≥ 0 and b = 2.

Case 3. n = 3q + 2, where q ≥ 2. Then n = 3(q− 1)+ 5, where q− 1 ≥ 1. Thus n = 3a + 5b, where

a = q − 1 ≥ 1 and b = 1.

Exercises for Section 4.2: Proofs Involving Congruence of Integers

4.10 Proof. Assume that a ≡ b (mod n). Then n | (a− b); so a− b = nx for some integer x. Observe

that

a2 − b2 = (a − b)(a + b) = (nx)(a + b) = n[x(a + b)].

Since x(a + b) is an integer, n | (a2 − b2) and so a2 ≡ b2 (mod n).

4.11 Proof. Assume that a ≡ b (mod n) and a ≡ c (mod n). Then n | (a − b) and n | (a − c). Hence

a − b = nx and a − c = ny, where x, y ∈ Z. Thus b = a − nx and c = a − ny. Therefore,

b − c = (a − nx) − (a − ny) = ny − nx = n(y − x). Since y − x is an integer, n | (b − c) and so

b ≡ c (mod n).

4.12 Assume that one of a and b is congruent to 0 modulo 3 and that the other is not congruent to 0

modulo 3. We show that a2 + 2b2 6≡ 0 (mod 3). We consider two cases.

Case 1. a ≡ 0 (mod 3) and b 6≡ 0 (mod 3). Since a ≡ 0 (mod 3), it follows that a = 3p for some

integer p. Since b 6≡ 0 (mod 3), either b = 3q + 1 or b = 3q + 2 for some integer q. There are two

subcases.

Subcase 1.1. b = 3q + 1. Then

a2 + 2b2 = (3p)2 + 2(3q + 1)2 = 9p2 + 2(9q2 + 6q + 1)

= 9p2 + 18q2 + 12q + 2 = 3(3p2 + 6q2 + 4q) + 2.
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Since 3p2 + 6q2 + 4q is an integer, 3 ∤ (a2 + 2b2) and so a2 + 2b2 6≡ 0 (mod 3).

Subcase 1.2. b = 3q + 2. (The proof is similar to that of Subcase 1.1.)

Case 2. a 6≡ 0 (mod 3) and b ≡ 0 (mod 3). Since b ≡ 0 (mod 3), it follows that b = 3q, where

q ∈ Z. Since a 6≡ 0 (mod 3), it follows that a = 3p + 1 or a = 3p + 2 for some integer p. There are

two subcases.

Subcase 2.1. a = 3p + 1.

Subcase 2.2. a = 3p + 2.

(The proof of each subcase is similar to that of Subcase 1.1.)

4.13 (a) Proof. Assume that a ≡ 1 (mod 5). Then 5 | (a− 1). So a− 1 = 5k for some integer k. Thus

a = 5k + 1 and so

a2 = (5k + 1)2 = 25a2 + 10a + 1 = 5(5a2 + 2a) + 1.

Thus

a2 − 1 = 5(5a2 + 2a).

Since 5a2 + 2a is an integer, 5 | (a2 − 1) and so a2 ≡ 1 (mod 5).

(b) We can conclude that b2 ≡ 1 (mod 5).

4.14 (a) Let n ∈ Z. If n 6≡ 0 (mod 3) and n 6≡ 1 (mod 3), then n2 6≡ n (mod 3).

Proof. Assume that n 6≡ 0 (mod 3) and n 6≡ 1 (mod 3). Then n ≡ 2 (mod 3). Therefore,

n = 3a + 2 for some integer a. Thus

n2 − n = (3a + 2)2 − (3a + 2) = 9a2 + 12a + 4 − 3a − 2

= 9a2 + 9a + 2 = 3(3a2 + 3a) + 2.

Since 3a2 + 3a is an integer, n2 − n ≡ 2 (mod 3) and so n2 6≡ n (mod 3).

(b) Let n ∈ Z. Then n2 6≡ n (mod 3) if and only if n 6≡ 0 (mod 3) and n 6≡ 1 (mod 3).

4.15 Proof. Assume that a ≡ 5 (mod 6) and b ≡ 3 (mod 4). Then 6 | (a − 5) and 4 | (b − 3). Thus

a − 5 = 6x and b − 3 = 4y, where x, y ∈ Z. So a = 6x + 5 and b = 4y + 3. Observe that

4a + 6b = 4(6x + 5) + 6(4y + 3) = 24x + 20 + 24y + 18 = 24x + 24y + 38 = 8(3x + 3y + 4) + 6.

Since 3x + 3y + 4 is an integer, 8|(4a + 6b − 6) and so 4a + 6b ≡ 6 (mod 8).

4.16 (a) Proof. Assume that n ≡ 0 (mod 7). Then 7 | n and so n = 7q for some integer q. Since

n2 = 49q2 = 7(7q2) and 7q2 is an integer, n2 ≡ 0 (mod 7).

(b)–(d) The proofs are similar to that of (a).

(e) Proof. Let n ∈ Z. Then

n2 − (7 − n)2 = n2 − (49 − 14n + n2) = 14n− 49

= 7(2n − 7).

Since 2n − 7 is an integer, 7|[n2 − (7 − n)2] and so n2 ≡ (7 − n)2 (mod 7).
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(f) Proof. Let n ∈ Z. Then n is congruent to one of 0, 1, 2, 3, 4, 5, or 6 modulo 7. If n is

congruent to one of 0, 1, 2, or 3 modulo 7, then n2 is congruent to one of 0, 1, 2, or 4 modulo

7 by (a)-(d). Three cases remain.

Case 1. n ≡ 4 (mod 7). By (e), n2 ≡ 2 (mod 7)

Case 2. n ≡ 5 (mod 7). By (e), n2 ≡ 4 (mod 7)

Case 3. n ≡ 6 (mod 7). By (e), n2 ≡ 1 (mod 7).

4.17 Proof. Either a = 3q, a = 3q + 1 or a = 3q + 2 for some integer q. We consider these three cases.

Case 1. a = 3q. Then

a3 − a = (3q)3 − (3q) = 27q3 − 3q = 3(9q3 − q).

Since 9q3 − q is an integer, 3 | (a3 − a) and so a3 ≡ a (mod 3).

Case 2. a = 3q + 1. Then

a3 − a = (3q + 1)3 − (3q + 1) = 27q3 + 27q2 + 9q + 1 − 3q − 1

= 27q3 + 27q2 + 6q = 3(9q3 + 9q2 + 2q).

Since 9q3 + 9q2 + 2q is an integer, 3 | (a3 − a) and so a3 ≡ a (mod 3).

Case 3. a = 3q + 2. Then

a3 − a = (3q + 2)3 − (3q + 2) = (27q3 + 54q2 + 36q + 8) − 3q − 2

= 27q3 + 54q2 + 33q + 6 = 3(9q3 + 18q2 + 11q + 2).

Since 9q3 + 18q2 + 11q + 2 is an integer, 3 | (a3 − a) and so a3 ≡ a (mod 3).

Exercises for Section 4.3: Proofs Involving Real Numbers

4.18 Proof. Assume that x2 − 4x = y2 − 4y and x 6= y. Thus x2 − y2 − 4(x− y) = 0 and so (x− y)[(x +

y) − 4] = 0. Since x 6= y, it follows that (x + y) − 4 = 0 and so x + y = 4.

4.19 Proof. Assume that a < 3m+1 and b < 2m+ 1. Since a and b are integers, a ≤ 3m and b ≤ 2m.

Therefore,

2a + 3b ≤ 2(3m) + 3(2m) = 12m < 12m + 1,

as desired.

4.20 A proof by contrapositive can be used: Assume that x ≤ 0. Then 3x4 + 1 ≥ 1 and x7 + x3 ≤ 0.

Thus 3x4 + 1 ≥ 1 > 0 ≥ x7 + x3.

4.21 This exercise states that the arithmetic mean of two positive numbers is at least as large as their

geometric mean.
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(a) Proof. Since (a − b)2 ≥ 0, it follows that a2 − 2ab + b2 ≥ 0. Adding 4ab to both sides, we

obtain a2 + 2ab + b2 ≥ 4ab or (a + b)2 ≥ 4ab. Taking square roots of both sides, we have

a + b ≥ 2
√

ab and so
√

ab ≤ (a + b)/2, as desired.

(b) Assume that
√

ab = (a + b)/2 . Taking the steps in part (a) in reverse order, we obtain

(a − b)2 = 0 and so a = b.

4.22 (a) Proof. Assume that 0 < r < 1. Since (2r − 1)2 ≥ 0, it follows that

(2r − 1)2 = 4r2 − 4r + 1 ≥ 0.

Thus 1 ≥ 4r − 4r2 = 4r(1 − r). Since 0 < r < 1, it follows that r(1 − r) > 0. Dividing both

sides of 1 ≥ 4r(1 − r) by r(1 − r), we obtain 1
r(1−r) ≥ 4.

(b) Since 0 < r < 1, r cannot be an integer. If r = 0 or r = 1, then 1
r(1−r) is undefined.

4.23 Observe that if x = 0 or y = 0, then the result holds. Thus we may assume that x 6= 0 and y 6= 0.

There are three cases.

Case 1. x > 0 and y > 0.

Case 2. x < 0 and y < 0.

Case 3. One of x and y is positive and the other is negative, say x > 0 and y < 0.

4.24 Proof. Since

|x| = |(x + y) + (−y)| ≤ |x + y| + | − y| = |x + y| + |y|,

it follows that |x + y| ≥ |x| − |y|.

4.25 Proof. Since |x−z| = |(x−y)+(y−z)|, it follows that |x−z| = |(x−y)+(y−z)| ≤ |x−y|+ |y−z|.

4.26 Proof. Let r ∈ R such that |r − 1| < 1. Since |r − 1| < 1, it follows that 0 < r < 2. Because

(r − 2)2 ≥ 0, we have

r2 − 4r + 4 ≥ 0.

Thus 4 ≥ 4r − r2 = r(4 − r). Since 0 < r < 2, it follows that r(4 − r) > 0. Dividing both sides by

r(4 − r), we obtain 4
r(4−r) ≥ 1.

Exercises for Section 4.4: Proofs Involving Sets

4.27 We first show that A ∪ B ⊆ (A − B) ∪ (B − A) ∪ (A ∩ B). Let x ∈ A ∪ B. Then x ∈ A or x ∈ B.

Assume, without loss of generality, that x ∈ A. We consider two cases.

Case 1. x ∈ B. Since x ∈ A and x ∈ B, it follows that x ∈ A∩B. Thus x ∈ (A−B)∪(B−A)∪(A∩B).

Case 2. x /∈ B. Since x ∈ A and x /∈ B, it follows that x ∈ A−B. Again, x ∈ (A−B)∪ (B −A) ∪
(A ∩ B).

Next, we verify that (A−B)∪ (B −A)∪ (A∩B) ⊆ A∪B. Let y ∈ (A−B)∪ (B −A)∪ (A∩B).

Then y ∈ A − B, y ∈ B − A, or y ∈ A ∩ B. In each case, either y ∈ A or y ∈ B. Therefore,

y ∈ A ∪ B.
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4.28 Proof. First, we show that if A ∪ B = A, then B ⊆ A. Assume that A ∪B = A. Let x ∈ B. Then

x ∈ A ∪ B. Since A ∪ B = A, it follows that x ∈ A. Thus B ⊆ A.

Next we show that if B ⊆ A, then A ∪ B = A. Assume that A ∪ B 6= A. Since A ⊆ A ∪ B, it

follows that A ∪ B 6⊆ A. Hence there exists some element x ∈ A ∪ B such that x /∈ A. Necessarily,

x ∈ B and x /∈ A. Thus B 6⊆ A.

4.29 Proof. Assume that A ∩ B = A. We show that A ⊆ B. Let x ∈ A. Since A = A ∩ B, it follows

that x ∈ A ∩ B and so x ∈ B. Hence A ⊆ B.

For the converse, assume that A ⊆ B. We show that A ∩ B = A. Since A ∩ B ⊆ A, it suffices

to show that A ⊆ A ∩ B. Let x ∈ A. Since A ⊆ B, it follows that x ∈ B. Thus x ∈ A and x ∈ B,

implying that x ∈ A ∩ B. Therefore, A ⊆ A ∩ B.

4.30 (a) Consider A = {1, 2}, B = {2, 3}, and C = {2, 4}.

(b) Consider A = {1, 2}, B = {1}, and C = {2}.

(c) Proof. Suppose that B 6= C. We show that either A ∩ B 6= A ∩ C or A ∪ B 6= A ∪ C. Since

B 6= C, it follows that B 6⊆ C or C 6⊆ B, say the former. Thus there exists b ∈ B such that

b /∈ C. We consider two cases, according to whether b ∈ A or b /∈ A.

Case 1. b ∈ A. Since b ∈ B and b ∈ A, it follows that b ∈ A ∩ B. On the other hand, b /∈ C

and so b /∈ A ∩ C. Thus A ∩ B 6= A ∩ C.

Case 2. b /∈ A. Since b ∈ B, it follows that b ∈ A ∪ B. Because b /∈ A and b /∈ C, we have

b /∈ A ∪ C. Therefore, A ∪ B 6= A ∪ C.

Thus, either A ∩ B 6= A ∩ C or A ∪ B 6= A ∪ C.

4.31 Proof. Assume that A = ∅ and B = ∅. Then A ∪ B = ∅ ∪ ∅ = ∅.

4.32 Proof. Let n ∈ B. Then n ∈ Z and n ≡ 3 (mod 4). So n = 4q + 3 for some integer q. Therefore,

n = 2(2q +1)+1. Since 2q +1 ∈ Z, it follows that 2 | (n− 1) and so n ≡ 1 (mod 2). Thus n ∈ A.

4.33 Proof. Assume that A = B. Then A∪B = A∩B = A. It remains to verify the converse. Assume

that A 6= B. Thus A 6⊆ B or B 6⊆ A, say the former. Thus there exists a ∈ A such that a /∈ B.

Since a /∈ B, it follows that a /∈ A∩B. On the other hand, a ∈ A implies that a ∈ A∪B. Therefore,

A ∪ B 6= A ∩ B.

Exercises for Section 4.5: Fundamental Properties of Set Operations

4.34 Let x ∈ A ∩ B. Then x ∈ A and x ∈ B. Thus x ∈ B and x ∈ A (by the commutative property

of the conjunction of two statements). So x ∈ B ∩ A, implying that A ∩ B ⊆ B ∩ A. (A similar

argument shows that B ∩ A ⊆ A ∩ B.)

4.35 Proof. First, we show that A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C). Let x ∈ A ∩ (B ∪ C). Then x ∈ A

and x ∈ B ∪ C. Since x ∈ B ∪ C, it follows that x ∈ B or x ∈ C, say x ∈ B. Because x ∈ A and

x ∈ B, it follows that x ∈ A ∩ B. Hence x ∈ (A ∩ B) ∪ (A ∩ C).
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Next, we show that (A∩B)∪(A∩C) ⊆ A∩(B∪C). Let y ∈ (A∩B)∪(A∩C). Then y ∈ A∩B

or y ∈ A ∩ C, say the former. Since y ∈ A ∩ B, it follows that y ∈ A and y ∈ B and so y ∈ A and

y ∈ B ∪ C. Thus y ∈ A ∩ (B ∪ C).

4.36 Proof. We first show that A ∩ B ⊆ A ∪ B. Let x ∈ A ∩ B. Then x /∈ A ∩ B. Thus x /∈ A or

x /∈ B, say the former. Since x /∈ A, it follows that x ∈ A and so x ∈ A ∪ B.

Next, we show that A ∪ B ⊆ A ∩ B. Let x ∈ A ∪ B. So x ∈ A or x ∈ B. We may assume that

x ∈ A. Thus x /∈ A and so x /∈ A ∩ B. Therefore, x ∈ A ∩ B.

4.37 Proof. We first show that (A − B) ∩ (A − C) ⊆ A − (B ∪ C). Let x ∈ (A − B) ∩ (A − C). Then

x ∈ A − B and x ∈ A− C. Since x ∈ A − B, it follows that x ∈ A and x /∈ B. Because x ∈ A − C,

we have x ∈ A and x /∈ C. Since x /∈ B and x /∈ C, we have x /∈ B ∪ C. Thus x ∈ A − (B ∪ C).

Next, we show that A − (B ∪ C) ⊆ (A − B) ∩ (A − C). Let y ∈ A − (B ∪ C). Thus y ∈ A and

y /∈ B ∪ C. Since y /∈ B ∪ C, it follows that y /∈ B and y /∈ C. Thus y ∈ A − B and y ∈ A − C.

Therefore, y ∈ (A − B) ∩ (A − C).

4.38 Proof. We first show that (A − B) ∪ (A − C) ⊆ A − (B ∩ C). Let x ∈ (A − B) ∪ (A − C). Then

x ∈ A − B or x ∈ A − C, say the former. Thus x ∈ A and x /∈ B. Thus x /∈ B ∩ C. Since x ∈ A

and x /∈ B ∩ C, it follows that x ∈ A − (B ∩ C).

Next we show that A − (B ∩ C) ⊆ (A − B) ∪ (A − C). Let x ∈ A − (B ∩ C). Then x ∈ A and

x /∈ B ∩C. Since x /∈ B ∩C, it follows that x /∈ B or x /∈ C, say x /∈ B. Because x ∈ A and x /∈ B,

we have x ∈ A − B and so x ∈ (A − B) ∪ (A − C).

4.39 Proof. By Theorem 4.21,

A ∪ (B ∩ C) = A ∩ (B ∩ C) = A ∩ (B ∪ C)

= A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

= (A ∩ B) ∪ (A − C),

as desired.

Exercises for Section 4.6: Proofs Involving Cartesian Products of Sets

4.40 We have already noted that if A = ∅ or B = ∅, then A × B = ∅. For the converse, assume that

A 6= ∅ and B 6= ∅. Then there exist a ∈ A and b ∈ B; so (a, b) ∈ A × B.

4.41 Let A and B be sets. Then A × B = B × A if and only if A = B or one of A and B is empty.

Proof. First, we show that if A = B or one of A and B is empty, then A × B = B × A. If

A = B, then certainly A × B = B × A; while if one of A and B is empty, say A = ∅, then

A × B = ∅ × B = ∅ = B × ∅ = B × A.

For the converse, assume that A and B are nonemptysets with A 6= B. Since A 6= B, at least

one of A and B is not a subset of the other, say A 6⊆ B. Then there is an element a ∈ A such that

a /∈ B. Since B 6= ∅, there exists an element b ∈ B. Then (a, b) ∈ A×B but (a, b) /∈ B ×A. Hence

A × B 6= B × A.
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4.42 Let A and B be sets. Then (A × B) ∩ (B × A) = ∅ if and only if A and B are disjoint.

Proof. First, we assume that A and B are not disjoint. Then there exists x ∈ A ∩ B. Hence

(x, x) ∈ (A × B) ∩ (B × A) and so (A × B) ∩ (B × A) 6= ∅.

For the converse, assume that (A×B)∩(B×A) 6= ∅. Then there exists (x, y) ∈ (A×B)∩(B×A).

Thus (x, y) ∈ A×B and (x, y) ∈ B ×A. So x ∈ A and x ∈ B. Thus x ∈ A∩B and so A∩B 6= ∅.

4.43 Proof. First, assume that A× C ⊆ B × C. We show that A ⊆ B. Let a ∈ A. Since C 6= ∅, there

exists c ∈ C and so (a, c) ∈ A × C. Since A × C ⊆ B × C, it follows that (a, c) ∈ B × C and so

a ∈ B.

For the converse, assume that A ⊆ B. We show that A×C ⊆ B×C. Let (a, c) ∈ A×C. Then

a ∈ A and c ∈ C. Since A ⊆ B, it follows that a ∈ B. Thus (a, c) ∈ B × C, as desired.

4.44 (a) Let A = ∅, B = {1}, C = {2}, and D = {3}.

(b) If A and B are nonempty sets such that A × B ⊆ C × D, then A ⊆ C and B ⊆ D.

Proof. Let A and B be nonempty sets such that A × B ⊆ C × D. We only show that A ⊆ C

as the proof that B ⊆ D is similar. Let a ∈ A. Since B 6= ∅, there exists b ∈ B. Hence

(a, b) ∈ A × B. Because A × B ⊆ C × D, it follows that (a, b) ∈ C × D. Thus a ∈ C.

4.45 Proof. We first show that A × (B ∩ C) ⊆ (A × B) ∩ (A × C). Let (x, y) ∈ A × (B ∩ C). Then

x ∈ A and y ∈ B ∩C. Thus y ∈ B and y ∈ C. Thus (x, y) ∈ A× B and (x, y) ∈ A×C. Therefore,

(x, y) ∈ (A × B) ∩ (A × C).

It remains to show that (A × B) ∩ (A × C) ⊆ A × (B ∩ C). Let (x, y) ∈ (A × B) ∩ (A × C).

Then (x, y) ∈ A × B and (x, y) ∈ A × C. So x ∈ A, y ∈ B, and y ∈ C. Hence y ∈ B ∩ C and so

(x, y) ∈ A × (B ∩ C).

4.46 Proof. We first show that (A×B)∩ (C ×D) ⊆ (A∩C)× (B ∩D). Let (x, y) ∈ (A×B)∩ (C ×D).

Then (x, y) ∈ A × B and (x, y) ∈ C × D. Thus x ∈ A, y ∈ B and x ∈ C, y ∈ D. Thus x ∈ A ∩ C

and y ∈ B ∩ D and so (x, y) ∈ (A ∩ C) × (B ∩ D).

It remains to show (A ∩ C) × (B ∩ D) ⊆ (A × B) ∩ (C × D). Let (x, y) ∈ (A ∩ C) × (B ∩ D).

Then x ∈ A∩C and y ∈ B ∩D. So x ∈ A and x ∈ C; while y ∈ B and y ∈ D. Thus (x, y) ∈ A×B

and (x, y) ∈ C × D, which implies that (x, y) ∈ (A × B) ∩ (C × D).

4.47 Proof. Let (x, y) ∈ (A×B)∪ (C ×D). Then (x, y) ∈ A×B or (x, y) ∈ C ×D. Assume, without

loss of generality, that (x, y) ∈ A × B. Thus x ∈ A and y ∈ B. This implies that x ∈ A ∪ C and

y ∈ B ∪ D. Therefore, (x, y) ∈ (A ∪ C) × (B ∪ D).

4.48 Let U = {1, 2} be the universal set and consider A = {1} and B = {2}. Thus the universal set

for A × B is U × U . In this case, A × B = {(1, 2)}, A × B = {(1, 1), (2, 1), (2, 2)}, A = {2}, and

B = {1}. Thus A × B = {(2, 1)} 6= A × B.

Additional Exercises for Chapter 4
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4.49 First, we assume that 5 | n. Then n = 5k for some integer k. Thus n2 = (5k)2 = 5(5k2). Since 5k2

is an integer, 5 | n2.

For the converse, we assume that 5 ∤ n. Then n = 5q + 1, n = 5q + 2, n = 5q + 3, or n = 5q + 4

for some integer q. We consider four cases.

Case 1. n = 5q + 1. Then

n2 = (5q + 1)2 = 25q2 + 10q + 1 = 5(5q2 + 2q) + 1.

Since 5q2 + 2q is an integer, 5 ∤ n2. (The remaining three cases are proved in a manner similar to

Case 1.)

4.50 First, assume that 3 | a or 3 | b, say 3 | a. Then a = 3c for some integer c. Thus ab = (3c)b = 3(cb).

Since cb is an integer, 3 | ab.

For the converse, we assume that 3 ∤ a and 3 ∤ b. Then either a = 3p + 1 or a = 3p + 2 for some

integer p and b = 3q + 1 or b = 3q + 2 for some integer q. There are four cases.

Case 1. a = 3p + 1 and b = 3q + 1. Then

ab = (3p + 1)(3q + 1) = 9pq + 3p + 3q + 1

= 3(3pq + p + q) + 1.

Since 3pq + p + q is an integer, 3 ∤ ab. (The remaining cases are proved in a manner similar to Case

1.)

4.51 Proof. Let n be an odd integer. Then n = 2k + 1 for some integer k. Thus

n2 + (n + 6)2 + 6 = 2n2 + 12n + 42 = 2(2k + 1)2 + 12(2k + 1) + 42

= 8k2 + 32k + 56 = 8(k2 + 4k + 7).

Since k2 + 4k + 7 is an integer, 8 | [n2 + (n + 6)2 + 6].

4.52 Proof. Let n be an odd integer. Then n = 2k + 1 for some integer k. Thus

n4 + 4n2 + 11 = (2k + 1)4 + 4(2k + 1)2 + 11

= 16k4 + 32k3 + 24k2 + 8k + 1 + 16k2 + 16k + 4 + 11

= 16k4 + 32k3 + 40k2 + 24k + 16 = 8(2k4 + 4k3 + 5k2 + 3k + 2).

Since 2k4 + 4k3 + 5k2 + 3k + 2 is an integer, 8 | (n4 + 4n2 + 11).

4.53 Proof. Assume that n ≡ 1 (mod 2) and m ≡ 3 (mod 4). Then n = 2p + 1 and m = 4q + 3, where

p, q ∈ Z. Thus

n2 + m = (2p + 1)2 + (4q + 3) = 4p2 + 4p + 1 + 4q + 3

= 4p2 + 4p + 4q + 4 = 4(p2 + p + q + 1).

Since p2 + p + q + 1 is an integer, 4 | (n2 + m) and so n2 + m ≡ 0 (mod 4).
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4.54 Two values of a are a = 3 and a = 4.

Result. For every integer n, 3 ∤ (n2 + 1).

Proof. Let n ∈ Z. Then n = 3q, n = 3q + 1, or n = 3q + 2 for some integer q. We consider three

cases.

Case 1. n = 3q. Then

n2 + 1 = (3q)2 + 1 = 9q2 + 1 = 3(3q2) + 1.

Since 3q2 is an integer, 3 ∤ (n2 + 1).

Case 2. n = 3q + 1. Then

n2 + 1 = (3q + 1)2 + 1 = 9q2 + 6q + 2 = 3(3q2 + 2q) + 2.

Since 3q2 + 2q is an integer, 3 ∤ (n2 + 1).

Case 3. n = 3q + 2. Then

n2 + 1 = (3q + 2)2 + 1 = 9q2 + 12q + 5 = 3(3q2 + 4q + 1) + 2.

Since 3q2 + 4q + 1 is an integer, 3 ∤ (n2 + 1).

(The proof for a = 4 is similar to that for a = 3.)

4.55 Since
√

a2 = a if a ≥ 0 and
√

a2 > a if a < 0, it follows that
√

a2 ≥ a for every real number a.

Also,
√

xy =
√

x
√

y if x, y ≥ 0. Thus ab ≤
√

(ab)2 =
√

a2b2 =
√

a2
√

b2.

4.56 Since (ad − bc)2 ≥ 0, it follows that a2d2 − 2abcd + b2c2 ≥ 0. Thus a2d2 + b2c2 ≥ 2abcd. Adding

a2c2 + b2d2 to both sides, we obtain

a2d2 + b2c2 + a2c2 + b2d2 = (a2 + b2)(c2 + d2) ≥ (ac + bd)2.

Thus
√

(a2 + b2)(c2 + d2) ≥ ac + bd.

4.57 Proof. Assume that x(x − 5) = −4. Then x2 − 5x + 4 = (x − 1)(x − 4) = 0. Therefore, x = 1 or

x = 4. We consider these two cases.

Case 1. x = 1. Then
√

5x2 − 4 =
√

5 − 4 = 1 and x + 1
x = 1 + 1 = 2. Hence the implication

√
5x2 − 4 = 1 implies that x + 1

x = 2

is true when x = 1.

Case 2. x = 4. Since
√

5x2 − 4 =
√

80 − 4 6= 1, the implication

√
5x2 − 4 = 1 implies that x + 1

x = 2

is true when x = 4.
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4.58 Let x ≡ 2 (mod 3) and y ≡ 2 (mod 3). Then x = 3k + 2 and y = 3ℓ + 2 for some integers k and

ℓ. Note that it is possible that k 6= ℓ, that is, it is possible that x 6= y. Thus it is wrong to assume

that x = 3k + 2 and y = 3k + 2 for some integer k.

4.59 Result Let x, y ∈ Z. If x ≡ 1 (mod 5) and y ≡ 2 (mod 5), then x2 + y2 ≡ 0 (mod 5).

4.60 (1) A direct proof.

(2) Assume that n4 is even.

(3) 3n + 1 is odd.

(4) (a) Let a ∈ Z. If a2 is even, then a is even.

(b) Same as (a).

(c) This is from the definition of an even integer.

(d) Substitution and algebra.

(e) This is from the definition of an odd integer.

4.61 (a) Let A and B be sets. If A ∩ B = ∅, then A = (A ∪ B) − B.

(b) It probably would have been better to begin the proof by saying: Assume that A ∩ B = ∅.
A change in the order of the steps in the first paragraph could make for a clearer proof. (See

below.)

First, we show that A ⊆ (A∪B)−B. Let x ∈ A. Then x ∈ A∪B. Since x ∈ A and A∩B = ∅,
it follows that x /∈ B. Thus x ∈ (A ∪ B) − B and A ⊆ (A ∪ B) − B.

4.62 The result is an implication, not a biconditional. The proof is complete after the first paragraph.

4.63 It is wrong to assume that x − 1 = 3q and y − 1 = 3q for some integer q since x and y need not be

equal integers.

4.64 It is wrong to conclude that x /∈ B simply because (x, y) /∈ B×C. It should be since (x, y) /∈ B×C

and y ∈ C, we have x /∈ B.

4.65 Recall that |x − y| = |y − x| for every two real numbers x and y.

Proof. We may assume, without loss of generality, that a ≤ b ≤ c. Then

|a − b| + |a − c| + |b − c| = (b − a) + (c − a) + (c − b) = 2c − 2a = 2(c − a).

Since c − a ∈ Z, it follows that |a − b| + |a − c| + |b − c| is an even integer.

4.66 Proof. Since (a − b)2 ≥ 0, it follows that a2 + b2 ≥ 2ab. Dividing by the positive number ab, we

obtain
a

b
+

b

a
≥ 2,

as desired.
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4.67 Proof. Cubing both sides of the trigonometric identity sin2 x + cos2 x = 1, we obtain

(sin2 x + cos2 x)3 = sin6 x + 3 sin4 x cos2 x + 3 sin2 x cos4 x + cos6 x

= sin6 x + 3 sin2 x cos2 x(sin2 x + cos2 x) + cos6 x

= sin6 x + 3 sin2 x cos2 x + cos6 x = 1,

as desired.

4.68 Proof. Since x < 0, it follows that x(x − y)2 ≤ 0. Thus x3 − 2x2y + xy2 ≤ 0 and so x3 − x2y ≤
x2y − xy2.
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Exercises for Chapter 5

Exercises for Section 5.1: Counterexamples

5.1 Let a = b = −1. Then log(ab) = log 1 = 0 but log(a) and log(b) are not defined. Thus a = b = −1

is a counterexample.

5.2 If n = 4, then 2n + 3n + n(n − 1)(n − 2) = 121 = 112, which is not prime. Thus n = 4 is a

counterexample.

5.3 If n = 3, then (2n2 + 1) = 19. Since 3 ∤ 19, it follows that n = 3 is a counterexample.

5.4 If n = 2, then n(n+1)
2 = 3 is odd, but (n+1)(n+2)

2 = 6 is even. Thus n = 2 is a counterexample.

5.5 If a = 1 and b = 2, then (a+ b)3 = 33 = 27, but a3 +2a2b+2ab+2ab2 + b3 = 1+4+4+8+8 = 25.

Thus a = 1 and b = 2 form a counterexample.

5.6 If a = b = 1, then ab = 1 and (a + b)2 = 4 and so ab and (a + b)2 are of opposite parity. On the

other hand, a2b2 = 1 and a+ab+b = 3 are of the same parity. Thus a = b = 1 is a counterexample.

Exercises for Section 5.2: Proof by Contradiction

5.7 Proof. Assume, to the contrary, that there exists a largest negative rational number r. Thus

r = a/b, where a, b ∈ Z and b 6= 0. Consider r/2 = a/2b. Since a, 2b ∈ Z and 2b 6= 0, the number

r/2 is rational. Because r < r/2 < 0, this contradicts r being the largest negative rational number.

(Note: The fact that r/2 is a rational number may be sufficiently clear that this does not have to

be verified.)

5.8 Assume, to the contrary, that there exists a smallest positive irrational number r. Then r/2 is a

positive irrational number and r/2 < r.

5.9 Proof. Assume, to the contrary, that 200 can be written as the sum of an odd integer a and two

even integers b and c. Then a = 2x + 1, b = 2y, and c = 2z, where x, y, z ∈ Z. Thus

200 = a + b + c = (2x + 1) + 2y + 2z = 2(x + y + z) + 1.

Since x + y + z ∈ Z, it follows that 200 is odd, which is a contradiction.

5.10 Proof. Let a and b be odd integers and assume, to the contrary, that 4 | (a2+b2). Then a2+b2 = 4x

for some integer x. Since a and b are odd integers, a = 2y + 1 and b = 2z + 1, where y, z ∈ Z. Thus

4x = a2 + b2 = (2y + 1)2 + (2z + 1)2 = 4y2 + 4y + 1 + 4z2 + 4z + 1

= 4y2 + 4y + 4z2 + 4z + 2

So 4x − 4y2 − 4z2 − 4y − 4z = 4(x − y2 − z2 − y − z) = 2. Since x − y2 − z2 − y − z is an integer,

4 | 2, which is a contradiction.
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5.11 Proof. Let a ≥ 2 and b be integers and assume, to the contrary, that a | b and a | (b + 1). So

b = ax and b + 1 = ay, where x, y ∈ Z. Then b + 1 = ax + 1 = ay and so 1 = ay − ax = a(y − x).

Since y − x is an integer, a | 1, which is a contradiction since a ≥ 2.

5.12 Assume, to the contrary, that 1000 can be expressed as the sum of three integers a, b, and c, an

even number of which are even. There are two cases.

Case 1. None of a, b, and c is even. Then a = 2x+ 1, b = 2y + 1, and c = 2z + 1, where x, y, z ∈ Z.

Thus

1000 = (2x + 1) + (2y + 1) + (2z + 1) = 2(x + y + z + 1) + 1.

Since x + y + z + 1 is an integer, 1000 is odd, which is a contradiction.

Case 2. Exactly two of a, b, and c are even, say a and b are even and c is odd. (The argument is

similar to that in Case 1.)

5.13 Proof. Assume, to the contrary, that there exist an irrational number a and a nonzero rational

number b such that ab is rational. Since b is a nonzero rational number, b = r/s, where r, s ∈ Z and

r, s 6= 0. Then ab = p/q, where p, q ∈ Z and q 6= 0. Then a = p/(bq) = (sp)/(rq). Since sp, rq ∈ Z

and rq 6= 0, it follows that a is a rational number, which is a contradiction.

5.14 Proof. Assume, to the contrary, that there exist an irrational number a and a nonzero rational

number b such that a/b is a rational number. Then a/b = p/q, where p, q ∈ Z and p, q 6= 0. Since

b is a nonzero rational number, b = r/s, where r, s ∈ Z and r, s 6= 0. Thus a = (bp)/q = (rp)/(sq).

Since rp, sq ∈ Z and sq 6= 0, it follows that a is a rational number, which is a contradiction.

5.15 Assume, to the contrary, that ar + s and ar − s are both rational. Then (ar + s) + (ar − s) = 2ar

is rational. Thus 2ar = p/q, where p, q ∈ Z and p, q 6= 0. Then show that a = p/(2qr) is rational,

producing a contradiction.

5.16 Lemma: Let a be an integer. Then 3 | a2 if and only if 3 | a.

Proof of Result. Assume to the contrary, that
√

3 is rational. Then
√

3 = p/q, where p, q ∈ Z

and q 6= 0. We may assume that p/q has been reduced to lowest terms. Thus 3 = p2/q2 or

p2 = 3q2. Since 3 | p2, it follows by the lemma that 3 | p. Thus p = 3x for some integer x. Thus

p2 = (3x)2 = 9x2 = 3q2. So 3x2 = q2. Since x2 is an integer, 3 | q2. By the lemma, 3 | q and so

q = 3y, where y ∈ Z. Hence p = 3x and q = 3y, which contradicts our assumption that p/q has

been reduced to lowest terms.

5.17 Consider beginning as follows: Assume, to the contrary, that a =
√

2 +
√

3 is a rational number.

Then a−
√

2 =
√

3. Squaring both sides, we obtain a2 − 2a
√

2 + 2 = 3 and so
√

2 = (a2 − 1)/(2a).

This will lead to
√

2 being rational, producing a contradiction.

5.18 (a) One possible way to prove this is to use the fact that for integers a and b, the product ab is

even if and only if a is even or b is even.

Proof. Assume, to the contrary, that
√

6 is rational. Then
√

6 = a/b for nonzero integers a

and b. We can further assume that a/b has been reduced to lowest terms. Thus 6 = a2/b2;

so a2 = 6b2 = 2(3b2). Because 3b2 is an integer, a2 is even. By Theorem 3.12, a is even. So
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a = 2c, where c ∈ Z. Thus (2c)2 = 6b2, and so 4c2 = 6b2. Therefore, 3b2 = 2c2. Because c2 is

an integer, 3b2 is even. By Theorem 3.17, either 3 is even or b2 is even. Since 3 is not even,

b2 is even and so b is even by Theorem 3.12. However, since a and b are both even, each has

2 as a divisor, contradicting the fact that a/b has been reduced to lowest terms.

(b) We can use an argument similar to that employed in (a) to prove that
√

2k is irrational for

every odd positive integer k.

5.19 Proof. Let t ∈ Q. Then t = t + 0 ·
√

2 = t + 0 ·
√

3 ∈ S ∩ T . Hence Q ⊆ S ∩ T . We now show

that S ∩ T ⊆ Q. Let x be an arbitrary element of S ∩ T . Then there exist p, q, r, s ∈ Q such that

x = p + q
√

2 and x = r + s
√

3. Thus p + q
√

2 = r + s
√

3. Hence p− r = s
√

3− q
√

2. Squaring both

sides, we obtain

(p − r)2 = 3s2 − 2sq
√

6 + 2q2.

If sq 6= 0, then

√
6 =

(p − r)2 − 3s2 − 2q2

−2sq

is a rational number. However, we saw in Exercise 5.18(a) that
√

6 is irrational. Thus sq = 0,

implying that s = 0 or q = 0. In either case, x ∈ Q. Thus S ∩ T ⊆ Q and so S ∩ T = Q.

5.20 Proof. Assume, to the contrary, that there exist positive real numbers x and y such that
√

x + y =√
x +

√
y. Squaring both sides, we obtain x + y = x + 2

√
x
√

y + y and so 2
√

x
√

y = 2
√

xy = 0.

This implies that xy = 0. Thus x = 0 or y = 0, which is a contradiction.

5.21 Proof. Assume to the contrary, that there exists a positive integer x such that 2x < x2 < 3x.

Dividing these inequalities by (the positive integer) x, we obtain 2 < x < 3. This is impossible

since there is no integer between 2 and 3.

5.22 Assume, to the contrary, that there exist positive integers x and y such that x2 − y2 = m = 2s.

Then (x + y)(x − y) = 2s, where s is an odd integer. We consider two cases, according to whether

x and y are of the same parity or of opposite parity. Note that if x and y are of the same parity,

then both x + y and x − y are even, while if x and y are of opposite parity, then both x + y and

x − y are odd. Produce a contradiction in each case.

5.23 Assume, to the contrary, that there exist odd integers x and y such that x2 + y2 = z2, where z ∈ Z.

Then x = 2a + 1 and y = 2b + 1, where a, b ∈ Z. Thus

x2 + y2 = (2a + 1)2 + (2b + 1)2 = 4a2 + 4a + 1 + 4b2 + 4b + 1

= 4(a2 + a + b2 + b) + 2 = 2[2(a2 + a + b2 + b) + 1] = 2s,

where s = 2(a2 +a+ b2 + b)+1 is an odd integer. If z is even, then z = 2c for some integer c and so

z = 2(2c2), where 2c2 is an even integer; while if z is odd, then z2 is odd. Produce a contradiction

in each case.
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5.24 Assume, to the contrary, that there exists an integer m such that 3 ∤ (m2 − 1) and 3 ∤ m. Thus

m = 3q + 1 or m = 3q + 2 for some integer q. Produce a contradiction in each case.

Exercises for Section 5.3: A Review of Three Proof Techniques

5.25 (a) Proof. Let n be an odd integer. Then n = 2x + 1 for some integer x. Thus

7n − 5 = 7(2x + 1) − 5 = 14x + 2 = 2(7x + 1).

Since 7x + 1 is an integer, 7n − 5 is even.

(b) Proof. Assume that 7n − 5 is odd. Then 7n − 5 = 2x + 1 for some integer x. Hence

n = (8n − 5) − (7n − 5) = (8n − 5) − (2x + 1)

= 8n − 2x − 6 = 2(4n − x − 3).

Since 4n − x − 3 is an integer, n is even.

(c) Proof. Assume, to the contrary, that there exists an odd integer n such that 7n − 5 is odd.

Thus n = 2x + 1 for some integer x. Thus

7n − 5 = 7(2x + 1) − 5 = 14x + 2 = 2(7x + 1).

Since 7x + 1 is an integer, 7n − 5 is even, producing a contradiction.

5.26 (a) Proof. Assume that x− 2
x > 1. Since x > 0, it follows, by multiplying by x, that x2 − 2 > x

and so x2 − x − 2 > 0. Hence (x − 2)(x + 1) > 0. Dividing by the positive number x + 1, we

have x − 2 > 0 and so x > 2.

(b) Proof. Assume that 0 < x ≤ 2. Thus x2 − x − 2 = (x − 2)(x + 1) ≤ 0 and so x2 − 2 ≤ x.

Dividing by the positive number x, we have x − 2
x ≤ 1.

(c) Proof. Assume, to the contrary, that there exists a positive number x such that x − 2
x > 1

and x ≤ 2. Thus x2 − x − 2 = (x − 2)(x + 1) ≤ 0 and so x2 − 2 ≤ x. Dividing by the positive

number x, we have x − 2
x ≤ 1, producing a contradiction.

5.27 This result can be proved using either a proof by contrapositive or a proof by contradiction.

5.28 (a) Proof. Let x, y ∈ R+ such that x ≤ y. Multiplying both sides by x and y, respectively, we

obtain x2 ≤ xy and xy ≤ y2. Therefore, x2 ≤ xy ≤ y2 and so x2 ≤ y2.

(b) Proof. Assume that x2 > y2. Thus x2 − y2 > 0 and so (x + y)(x − y) > 0. Dividing by the

positive number x + y, we obtain x − y > 0 and x > y.

(c) Proof. Assume, to the contrary, that there exist positive numbers x and y such that x ≤ y

and x2 > y2. Since x ≤ y, it follows that x2 ≤ xy and xy ≤ y2. Thus x2 ≤ y2, producing a

contradiction.

Exercises for Section 5.4: Existence Proofs
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5.29 Proof. For the rational number a = 1 and the irrational number b =
√

2, the number 1
√

2 = 1 is

rational.

5.30 Proof. Consider the rational number 2 and the irrational number 1
2
√

2
. If 2

1

2
√

2 is irrational, then

a = 2 and b = 1
2
√

2
have the desired properties. If, on the other hand, 2

1

2
√

2 is rational, then

(

2
1

2
√

2

)

√
2

= 2
√

2

2
√

2 = 2
1
2 =

√
2

is irrational and so a = 2
1

2
√

2 and b =
√

2 have the desired properties.

5.31 Proof. Consider the irrational numbers
√

3 and
√

2. If
√

3
√

2
is rational, then a =

√
3 and b =

√
2

have the desired properties. On the other hand, if
√

3
√

2
is irrational, then

(√
3

√
2
)

√
2

=
√

3

√
2
√

2
=

√
3
2

= 3

is rational. Thus a =
√

3
√

2
and b =

√
2 have the desired properties.

5.32 Proof. Assume, to the contrary, that there exist nonzero real numbers a and b such that
√

a2 + b2 =
3
√

a3 + b3. Raising both sides to the 6th power, we obtain

a6 + 3a4b2 + 3a2b4 + b6 = a6 + 2a3b3 + b6.

Thus

3a2 − 2ab + 3b2 = (a − b)2 + 2a2 + 2b2 = 0.

Since this can only occur when a = b = 0, we have a contradiction.

5.33 Proof. Let f(x) = x3 + x2 − 1. Since f is a polynomial function, it is continuous on the set of

all real numbers and so f is continuous on the interval [2/3, 1]. Because f(2/3) = −7/27 < 0 and

f(1) = 1 > 0, it follows by the Intermediate Value Theorem of Calculus that there is a number c

between x = 2/3 and x = 1 such that f(c) = 0. Hence c is a solution.

We now show that c is the unique solution of f(x) = 0 between 2/3 and 1. Let c1 and c2 be

solutions of f(x) = 0 between 2/3 and 1. Then c3
1 + c2

1 − 1 = 0 and c3
2 + c2

2 − 1 = 0. Hence

c3
1 + c2

1 − 1 = c3
2 + c2

2 − 1, implying that c3
1 + c2

1 = c3
2 + c2

2 and so

c3
1 − c3

2 + c2
1 − c2

2 = (c1 − c2)(c
2
1 + c1c2 + c2

2) + (c1 − c2)(c1 + c2)

= (c1 − c2)(c
2
1 + c1c2 + c2

2 + c1 + c2) = 0.

Dividing by the positive number c2
1 + c1c2 + c2

2 + c1 + c2, we obtain c1 − c2 = 0 and so c1 = c2.
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5.34 Let W = S − T . Since T is a proper subset of S, it follows that ∅ 6= W ⊆ S. Then R(x) is true for

every x ∈ W , that is, ∀x ∈ W, R(x) is true.

Exercises for Section 5.3: Disproving Existence Statements

5.35 We show that if a and b are odd integers, then 4 ∤ (3a2 + 7b2). Let a and b be odd integers. Then

a = 2x + 1 and b = 2y + 1 for integers x and y. Then

3a2 + 7b2 = 3(2x + 1)2 + 7(2y + 1)2 = 3(4x2 + 4x + 1) + 7(4y2 + 4y + 1)

= 12x2 + 12x + 3 + 28y2 + 28y + 7 = 4(3x2 + 3x + 7y2 + 7y + 2) + 2.

Since 2 is the remainder when 3a2 + 7b2 is divided by 4, it follows that 4 ∤ (3a2 + 7b2).

5.36 We show that if x is a real number, then x6 + x4 + 1 6= 2x2. Let x ∈ R. Observe that

x6 + x4 − 2x2 + 1 = x6 + (x2 − 1)2.

Since x6 ≥ 0 and (x2 − 1)2 ≥ 0, it follows that x6 + (x2 − 1)2 can equal 0 if and only if x6 = 0 and

(x2 − 1)2 = 0. However, x6 = 0 if and only if x = 0; while (x2 − 1)2 = 0 if and only if x = 1 or

x = −1. Hence there is no real number x such that x6 + (x2 − 1)2 = 0. Thus

x6 + x4 − 2x2 + 1 = x6 + (x2 − 1)2 6= 0

and so x6 + x4 + 1 6= 2x2.

5.37 We show that if n is an integer, then

n4 + n3 + n2 + n = (n4 + n2) + (n3 + n) = n2(n2 + 1) + n(n2 + 1)

= n(n + 1)(n2 + 1)

is even. Let n ∈ Z. Then n is even or n is odd. We consider these two cases.

Case 1. n is even.. Then n = 2a for some integer a. Then

n4 + n3 + n2 + n = n(n + 1)(n2 + 1) = 2a(n + 1)(n2 + 1) = 2[a(n + 1)(n2 + 1)].

Since a(n + 1)(n2 + 1) is an integer, n4 + n3 + n2 + n is even.

Case 2. n is odd.. Then n = 2b + 1 for some integer b and so n + 1 = 2b + 2 = 2(b + 1). Thus

n4 + n3 + n2 + n = n(n + 1)(n2 + 1) = 2n(b + 1)(n2 + 1) = 2[n(b + 1)(n2 + 1)].

Since n(b + 1)(n2 + 1) is an integer, n4 + n3 + n2 + n is even.

Additional Exercises for Chapter 5
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5.38 (a) Proof. Assume, to the contrary, that there exist an even integer a and an integer n ≥ 1 such

that a2+1 = 2n. Then a = 2x for some integer x. Thus a2+1 = (2x)2+1 = 4x2+1 = 2(2x2)+1.

Also, 2n = 2 · 2n−1. Since 2x2 and 2n−1 are integers, a2 + 1 is odd and 2n is even. This

contradicts our assumption that a2 + 1 = 2n.

(b) Assume, to the contrary, that there exist an integer a ≥ 2 and an integer n ≥ 1 such that

a2 + 1 = 2n. By (a), a is odd. Hence a = 2k + 1 for some integer k ≥ 1. Thus

a2 + 1 = (2k + 1)2 + 1 = 4k2 + 4k + 2 = 2[(2k2 + 2k) + 1].

Now consider these two cases n = 1 and n ≥ 2 and produce a contradiction in each case.

5.39 If the second suitor and the third suitor had silver crowns, then the first suitor would have imme-

diately known that his crown was gold. Since the first suitor didn’t know what kind of crown he

had, the second and the third suitors could not both have had silver crowns. Consequently, there

are three possibilities:

(1) the second suitor had a gold crown and the third suitor had a silver crown;

(2) the second and the third suitors had gold crowns;

(3) the second suitor had a silver crown and the third suitor had a gold crown.

Now, if the second suitor had seen a silver crown on the third suitor, then the second suitor would

have known that his crown was gold; for had it been silver, then, as we saw, the first suitor would

have known his crown was gold. But the second suitor didn’t know what kind of crown he was

wearing either. This meant that (1) did not occur and that the third suitor had a gold crown. Since

neither the first suitor nor the second suitor could determine what kind of crown he had, only (2)

or (3) was possible and, in either case, the third suitor knew that his crown must be gold.

5.40 Proof. Assume, to the contrary, that there are positive real numbers x and y with x < y such

that
√

x ≥ √
y. Thus y =

√
y
√

y ≤ √
x
√

y and
√

x
√

y ≤ √
x
√

x = x. Thus y ≤ x, which is a

contradiction.

5.41 Proof. Assume, to the contrary, that there exist positive integers a and n such that a2 +3 = 3n. If

n = 1, then a2+3 = 3 and so a2 = 0, which is impossible. So n ≥ 2. Then a2 = 3n−3 = 3(3n−1−1).

Since 3n−1 − 1 is an integer, 3 | a2. By Exercise 4.3, 3 | a. Thus a = 3q, where q ∈ Z and so

a2 = (3q)2 = 9q2. Hence

3 = 3n − a2 = 3n − 9q2 = 9(3n−2 − q2).

Since 3n−2 − q2 is an integer, 9 | 3, which is impossible.

5.42 (a) Proof. Let m be an integer such that 1 ≤ m ≤ 2n. Let ℓ be the greatest nonnegative integer

such that 2ℓ | m. Then m = 2ℓk for some positive integer k. Necessarily k is odd, for otherwise

this would contradicts the definition of ℓ.

(b) Proof. Let S be a subset of {1, 2, . . . , 2n} having cardinality n + 1. By (a), every element of

S can be expressed as 2ℓk, where ℓ ≥ 0 and k is an odd integer with 1 ≤ k < 2n. Since there

are exactly n odd integers in the set {1, 2, . . . , 2n}, there must exist two elements a and b in

S such that a = 2ik and b = 2jk for the same odd integer k. Since a 6= b, it follows that i 6= j,

say 0 ≤ i < j. Then
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b = 2jk = 2j−i2ik = 2j−ia.

Since 2j−i is an integer, a | b.

5.43 Result Let a, b, c ∈ Z. If a2 + b2 = c2, then at least one of a, b, and c is even.

5.44 Result Let a, b ∈ Z. If a ≡ 2 (mod 4) and b ≡ 1 (mod 4), then 4 ∤ (a2 + 2b).

5.45 When x, y, and z were introduced in the proof, it was never mentioned that an even number of

these were odd. Case 1 is not described well. It would be better if Case 1 were written as: Exactly

two of x, y, and z are odd. Assume, without loss of generality, that x and y are odd and z is even.

5.46 The proposed proof only establishes the following result: If y is a rational number, then z =
√

2− y

is irrational. This is not the desired result. (Note: It is required to show that z = x − y for every

irrational number x (and rational number y), not simply one irrational number x.)

5.47 Proof. Assume, to the contrary, that the sum of the irrational numbers
√

2,
√

3, and
√

5 is rational.

Then
√

2 +
√

3 +
√

5 = a for some nonzero rational number a. Hence
√

2 +
√

3 = a−
√

5. Squaring

both sides, we obtain

2 + 2
√

6 + 3 = a2 − 2a
√

5 + 5

and so 2
√

6 = a2 − 2a
√

5. Thus

√
5 =

a2 − 2
√

6

2a
.

Again squaring both sides, we have

5 =
a4 − 4a2

√
6 + 24

4a2

and so √
6 =

a4 − 20a2 + 24

4a2
.

Since a is a nonzero rational number, it follows that a4−20a2+24
4a2 =

√
6 is rational. This is a

contradiction.

5.48 Proof. Assume, to the contrary, that some integer ai (1 ≤ i ≤ r) divides n. Then n = ais for some

integer s. Then n = ais = a1a2 · · ·ar + 2. Hence

ai(s − a1a2 · · · ai−1ai+1 · · ·ar) = 2.

Since s − a1a2 · · · ai−1ai+1 · · ·ar is an integer, it follows that ai | 2. Because ai ≥ 3, this is a

contradiction.
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Exercises for Chapter 6

Exercises for Section 6.1: The Principle of Mathematical Induction

6.1 The sets in (b) and (d) are well-ordered.

6.2 Proof. Let S be a nonempty subset of B. We show that S has a least element. Since S is a

subset of B and B is a subset of A, it follows that S is a subset of A. Since A is well-ordered, S

has a least element. Therefore, B is well-ordered.

6.3 Proof. Let S be a nonempty set of negative integers. Let T = {n : −n ∈ S}. Hence T is a

nonempty set of positive integers. By the Well-Ordering Principle, T has a least element m. Hence

m ≤ n for all n ∈ T . Therefore, −m ∈ S and −m ≥ −n for all −n ∈ S. Thus −m is the largest

element of S.

6.4 (1) Proof. We proceed by induction. Since 1 = 12, the statement is true for n = 1. Assume that

1+3+5+· · ·+(2k−1) = k2 for some positive integer k. We show that 1+3+5+· · ·+(2k+1) =

(k + 1)2. Observe that 1 + 3 + 5 + · · · + (2k + 1) = [1 + 3 + 5 + · · · + (2k − 1)] + (2k + 1) =

k2 + (2k + 1) = (k + 1)2. By the Principle of Mathematical Induction,

1 + 3 + 5 + · · · + (2n − 1) = n2

for every positive integer n.

(2) Proof. Let 1+3+5+ · · ·+(2n−1) = S. Thus (2n−1)+(2n−3)+ · · ·+3+1 = S. Adding,

we obtain [1 + (2n − 1)] + [3 + (2n − 3)] + · · · + [(2n − 1) + 1] = 2n + 2n + · · · + 2n = 2S and

so n + n + · · · + n = S. Hence S = n · n = n2 = 1 + 3 + 5 + · · · + (2n − 1).

6.5 Proof. We use induction. Since 1 = 2 · 12 − 1, the formula holds for n = 1. Assume that the

formula holds for some integer k ≥ 1, that is,

1 + 5 + 9 + · · · + (4k − 3) = 2k2 − k.

We show that

1 + 5 + 9 + · · · + [4(k + 1) − 3] = 2(k + 1)2 − (k + 1).

Observe that

1 + 5 + 9 + · · · + [4(k + 1) − 3] = [1 + 5 + 9 + · · · + (4k − 3)] + 4(k + 1) − 3

= (2k2 − k) + (4k + 1) = 2k2 + 3k + 1

= 2(k + 1)2 − (k + 1).

The result then follows by the Principle of Mathematical Induction.

6.6 Let

S = 1 + 4 + 7 + · · · + (3n − 2)

= (3n − 2) + (3n − 5) + · · · + 1.
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Then

2S = [1 + (3n − 2)] + [4 + (3n − 5)] + · · · + [(3n − 2) + 1] = n(3n − 1)

and so

1 + 4 + 7 + · · · + (3n − 2) =
n(3n − 1)

2
.

Proof. We use induction. Since 1 = 1(3·1−1)
2 , the formula holds for n = 1. Assume that

1 + 4 + 7 + · · · + (3k − 2) =
k(3k − 1)

2
,

where k is an arbitrary positive integer. We show that

1 + 4 + 7 + · · · + (3k + 1) =
(k + 1)(3(k + 1) − 1)

2
=

(k + 1)(3k + 2)

2
.

Observe that

1 + 4 + 7 + · · · + (3k + 1) = [1 + 4 + 7 + · · · + (3k − 2)] + (3k + 1)

=
k(3k − 1)

2
+ (3k + 1) =

k(3k − 1) + 2(3k + 1)

2

=
3k2 + 5k + 2

2
=

(k + 1)(3k + 2)

2
.

By the Principle of Mathematical Induction,

1 + 4 + 7 + · · · + (3n − 2) =
n(3n − 1)

2

for every positive integer n.

6.7 One possibility: 1 + 7 + 13 + · · · + (6n − 5) = 3n2 − 2n.

6.8 (a) Let C be an n × n × n cube composed of n3 1 × 1 × 1 cubes. Then the number of different

cubes that C contains is 13 + 23 + 33 + · · · + n3.

(b) Proof. We verify this formula by mathematical induction. Since 13 = 12(1+1)2

4 = 1, the

formula holds for n = 1. Assume that 13 + 23 + 33 + · · ·+ k3 = k2(k+1)2

4 for a positive integer

k. We show that

13 + 23 + 33 + · · · + (k + 1)3 =
(k + 1)2(k + 2)2

4
.

Observe that

13 + 23 + 33 + · · · + (k + 1)3 =
(

13 + 23 + 33 + · · · + k3
)

+ (k + 1)3

=
k2(k + 1)2

4
+ (k + 1)3 =

k2(k + 1)2 + 4(k + 1)3

4

=
(k + 1)2(k2 + 4k + 4)

4
=

(k + 1)2(k + 2)2

4
.
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By the Principle of Mathematical Induction,

13 + 23 + 33 + · · · + n3 =
n2(n + 1)2

4

for every positive integer n.

6.9 Proof. We proceed by induction. For n = 1, we have 1 · 3 = 3 = 1·(1+1)(2·1+7)
6 , which is true.

Assume that 1 · 3 + 2 · 4 + 3 · 5 + · · · + k(k + 2) = k(k+1)(2k+7)
6 , where k ∈ N. We then show that

1 · 3 + 2 · 4 + 3 · 5 + · · · + (k + 1)(k + 3) =
(k + 1)(k + 2)[2(k + 1) + 7]

6

=
(k + 1)(k + 2)(2k + 9)

6
.

Observe that

1 · 3 + 2 · 4 + 3 · 5 + · · · + (k + 1)(k + 3)

= [1 · 3 + 2 · 4 + 3 · 5 + · · · + k(k + 2)] + (k + 1)(k + 3)

=
k(k + 1)(2k + 7)

6
+ (k + 1)(k + 3)

=
k(k + 1)(2k + 7) + 6(k + 1)(k + 3)

6

=
(k + 1)(2k2 + 7k + 6k + 18)

6
=

(k + 1)(2k2 + 13k + 18)

6

=
(k + 1)(k + 2)(2k + 9)

6
.

By the Principle of Mathematical Induction,

1 · 3 + 2 · 4 + 3 · 5 + · · · + n(n + 2) =
n(n + 1)(2n + 7)

6

for every positive integer n.

6.10 Proof. We proceed by induction. For n = 1, we have a = a(1−r)
1−r , which is true. Assume that

a+ ar+ · · ·+ ark−1 = a(1−rk)
1−r , where k ∈ N. We show that a+ ar+ · · ·+ ark = a(1−rk+1)

1−r . Observe

that

a + ar + · · · + ark = (a + ar + · · · + ark−1) + ark

=
a(1 − rk)

1 − r
+ ark =

a(1 − rk)

1 − r
+

ark(1 − r)

1 − r

=
a − ark + ark − ark+1

1 − r
=

a(1 − rk+1)

1 − r
.
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By the Principle of Mathematical Induction, a+ar+ · · ·+arn−1 = a(1−rn)
1−r for every positive integer

n.

6.11 Proof. We proceed by induction. Since 1
3·4 = 1

3+9 , the formula holds for n = 1. Assume that

1

3 · 4 +
1

4 · 5 + · · · + 1

(k + 2)(k + 3)
=

k

3k + 9
,

where k is a positive integer. We show that

1

3 · 4 +
1

4 · 5 + · · · + 1

(k + 3)(k + 4)
=

k + 1

3(k + 1) + 9
=

k + 1

3(k + 4)
.

Observe that

1

3 · 4 +
1

4 · 5 + · · · + 1

(k + 3)(k + 4)

=

[

1

3 · 4 +
1

4 · 5 + · · · + 1

(k + 2)(k + 3)

]

+
1

(k + 3)(k + 4)

=
k

3k + 9
+

1

(k + 3)(k + 4)
=

k(k + 4) + 3

3(k + 3)(k + 4)

=
k2 + 4k + 3

3(k + 3)(k + 4)
=

(k + 1)(k + 3)

3(k + 3)(k + 4)

=
k + 1

3(k + 4)
.

By the Principle of Mathematical Induction, 1
3·4 + 1

4·5 + · · · + 1
(n+2)(n+3) = n

3n+9 for every positive

integer n.

Exercises for Section 6.2: A More General Principle of Mathematical

Induction

6.12 Proof. We need only show that every nonempty subset of S has a least element. So let T be a

nonempty subset of S. If T is a subset of N, then, by the Well-Ordering Principle, T has a least

element. Hence we may assume that T is not a subset of N. Thus T − N is a finite nonempty set

and so contains a least element t. Since t ≤ 0, it follows that t ≤ x for all x ∈ T ; so t is a least

element of T .

6.13 Proof. Since 1024 = 210 > 103 = 1000, the inequality holds when n = 10. Assume that 2k > k3,

where k ≥ 10 is an arbitrary integer. We show that 2k+1 > (k + 1)3. Observe that

2k+1 = 2 · 2k > 2k3 = k3 + k3 ≥ k3 + 10k2 = k3 + 3k2 + 7k2
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> k3 + 3k2 + 7k = k3 + 3k2 + 3k + 4k

> k3 + 3k2 + 3k + 1 = (k + 1)3.

By the Principle of Mathematical Induction, 2n > n3 for every integer n ≥ 10.

6.14 Proof. We use induction. Since 4! = 24 > 16 = 24, the inequality holds for n = 4. Suppose that

k! > 2k for an arbitrary integer k ≥ 4. We show that (k + 1)! > 2k+1. Observe that

(k + 1)! = (k + 1)k! > (k + 1) · 2k ≥ (4 + 1)2k = 5 · 2k > 2 · 2k = 2k+1.

Therefore, (k + 1)! > 2k+1. By the Principle of Mathematical Induction, n! > 2n for every integer

n ≥ 4.

6.15 Proof. We proceed by induction. Since 31 > 12, the inequality holds for n = 1. Assume

that 3k > k2, where k is a positive integer. We show that 3k+1 > (k + 1)2. If k = 1, then

3k+1 = 32 = 9 > 4 = (1 + 1)2. Thus we may assume k ≥ 2. Observe that

3k+1 = 3 · 3k > 3k2 = k2 + 2k2 = k2 + 2k · k ≥ k2 + 2k · 2
= k2 + 4k = k2 + 2k + 2k ≥ k2 + 2k + 4 > k2 + 2k + 1 = (k + 1)2.

By the Principle of Mathematical Induction, 3n > n2 for every positive integer n.

6.16 Proof. We proceed by induction. Since 1 ≤ 2 − 1
1 , the inequality holds for n = 1. Assume that

1+ 1
4 + 1

9 +· · ·+ 1
k2 ≤ 2− 1

k for some positive integer k. We show that 1+ 1
4 + 1

9 +· · ·+ 1
(k+1)2 ≤ 2− 1

k+1 .

Observe that

1 +
1

4
+

1

9
+ · · · + 1

k + 1
=

(

1 +
1

4
+

1

9
+ · · · + 1

k2

)

+
1

(k + 1)2

≤ 2 +
−1

k
+

1

(k + 1)2
= 2 +

−(k + 1)2 + k

k(k + 1)2

= 2 − k2 + k + 1

k(k + 1)2
< 2 − k2 + k

k(k + 1)2
= 2 − 1

k + 1
.

By the Principle of Mathematical Induction, 1+ 1
4 + 1

9 + · · ·+ 1
n2 ≤ 2− 1

n for every positive integer

n.

6.17 Proof. We proceed by induction. Since (1+x)1 = 1+1x, the inequality holds when n = 1. Assume

that (1 + x)k ≥ 1 + kx, where k is an arbitrary positive integer. We show that

(1 + x)k+1 ≥ 1 + (k + 1)x.

Observe that

(1 + x)k+1 = (1 + x)(1 + x)k ≥ (1 + x)(1 + kx)

since 1 + x > 0. Thus

(1 + x)k+1 ≥ (1 + x)(1 + kx) = 1 + (k + 1)x + kx2 ≥ 1 + (k + 1)x
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since kx2 ≥ 0. By the Principle of Mathematical Induction, (1 + x)n ≥ 1 + nx for every positive

integer n.

6.18 Proof. We proceed by induction. Since 4 | (50 − 1), the statement is true for n = 0. Assume that

4 | (5k − 1), where k is a nonnegative integer. We show that 4 | (5k+1 − 1). Since 4 | (5k − 1), it

follows that 5k = 4a + 1 for some integer a. Observe that

5k+1 − 1 = 5 · 5k − 1 = 5(4a + 1) − 1 = 20a + 4 = 4(5a + 1).

Since (5a + 1) ∈ Z, it follows that 4 | (5k+1 − 1). By the Principle of Mathematical Induction,

4 | (5n − 1) for every nonnegative integer n.

6.19 Proof. We proceed by induction. Since 81 | (10−10), the statement is true for n = 0. Assume that

81 | (10k+1 − 9k− 10), where k is a nonnegative integer. We show that 81 | (10k+2 − 9(k +1)− 10).

Since 81 | (10k+1 − 9k − 10), it follows that 10k+1 − 9k − 10 = 81x, where x ∈ Z. Thus 10k+1 =

9k + 10 + 81x. Therefore,

10k+2 − 9(k + 1) − 10 = 10 · 10k+1 − 9k − 19

= 10(9k + 10 + 81x) − 9k − 19

= 81k + 81 + 810x = 81(k + 1 + 10x).

Since (k+1+10x) ∈ Z, it follows that 81 | (10k+2−9(k+1)−10). By the Principle of Mathematical

Induction, 81 | (10n+1 − 9n − 10) for every nonnegative integer n.

6.20 Proof. We employ mathematical induction. For n = 0, we have 7 | 0, which is true. Assume that

7 |
(

32k − 2k
)

for some integer k ≥ 0. We wish to show that

7 |
(

32(k+1) − 2(k+1)
)

.

Since 7 |
(

32k − 2k
)

, it follows that 32k − 2k = 7a for some integer a. Thus 32k = 2k + 7a. Now

observe that

32(k+1) − 2(k+1) = 32 · 32k − 2 · 2k = 9 · 32k − 2 · 22k

= 9(2k + 7a) − 2 · 2k = 7 · 2k + 63a

= 7(2k + 9a).

Since 2k + 9a is an integer, 7 |
(

32(k+1) − 2(k+1)
)

. The result then follows by the Principle of

Mathematical Induction.

6.21 Lemma. Let a ∈ Z. If 3 | 2a, where a ∈ Z, then 3 | a.

Proof of Result. We employ mathematical induction. By the lemma, the result holds for n = 1.

Assume for some positive integer k that if 3 | 2ka, then 3 | a. We show that if 3 | 2k+1a, then 3 | a.

Assume that 3 | 2k+1a. Then 2k+1a = 3x for some integer x. Observe that

2k+1a = 2(2ka) = 3x.
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Since 3 | 2(2ka), it follows by the lemma that 3 | 2ka. By the induction hypothesis, 3 | a.

By the Principle of Mathematical Induction, it follows that for every positive integer n, if 3 | 2na,

then 3 | a.

6.22 Proof. We proceed by induction. By De Morgan’s law, if A and B are any two sets, then

A ∩ B = A ∪ B.

Hence the statement is true for n = 2. Assume, for any k sets A1, A2, . . . , Ak, where k ≥ 2, that

A1 ∩ A2 ∩ · · · ∩ Ak = A1 ∪ A2 ∪ · · · ∪ Ak.

Now consider any k + 1 sets, say B1, B2, . . . , Bk+1. We show that

B1 ∩ B2 ∩ · · · ∩ Bk+1 = B1 ∪ B2 ∪ · · · ∪ Bk+1.

Let B = B1 ∩ B2 ∩ · · · ∩ Bk. Observe that

B1 ∩ B2 ∩ · · · ∩ Bk+1 = (B1 ∩ B2 ∩ · · · ∩ Bk) ∩ Bk+1 = B ∩ Bk+1

= B ∪ Bk+1 =
(

B1 ∪ B2 ∪ · · · ∪ Bk

)

∪ Bk+1

= B1 ∪ B2 ∪ · · · ∪ Bk+1.

The result then follows by the Principle of Mathematical Induction.

6.23 (a) Proof. We proceed by induction. Certainly, the statement is true for m = 1. Assume

that for some positive integer k and any 2k integers a1, a2, . . . , ak and b1, b2, . . . , bk for which

ai ≡ bi (mod n) for 1 ≤ i ≤ k, we have a1 + a2 + · · · + ak ≡ b1 + b2 + · · · + bk (mod n).

Now let c1, c2, . . . , ck+1 and d1, d2, . . . , dk+1 be 2(k + 1) integers such that ci ≡ di (mod n) for

1 ≤ i ≤ k+1. Let c = c1 +c2 + · · ·+ck and d = d1 +d2 + · · ·+dk. By the induction hypothesis,

c ≡ d (mod n). By Result 4.10, c + ck+1 ≡ d + dk+1 (mod n). Thus c1 + c2 + · · · + ck+1 ≡
d1 + d2 + · · · + dk+1 (mod n). The result then follows by the Principle of Mathematical

Induction.

(b) The proof of (b) is similar to the one in (a).

6.24 Proof. We use induction. We know that if a and b are two real numbers such that ab = 0, then

a = 0 or b = 0. Thus the statement is true for n = 2. Assume that:

If a1, a2, . . . , ak are any k ≥ 2 real numbers whose product is 0, then ai = 0 for some

integer i with 1 ≤ i ≤ k.

We wish to show the statement is true in the case of k + 1 numbers, that is:

If b1, b2, . . . , bk+1 are k + 1 real numbers such that b1b2 · · · bk+1 = 0, then bi = 0 for some

integer i (1 ≤ i ≤ k + 1).
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Let b1, b2, . . . , bk+1 be k +1 real numbers such that b1b2 · · · bk+1 = 0. We show that bi = 0 for some

integer i (1 ≤ i ≤ k + 1). Let b = b1b2 · · · bk. Then

b1b2 · · · bk+1 = (b1b2 · · · bk)bk+1 = bbk+1 = 0.

Therefore, either b = 0 or bk+1 = 0. If bk+1 = 0, then we have the desired conclusion. On the

other hand, if b = b1b2 · · · bk = 0, then, since b is the product of k real numbers, it follows by the

inductive hypothesis that bi = 0 for some integer i (1 ≤ i ≤ k). In any case, bi = 0 for some integer

i (1 ≤ i ≤ k + 1). By the Principle of Mathematical Induction, the result is true.

6.25 (a) Proof. We use induction to prove that every set with n real numbers, where n ∈ N, has a

largest element. Certainly, the only element of a set with one element is the largest element

of this set. Thus the statement is true for n = 1. Assume that every set with k real numbers,

where k ∈ N, has a largest element. We show that every set with k + 1 real numbers has a

largest element. Let S = {a1, a2, . . . , ak+1} be a set with k + 1 real numbers. Then the subset

T = {a1, a2, . . . , ak} of S has k real numbers. By the induction hypothesis, T has a largest

element, say a. If a ≥ ak+1, then a is the largest element of S; otherwise, ak+1 is the largest

element of S. In either case, S has a largest element.

By the Principle of Mathematical Induction, every finite nonempty set of real numbers has a

largest element.

(b) Proof. Let S be a finite nonempty set of real numbers. Define S′ = {x : −x ∈ S}. Since S′

is also a finite nonempty set of real numbers, it follows by (a) that S′ has a largest element

y. Thus y ≥ x for all x ∈ S′. Therefore, −y ∈ S and −y ≤ −x for all −x ∈ S. So −y is a

smallest element of S.

Exercises for Section 6.3: Proof by Minimum Counterexample

6.26 Proof. Assume, to the contrary, that there is a positive integer n such that 6 ∤ 7n
(

n2 − 1
)

. Then

there is a smallest positive integer n such that 6 ∤ 7n
(

n2 − 1
)

. Let m be this integer. Since 6 | 0

and 6 | 42, it follows that 6 | 7n
(

n2 − 1
)

when n = 1 and n = 2. So m ≥ 3 and we can write

m = k + 2, where 1 ≤ k < m. Consequently, 6 | 7k
(

k2 − 1
)

and so 7k
(

k2 − 1
)

= 6x for some

integer x. Observe that

7m
(

m2 − 1
)

= 7m3 − 7m = 7(k + 2)3 − 7(k + 2) = 7(k3 + 6k2 + 12k + 8) − 7k − 14

= (7k3 − 7k) + 42k2 + 84k + 42 = 6x + 42k2 + 84k + 42

= 6(x + 7k2 + 14k + 7).

Since x + 7k2 + 14k + 7 ∈ Z, it follows that 6 | 7m
(

m2 − 1
)

, producing a contradiction.

6.27 Proof. Assume, to the contrary, that there is a positive integer n such that 3 ∤ (22n − 1). Then

there is a smallest positive integer n such that 3 ∤ (22n−1). Let m be this integer. Since 3 | (22−1),

it follows that 3 | (22n − 1) when n = 1 and so m ≥ 2. Thus m = k + 1, where 1 ≤ k < m. So

3 | (22k − 1). Hence 22k − 1 = 3x for some integer x and so 22k = 3x + 1. Now

22m − 1 = 22(k+1) − 1 = 4 · 22k − 1 = 4(3x + 1) − 1 = 3(4x + 1).
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Since 4x + 1 ∈ Z, it follows that 3 | (22m − 1), producing a contradiction.

6.28 Assume, to the contrary, that there is some positive integer n such that 12 ∤ (n4 − n2). Then there

is a smallest positive integer n such that 12 ∤ (n4−n2). Let m be this integer. It can be shown that

if 1 ≤ n ≤ 6, then 12 | (n4 − n2). Therefore m ≥ 7. So we can write m = k + 6, where 1 ≤ k < m.

Consider (k + 6)4 − (k + 6)2.

6.29 Proof. Certainly 5 |
(

n5 − n
)

for n = 0. We now show that 5 |
(

n5 − n
)

if n is a positive integer.

Assume, to the contrary, that there is some positive integer n such that 5 ∤
(

n5 − n
)

. Then there

is a smallest positive integer n such that 5 ∤
(

n5 − n
)

. Let m be this integer. Since 5 |
(

15 − 1
)

,

it follows that m ≥ 2. So we can write m = k + 1, where 1 ≤ k < m. Thus 5 |
(

k5 − k
)

and so

k5 − k = 5x for some integer x. Then

m5 − m = (k + 1)5 − (k + 1) = k5 + 5k4 + 10k3 + 10k2 + 5k + 1 − k − 1

= (k5 − k) + 5k4 + 10k3 + 10k2 + 5k = 5x + 5k4 + 10k3 + 10k2 + 5k

= 5(x + k4 + 2k3 + 2k2 + k).

Since x + k4 + 2k3 + 2k2 + k ∈ Z, it follows that 5 |
(

m5 − m
)

, which is a contradiction.

Suppose next that n < 0. Then n = −p, where p ∈ N and so 5 |
(

p5 − p
)

. Thus p5 − p = 5y for

some integer y. Since

n5 − n = (−p)5 − (−p) = −(p5 − p) = −(5y) = 5(−y)

and −y ∈ Z, it follows that 5 |
(

n5 − n
)

.

6.30 Proof. Assume, to the contrary, that there is some nonnegative integer n such that 3 ∤
(

2n + 2n+1
)

.

Then there is a smallest nonnegative integer n such that 3 ∤
(

2n + 2n+1
)

. Let m be this integer.

Since 3 | 3 when n = 0, it follows that m ≥ 1. Let m = k+1, where 0 ≤ k < m. Thus 3 | (2k +2k+1)

and so 2k + 2k+1 = 3x for some integer x. Observe that

2m + 2m+1 = 2k+1 + 2k+2 = 2(2k + 2k+1) = 2(3x) = 3(2x).

Since 2x ∈ Z, it follows that 3 |
(

2m + 2m+1
)

, which is a contradiction.

6.31 Proof. Assume, to the contrary, that there is a positive integer n for which there is no subset Sn of

S such that
∑

i∈Sn
i = n. Let m be the smallest such integer. If we let S1 = {1}, then

∑

i∈S1
i = 1.

So m ≥ 2. Thus m can be expressed as m = k + 1, where 1 ≤ k < m. Consequently, there exists

a subset Sk of S such that
∑

i∈Sk
i = k. If 1 /∈ Sk, then Sk+1 = Sk ∪ {1} has the desired property.

Otherwise, there is a smallest positive integer t such that 2t /∈ Sk. Thus 20, 21, . . . , 2t−1 ∈ Sk. Since

20 + 21 + · · · + 2t−1 = 2t − 1, it follows that if we let

Sk+1 = (Sk ∪ {2t}) − {20, 21, . . . , 2t−1},

then
∑

i∈Sk+1
i = k + 1 = m, producing a contradiction.

Exercises for Section 6.4: The Strong Principle of Mathematical Induction
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6.32 Conjecture A sequence {an} is defined recursively by a1 = 1 and an = 2an−1 for n ≥ 2. Then

an = 2n−1 for all n ≥ 1.

Proof. We proceed by mathematical induction. Since a1 = 21−1 = 20 = 1, it follows that

an = 2n−1 when n = 1. Assume that ak = 2k−1 for some positive integer k. We show that

ak+1 = 2k. Since k ≥ 1, it follows that k + 1 ≥ 2. Therefore,

ak+1 = 2ak = 2 · 2k−1 = 2k.

The result follows by the Principle of Mathematical Induction.

6.33 Conjecture A sequence {an} is defined recursively by a1 = 1, a2 = 2, and an = an−1 + 2an−2 for

n ≥ 3. Then an = 2n−1 for every positive integer n.

Proof. We proceed by the Strong Principle of Mathematical Induction. Since a1 = 1, the con-

jecture is true for n = 1. Assume that ai = 2i−1 for every integer i with 1 ≤ i ≤ k, where k ∈ N.

We show that ak+1 = 2k. Since a1+1 = a2 = 2 = 21, it follows that ak+1 = 2k for k = 1. Hence we

may assume that k ≥ 2. Thus

ak+1 = ak + 2ak−1 = 2k−1 + 2 · 2k−2 = 2k−1 + 2k−1

= 2 · 2k−1 = 2k.

The result then follows by the Strong Principle of Mathematical Induction.

6.34 Conjecture A sequence {an} is defined recursively by a1 = 1, a2 = 4, a3 = 9, and

an = an−1 − an−2 + an−3 + 2(2n− 3)

for n ≥ 4. Then an = n2 for all n ≥ 1.

Proof. We proceed by the Strong Principle of Mathematical Induction. Since a1 = 12 = 1, it

follows that an = n2 when n = 1. Assume that ai = i2, where 1 ≤ i ≤ k for some positive integer

k. We show that ak+1 = (k + 1)2. Since a2 = a1+1 = (1 + 1)2 = 4 and a3 = a2+1 = (2 + 1)2 = 9, it

follows that ak+1 = (k + 1)2 for k = 1, 2. Hence we may assume that k ≥ 3. Since k + 1 ≥ 4,

ak+1 = ak − ak−1 + ak−2 + 2[2(k + 1) − 3]

= k2 − (k − 1)2 + (k − 2)2 + (4k − 2)

= k2 − (k2 − 2k + 1) + (k2 − 4k + 4) + (4k − 2)

= k2 + 2k + 1 = (k + 1)2.

The result then follows by the Strong Principle of Mathematical Induction.

6.35 (a) The sequence {Fn} is defined recursively by F1 = 1, F2 = 1, and Fn = Fn−1 +Fn−2 for n ≥ 3.

(b) Proof. We proceed by the Strong Principle of Mathematical Induction. Since F1 = 1 is odd

and 3 ∤ 1, it follows that 2 | F1 if and only if 3 | 1 and the statement is true for n = 1. Assume

that 2 | Fi if and only if 3 | i for every integer i with 1 ≤ i ≤ k and k ∈ N. We show that

2 | Fk+1 if and only if 3 | (k + 1). Since F2 = F1+1 = 1 and 3 ∤ 2, the statement is true for
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k = 1. Hence we may assume that k ≥ 2. We now consider three cases, according to whether

k + 1 = 3q, k + 1 = 3q + 1, or k + 1 = 3q + 2 for some integer q.

Case 1. k + 1 = 3q. Thus 3 ∤ k and 3 ∤ (k − 1). By the inductive hypothesis, Fk and Fk−1 are

odd. Since Fk+1 = Fk + Fk−1, it follows that Fk+1 is even.

Case 2. k + 1 = 3q + 1. Thus 3 | k and 3 ∤ (k − 1). By the inductive hypothesis, Fk is even

and Fk−1 is odd. Since Fk+1 = Fk + Fk−1, it follows that Fk+1 is odd.

Case 3. k +1 = 3q +2. Thus 3 ∤ k and 3 | (k− 1). By the inductive hypothesis, Fk is odd and

Fk−1 is even. Since Fk+1 = Fk + Fk−1, it follows that Fk+1 is odd.

By the Strong Principle of Mathematical Induction, 2 | Fn if and only if 3 | n for every

positive integer n.

6.36 (a) 17 + 18 + · · · + 25 = 64 + 125.

(b) Conjecture For every nonnegative integer n,

(n2 + 1) + (n2 + 2) + · · · + (n + 1)2 = n3 + (n + 1)3.

Proof. We proceed by induction. Since 1 = 03 +13, the statement is true for n = 0. Assume

that (k2 + 1) + (k2 + 2) + · · ·+ (k + 1)2 = k3 + (k + 1)3, where k is a nonnegative integer. We

show that [(k + 1)2 + 1] + [(k + 1)2 + 2] + · · · + (k + 2)2 = (k + 1)3 + (k + 2)3. Observe that

[(k + 1)2 + 1] + [(k + 1)2 + 2] + · · · + (k + 2)2

= [(k + 1)2 + 1] + [(k + 1)2 + 2] + · · · + [(k + 1)2 + (2k + 2)] + [(k + 1)2 + (2k + 3)]

= (2k + 3)(k + 1)2 + [1 + 2 + · · · + (2k + 3)].

By Result 6.4, 1 + 2 + + · · · + (2k + 3) = (2k + 3)(2k + 4)/2. Thus

[(k + 1)2 + 1] + [(k + 1)2 + 2] + · · · + (k + 2)2

= (2k + 3)(k + 1)2 + (2k + 3)(k + 2) = (2k + 3)(k2 + 3k + 3)

= 2k3 + 9k2 + 15k + 9 = (k3 + 3k2 + 3k + 1) + (k3 + 6k2 + 12k + 8)

= (k + 1)3 + (k + 2)3.

By the Principle of Mathematical Induction,

(n2 + 1) + (n2 + 2) + · · · + (n + 1)2 = n3 + (n + 1)3

for every positive integer n.

6.37 Proof. We use the Strong Principle of Mathematical Induction. Since 12 = 3·4+7·0, the statement

is true when n = 12. Assume for an integer k ≥ 12 that for every integer i with 12 ≤ i ≤ k, there

exist nonnegative integers a and b such that i = 3a + 7b. We show that there exist nonnegative

integers x and y such that k+1 = 3x+7y. Since 13 = 3 ·2+7 ·1 and 14 = 3 ·0+7 ·2, we may assume

that k ≥ 14. Since k − 2 ≥ 12, there exist nonnegative integers c and d such that k − 2 = 3c + 7d.

Hence k + 1 = 3(c + 1) + 7d. By the Strong Principle of Mathematical Induction, for each integer

n ≥ 12, there are nonnegative integers a and b such that n = 3a + 7b.
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Additional Exercises for Chapter 6

6.38 (a) Let sn = 12 + 22 + 32 + · · · + n2 and s′n = 22 + 42 + · · · + (2n)2. By Result 6.5, ,

sn =
n(n + 1)(2n + 1)

6
.

Then

s′n = 22 + 42 + · · · + (2n)2 = 22(12 + 22 + 32 + · · · + n2)

= 4sn = 4
n(n + 1)(2n + 1)

6
=

2n(n + 1)(2n + 1)

3
.

(b) Let s′′n = 12 + 32 + · · · + (2n − 1)2. Observe that s2n = s′n + s′′n. By (a) and Result 9.8,

s′′n = s2n − s′n =
2n(2n + 1)[2(2n) + 1]

6
− 2n(n + 1)(2n + 1)

3

=
n(2n + 1)(2n − 1)

3
.

(c) Let

s∗n = 12 − 22 + 32 − 42 + · · · + (−1)n+1n2.

If n = 2k is even, then s∗n = s′′k − s′k; while if n = 2k + 1 is odd, then s∗n = s′′k+1 − s′k. By (a)

and (b),

s∗n = (−1)n+1 n(n + 1)

2
.

(d) Proof. We verify this formula in (b) by induction. Since

12 = 1 =
1(2 · 1 + 1)(2 · 1 − 1)

3
,

the formula holds for n = 1. Assume that

12 + 32 + · · · + (2k − 1)2 =
k(2k + 1)(2k − 1)

3
,

where k is an arbitrary positive integer. We show that

12 + 32 + · · · + (2k + 1)2 =
(k + 1)(2k + 3)(2k + 1)

3
.

Observe that

12 + 32 + · · · + (2k + 1)2 = [12 + 32 + · · · + (2k − 1)2] + (2k + 1)2

=
k(2k + 1)(2k − 1)

3
+ (2k + 1)2
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=
k(2k + 1)(2k − 1) + 3(2k + 1)2

3

=
(2k + 1)[k(2k − 1) + 3(2k + 1)]

3

=
(2k + 1)(2k2 + 5k + 3)

3

=
(k + 1)(2k + 3)(2k + 1)

3
.

By the Principle of Mathematical Induction,

12 + 32 + · · · + (2n − 1)2 =
n(2n − 1)(2n + 1)

3

for every positive integer n.

The proof for the formula in (c) is similar.

6.39 Proof. We use induction. Since 1 · 2 = 1(1+1)(1+2)
3 , the formula holds for n = 1. Assume that

1 · 2 + 2 · 3 + 3 · 4 + · · · + k(k + 1) =
k(k + 1)(k + 2)

3

for a positive integer k. We show that

1 · 2 + 2 · 3 + 3 · 4 + · · · + (k + 1)(k + 2) =
(k + 1)(k + 2)(k + 3)

3
.

Observe that

1 · 2 + 2 · 3 + 3 · 4 + · · · + (k + 1)(k + 2)

= [1 · 2 + 2 · 3 + 3 · 4 + · · · + k(k + 1)] + (k + 1)(k + 2)

=
k(k + 1)(k + 2)

3
+ (k + 1)(k + 2)

=
k(k + 1)(k + 2) + 3(k + 1)(k + 2)

3

= =
(k + 1)(k + 2)(k + 3)

3
.

By the Principle of Mathematical Induction,

1 · 2 + 2 · 3 + 3 · 4 + · · · + n(n + 1) =
n(n + 1)(n + 2)

3

for every positive integer n.
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6.40 Proof. We use induction. The inequality 4n > n3 is true if n = 1. Assume for a positive integer k

that 4k > k3. We show that 4k+1 > (k + 1)3. Since 42 > 23, the inequality holds for k = 1. So we

may assume that k ≥ 2. Observe that

4k+1 = 4 · 4k > 4k3 = k3 + 3k3 = k3 + (3k)k2

≥ k3 + 6k2 = k3 + 3k2 + (3k)k ≥ k3 + 3k2 + 6k

= k3 + 3k2 + 3k + 3k > k3 + 3k2 + 3k + 1 = (k + 1)3.

By the Principle of Mathematical Induction, 4n > n3 for every positive integer n.

6.41 Proof. We employ mathematical induction. When n = 1, 52·1 − 1 = 24. Since 24 | 24, the

statement is true when n = 1. Assume that 24 |
(

52k − 1
)

, where k is a positive integer. We now

show that 24 |
(

52k+2 − 1
)

. Since 24 |
(

52k − 1
)

, it follows that 52k − 1 = 24x for some integer x.

Hence 52k = 24x + 1. Now observe that

52k+2 − 1 = 52 · 52k − 1 = 25(24x + 1) − 1

= 24 · (25x) + 24 = 24(25x + 1).

Since 25x + 1 is an integer, 24 |
(

52k+2 − 1
)

. The result follows by the Principle of Mathematical

Induction.

6.42 Proof. We proceed by induction. Since 2 ∈ P , the result holds for the integer 2. Assume, for an

arbitrary integer k ≥ 2, that every integer i with 2 ≤ i ≤ k either belongs to P or can be expressed

as a product of elements of P . We show that either k + 1 ∈ P or k + 1 can be expressed as a

product of elements of P . If k + 1 ∈ P , then the desired conclusion follows. Hence we may assume

that k + 1 /∈ P . Since k + 1 ∈ S, it follows that k + 1 = ab, where a, b ∈ S. Since 2 ≤ a ≤ k and

2 ≤ b ≤ k, it follows by the induction hypothesis that each of a and b either belongs to P or can be

expressed as a product of elements of P . In either case, k + 1 = ab is a product of elements of P .

By the Strong Principle of Mathematical Induction, every element of S either belongs to P or can

be expressed as a product of elements of P .

6.43 Proof. We use the Strong Principle of Mathematical Induction. Since 28 = 5 · 4 + 8 · 1, the result

follows for n = 28. Assume for an integer k ≥ 28 that for every integer i with 28 ≤ i ≤ k, there exist

nonnegative integers x and y such that i = 5x + 8y. Since 29 = 5 · 1 + 8 · 3 and 30 = 5 · 6 + 8 · 0, we

may assume that k ≥ 32. Hence for each i with 28 ≤ i ≤ k, where k ≥ 32, there exist nonnegative

integers x and y such that i = 5x + 8y. In particular, there exist nonnegative integers a and b such

that k − 4 = 5a + 8b. Hence k + 1 = 5(a + 1) + 8b. The result follows by the Strong Principle of

Mathematical Induction.

6.44 For every integer n ≥ 16, there are positive integers x and y such that n = 3x + 5y. [Note: There

do not exist positive integers x and y such that 15 = 3x + 5y.]

Proof. We use induction. Since 16 = 3 · 2 + 5 · 2, the result follows for n = 16. Assume for an

integer k ≥ 16 that there exist positive integers x and y such that k = 3x+5y. We show that there

exist positive integers a and b such that k + 1 = 3a + 5b. If y ≥ 2, then k + 1 = 3(x + 2) + 5(y − 1)
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has the desired properties. On the other hand, if y = 1, then x ≥ 4 and k + 1 = 3(x− 3) + 5(y + 2)

has the desired properties. The result follows by the Principle of Mathematical Induction.

6.45 For every integer n ≥ 12, there are integers x, y ≥ 2 such that n = 2x + 3y.

Proof. We use induction. Since 12 = 2 · 3 + 3 · 2, the result follows for n = 12. Assume for an

integer k ≥ 12 that there exist integers x, y ≥ 2 such that k = 2x + 3y. We show that there exist

integers a, b ≥ 2 such that k +1 = 2a+3b. If y ≥ 3, then k +1 = 2(x+2)+3(y−1) has the desired

properties. If y = 2, then x ≥ 3 and k + 1 = 2(x − 1) + 3 · 3 has the desired properties. The result

then follows by the Principle of Mathematical Induction.

6.46 (a) Define a1 = 2 and an = an−1 + (n + 1) for n ≥ 2.

(b) For every positive integer n, an = (n2 + 3n)/2.

Proof. We proceed by induction. Since a1 = 2 = (12 + 3 · 1)/2, the formula holds for

n = 1. Assume that ak = (k2 + 3k)/2 for some positive integer k. We show that ak+1 =

[(k + 1)2 + 3(k + 1)]/2. Observe that

ak+1 = ak + (k + 2) =
k2 + 3k

2
+ (k + 2) =

k2 + 5k + 4

2
=

(k + 1)2 + 3(k + 1)

2
.

By the Principle of Mathematical Induction, an = (n2 + 3n)/2 for every positive integer n.

6.47 Proof. We proceed by the Principle of Finite Induction. Let S1 = {1}. Since
∑

i∈S1
i = 1, the

result follows for t = 1. Assume for an integer k with 1 ≤ k < 300, that there exists a subset Sk ⊆ S

such that
∑

i∈Sk
i = k. We show that there exists a subset Sk+1 ⊆ S such that

∑

i∈Sk+1
i = k + 1.

Since 1 + 2 + · · · + 24 = 300, there exists a smallest element m ∈ {1, 2, . . . , 24} such that m /∈ Sk.

If m = 1, then let Sk+1 = Sk ∪ {1}. If m ≥ 2, then let Sk+1 = Sk ∪ {m} − {m− 1}. In either case,
∑

i∈Sk+1
i = k + 1. The result follows by the Principle of Finite Induction.

6.48 The following result is being proved using the Strong Form of Induction.

Result A sequence {an} is defined recursively by a1 = 8, a2 = 11, and

an = 5an−1 − 4an−2 − 9

for n ≥ 3. Then an = 3n + 5 for all n ≥ 1.

6.49 Result For every positive integer n, 8 | (32n − 1). Proof by minimum counterexample.

6.50 The error is in the way the “proof” is written. The first equation is what we actually need to prove.

By writing this equation, it appears that we already knew that the equation is true. Since the last

line is (k + 1)2 = (k + 1)2, it appears that the writer is trying to show that (k + 1)2 = (k + 1)2,

which, of course, is obvious. An acceptable proof can be constructed by proceeding down the left

side of the equations.

6.51 Proof. We proceed by induction. Since the sum of the interior angles of each triangle is 180o =

(3 − 2) · 180o, the result holds for n = 3. Assume that the sum of the interior angles of every

k-gon is (k − 2) · 180o for an arbitrary integer k ≥ 3. We show that the sum of the interior angles
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of every (k + 1)-gon is (k − 1) · 180o. Let Pk+1 be a (k + 1)-gon whose k + 1 vertices are v1,

v2, . . ., vk+1 and whose edges are v1v2, v2v3, . . ., vkvk+1, vk+1v1. Now let Pk be the k-gon such

that whose vertices are v1, v2, . . . , vk and whose edges are v1v2, v2v3, . . ., vk−1vk, vkv1 and let P3

be the 3-gon whose vertices are vk, vk+1, v1 and whose edges are vkvk+1, vk+1v1, v1vk. Observe

that the sum of the interior angles of Pk+1 is the sum of the interior angles of Pk and the interior

angles of P3. By the induction hypothesis, the sum of the interior angles of Pk is (k − 2) · 180o and

the sum of the interior angles of P3 is 180o. Therefore, the sum of the interior angles of Pk+1 is

(k − 2) · 180o + 180o = (k − 1) · 180o.
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Exercises for Chapter 7

Exercises for Section 7.2: Revisiting Quantified Statements

7.1 (a) Let S be the set of all odd integers and let P (n) : 3n + 1 is even.

∀n ∈ S, P (n).

(b) Proof. Let n ∈ S. Then n = 2k+1 for some integer k. Thus 3n+1 = 3(2k+1)+1 = 6k+4 =

2(3k + 2). Since 3k + 2 is an integer, 3n + 1 is even.

7.2 (a) Let S be the set of all positive even integers and let P (n) : 3n + 2n−2 is odd.

∃n ∈ S, P (n).

(b) Proof. For n = 2 ∈ S, 3n + 2n−2 = 7 is odd.

7.3 (a) Let P (n) : nn−1 is even.

∀n ∈ N, P (n).

(b) Note that P (1) is false and so the statement in (a) is false.

7.4 (a) Let P (n) : 3n2 − 5n + 1 is an even integer.

∃n ∈ Z, P (n).

(b) We show the following: For all n ∈ Z, 3n2 − 5n + 1 is odd.

This can be proved by a direct proof with two cases, namely n even and n odd.

7.5 (a) Let P (m, n) : n < m < 2n.

∀n ∈ N− {1}, ∃m ∈ Z, P (m, n).

(b) Proof. Let n ≥ 2 be an integer and let m = n + 1. Since n ≥ 2, it follows that n < n + 1 =

m < n + 2 ≤ n + n = 2n.

7.6 (a) Let P (m, n): m(n − 3) < 1.

∃n ∈ Z, ∀m ∈ Z, P (m, n).

(b) Proof. Let n = 3. Then m(n − 3) = m · 0 = 0 < 1.

7.7 (a) Let P (m, n): (n − 2)(m − 2) > 0.

∀n ∈ Z, ∃m ∈ Z, P (m, n).

(b) ∃n ∈ Z, ∀m ∈ Z, ∼ P (m, n).

(c) Let n = 2. Then (n − 2)(m − 2) = 0 · (m − 2) = 0 for all m ∈ N.

7.8 (a) Let P (m, n): −nm < 0.

∃n ∈ N, ∀m ∈ Z, P (m, n).

(b) ∀n ∈ N, ∃m ∈ Z, ∼ P (m, n).

(c) Let n be any positive integer. For m = 0, we have −nm = −n · 0 = 0.
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7.9 (a) Let P (a, b, x): |bx| < a and Q(a, b) : |b| < a.

∀a ∈ N, ∃b ∈ Z, (Q(a, b) ∧ (∀x ∈ R, P (a, b, x))).

(b) Proof. Let a ∈ N and let b = 0. Then |bx| = 0 < a for every real number x.

7.10 (a) Let P (a, b, x): a ≤ x ≤ b and b − a = 1.

∀x ∈ R, ∃a, b ∈ Z, P (a, b, x).

(b) Proof. Let x ∈ R. If x is an integer, then let a = x and b = x + 1. Thus a ≤ x ≤ b and

b − a = 1. Thus we may assume that x is not an integer. Then there exists an integer a such

that a < x < a + 1. Let b = a + 1.

7.11 (a) Let P (x, y, n): x2 + y2 ≥ n.

∃n ∈ Z, ∀x, y ∈ R, P (x, y, n).

(b) Proof. Let n = 0. Then for every two real numbers x and y, x2 + y2 ≥ 0 = n.

7.12 (a) Let S be the set of even integers and T the set of odd integers, and let P (a, b, x): a < c < b or

b < c < a.

∀a ∈ S, ∀b ∈ T , ∃x ∈ Q, P (a, b, x).

(b) Proof. For a ∈ S and b ∈ T , let c = (a + b)/2. If a < b, then a < c < b; while if b < a, then

b < c < a.

7.13 (a) Let P (a, b, n): a < 1
n < b.

∃a, b ∈ Z, ∀n ∈ N, P (a, b, n).

(b) Proof. Let a = 0 and b = 2. Then for every n ∈ N, a = 0 < 1
n < 2 = b.

7.14 (a) Let S be the set of odd integers and P (a, b, c): a + b + c = 1.

∃a, b, c ∈ S, P (a, b, c).

(b) Proof. Let a = 3 and b = c = −1. Then a + b + c = 1.

7.15 (a) Let S be the set of odd integers and P (a, b, c): abc is odd.

∀a, b, c ∈ S, P (a, b, c).

(b) Let a, b, and c be odd integers. Then a = 2x+1, b = 2y +1, and c = 2z +1, where x, y, z ∈ Z.

Then show that abc = (2x + 1)(2y + 1)(2z + 1) is odd.

7.16 (a) ∃L ∈ R, ∀e ∈ R+, ∃d ∈ R+, ∀x ∈ R, P (x, d) ⇒ Q(x, L, e).

(b) Proof. Let L = 0 and let e be any positive real number. Let d = e/3. Let x ∈ R such that

|x| < e/3. Then |3x − L| = |3x| = 3|x| < 3(e/3) = e.

Exercises for Section 7.3: Testing Statements

7.17 The statement is true. Proof. Since each of the following statements

P (1) ⇒ Q(1): If 7 is prime, then 5 is prime.
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P (2) ⇒ Q(2): If 2 is prime, then 7 is prime.

P (3) ⇒ Q(3): If 28 is prime, then 9 is prime.

P (4) ⇒ Q(4): If 8 is prime, then 11 is prime.

is true, ∀n ∈ S, P (n) ⇒ Q(n) is true.

7.18 (a) The statement is true.

Proof. Assume that k2 + 3k + 1 is even. Then k2 + 3k + 1 = 2x for some integer x. Observe

that

(k + 1)2 + 3(k + 1) + 1 = k2 + 2k + 1 + 3k + 3 + 1

= (k2 + 3k + 1) + 2k + 4

= 2x + 2k + 4 = 2(x + k + 2).

Since x + k + 2 is an integer, (k + 1)2 + 3(k + 1) + 1 is even.

(b) The statement is false since P (1) is false.

7.19 This statement is false. Let x = 1. Then 4x + 7 = 11 is odd and x = 1 is odd. Thus x = 1 is a

counterexample.

7.20 This statement is false. Let n = 0 and let k be any nonnegative integer. Since k ≥ 0 = n, the

integer n = 0 is a counterexample.

7.21 This statement is true. Proof. Let x be an even integer. Then x = 2n for some integer n. Observe

that x = (2n + 1) + (−1). Since n is an integer, 2n + 1 is odd. Since −1 is odd as well, both 2n + 1

and −1 are odd.

7.22 This statement is false. Let x = 99 and y = z = 1. Then x + y + z = 101, while no two of x, y, and

z are of opposite parity. Thus, x = 99, y = 1, z = 1 is a counterexample.

7.23 This statement is false. Let A = {1, 2, 3} and B = {2, 3}. Then A∪B = {1, 2, 3} and (A∪B)−B =

{1} 6= A. Consequently, A = {1, 2, 3} and B = {2, 3} constitute a counterexample.

7.24 The statement is true. Proof. Assume that A 6= ∅. Since A 6= ∅, there is an element a ∈ A. Let

B = {a}. Then A ∩ B 6= ∅.

7.25 The statement is true. Proof. Consider the integer 35. Then 3 + 5 = 8 is even and 3 · 5 = 15 is

odd.

7.26 The statement is false. Let A = {1}, which is nonempty, and let B be an arbitrary set. Since

1 ∈ A ∪ B, it follows that A ∪ B 6= ∅.

7.27 The statement is false. Let x = 3 and y = −1. Then |x + y| = |3 + (−1)| = |2| = 2 and

|x| + |y| = |3| + | − 1| = 3 + 1 = 4. Thus |x + y| 6= |x| + |y|. So x = 3 and y = −1 is a

counterexample.

7.28 The statement is true.

Proof. Let A be a proper subset of S and let B = S−A. Then B 6= ∅, A∪B = S, and A∩B = ∅.

66



7.29 The statement is false. We show that there is no real number x such that x2 < x < x3.

Suppose that there is a real number x such that x2 < x < x3. Since x2 ≥ 0, it follows that x > 0.

Dividing x2 < x < x3 by x, we have x < 1 < x2. Thus 0 < x < 1 and x2 > 1, which is impossible.

7.30 The statement is true. Observe that 0 · c = 0 for every integer c.

7.31 The statement is true. For a = 0, any two real numbers b and c 6= 0 satisfy the equality.

7.32 The statement is true. Let f(x) = x3 + x2 − 1. Observe that f(0) = −1 and f(1) = 1. Now apply

the Intermediate Value Theorem of Calculus.

7.33 The statement is false. Note that x4 + x2 + 1 ≥ 1 > 0 for every x ∈ R.

7.34 The statement is false. Let x = 1 and y = −2. Then x2 < y2 but x > y.

7.35 The statement is false. Neither x3+x
x4−1 nor x

x2−1 is defined when x = 1 or x = −1.

7.36 The statement is true. Proof. Assume that A− B 6= ∅. Then there exists x ∈ A− B. Thus x ∈ A

and x /∈ B. Since x /∈ B, it follows that x /∈ B − A. Therefore, A − B 6= B − A.

7.37 The statement is false. Let x = 6 and y = 4. Then z = 2.

7.38 The statement is true. Proof. Let b ∈ Q+. Then a = b/
√

2 is irrational and 0 < a < b.

7.39 The statement is true. Proof. Assume that A − B = ∅ for every set B. Let B = ∅. Then

A − B = A − ∅ = A = ∅.

7.40 The statement is true. Proof. Let a be an odd integer. Then a = a + 1 + (−1) is a sum of three

odd integers.

7.41 The statement is true. Proof. Let A be a nonempty set. Let B = A. Then A − B = B − A = ∅.
So |A − B| = |B − A| = 0.

7.42 The statement is false. For A = ∅, B = {1}, and C = {1, 2}, we have A ∩ B = A ∩ C = ∅, but

B 6= C. Thus A, B, and C form a counterexample.

7.43 The statement is false. Observe that 4 = 1 + 3.

7.44 The statement is true. Consider r = (a + b)/2.

7.45 The statement is true. Consider c = 1 and d = 2b + 1.

7.46 The statement is true. Consider B = ∅. Since A ∪ B 6= ∅, this requires that A 6= ∅.

7.47 The statement is true. For each even integer n, n = n + 0.

7.48 The statement is false. Note that x2 + x + 1 =
(

x + 1
2

)2
+ 3

4 ≥ 3
4 > 0 for every x ∈ R.

7.49 The statement is false. Consider A = {1}, B = {2}, and C = D = {1, 2}.

7.50 The statement is true. For a nonzero rational number r, observe that r = (r
√

2) · 1√
2
.
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7.51 The statement is true. Let a =
√

2 and b = 1.

7.52 The statement is true. Let a be an odd integer. Then a + 0 = a, where b = 0 is even and c = a is

odd.

7.53 The statement is true. Consider the set B = S − A.

7.54 The statement is false. Let A 6= ∅ and B = ∅. Then A ∪ B 6= ∅.

7.55 The statement is false. Let A = {1} and B = {2}. Then {1, 2} ∈ P(A∪B) but {1, 2} /∈ P(A)∪P(B).

7.56 The statement is false. The sets S = {1, 2, 3} and T = {{1, 2}, {1, 3}, {2, 3}} form a counterexample.

7.57 The statement is false. Consider A = {1}, B = {1, 2}, and C = {1}.

7.58 The statement is false. The numbers a = b = 0 and c = 1 form a counterexample.

7.59 The statement is true. Observe that at least two of a, b, and c are of the same parity, say a and b

are of the same parity. Then a + b is even.

7.60 The statement is true. Let b = c − a.

7.61 The statement is false. Consider a = 2 and c = 1.

7.62 The statement is true. Let a = 2, b = 16, and c = 4.

7.63 The statement is false. Consider n = 1.

7.64 The statement is true. Proof. Let n ∈ N. If n 6= 0, then n = n + 0 has the desired properties. If

n = 0, then n = 0 = 1 + (−1).

7.65 The statement is true. Let x = 51 and y = 50. Then x2 = (51)2 = (50 + 1)2 = (50)2 + 2 · 50 + 1.

7.66 The statement is false. For n = 11, n2 − n + 11 = 112.

7.67 The statement is true. Proof. Let p be an odd prime. Then p = 2k + 1 for some k ∈ N. For

a = k + 1 and b = k, a2 − b2 = (k + 1)2 − k2 = (k2 + 2k + 1) − k2 = 2k + 1 = p.

Additional Exercises for Chapter 7

7.68 (a) Consider x = 1.

(b) For every natural number x with x 6= 1, there exists a natural number y such that x < y < x2.

Proof. Let x ∈ N such that x 6= 1. Then x ≥ 2. Let y = x + 1. Then x < x + 1 < x + x =

2x ≤ x2.

7.69 (a) The positive integer n = 1 is not the sum of any two distinct positive odd integers. Further-

more, a positive odd integer is not the sum of any two distinct positive odd integers.

(b) Every positive even integer n ≥ 4 is the sum of two distinct positive odd integers.

Proof. Let n ≥ 4 be an even integer. Then n = (n − 1) + 1.
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7.70 (a) The statement is true. Consider a = 1 and b = 2.

(b) Let a and b be two positive integers. If a ≥ 2 and b ≥ 2, then a + b ≤ ab.

Proof. We may assume without loss generality that 2 ≤ a ≤ b. Then a+b ≤ b+b ≤ 2b ≤ ab.

7.71 (a) The statement is false. Let a = b = 1. Then
√

a + b =
√

2 but
√

a +
√

b = 2.

(b) The statement is false. Let a and b be positive real numbers such that
√

a + b =
√

a +
√

b.

Squaring both sides, we have a + b = a + 2
√

a
√

b + b. Thus 2
√

a
√

b = 0. Therefore,
√

a
√

b =√
ab = 0 and so a = 0 or b = 0.

(c) Result. Let a, b ∈ R+ ∪ {0}. Then
√

a + b =
√

a +
√

b if and only if a = 0 or b = 0.

Proof. Assume, first, that a = 0 or b = 0, say a = 0. Then
√

a + b =
√

b = 0 +
√

b =
√

a +
√

b. For the converse, assume that a and b are nonnegative real numbers such that√
a + b =

√
a +

√
b. Squaring both sides, we obtain a + b = a + 2

√
ab + b and so

√
ab = 0.

Thus ab = 0, implying that a = 0 or b = 0.

7.72 (a) Proof. Assume that 3 | a. Then a = 3x, where x ∈ Z. Thus 2a = 2(3x) = 3(2x). Since 2x

is an integer, 3 | (2a).

Let a ∈ Z. Then 3 | 2a if and only if 3 | a.

(b) Let a ∈ Z. If 2 | 3a, then 2 | a. This statement is true.

Proof. Assume that 2 ∤ a. Then a = 2k + 1, where k ∈ Z. Then 3a = 3(2k + 1) = 6k + 3 =

2(3k + 1) + 1. Since 3k + 1 is an integer, 2 ∤ 3a.

(c) Result. Let S = {1, 2, 4} and a ∈ Z. If 3 | ka, where k ∈ S, then 3 | a.

Proof. If k = 1, then the statement is true trivially. By Exercise 4.6, the statement is true

for k = 2. Let k = 4. We show that if 3 | 4a, then 3 | a. Assume that 3 | 4a. By the result for

k = 2, it follows that 3 | 2a. Again, by the result for k = 2, we have 3 | a.

(d) Note that if 3 | ka and 3 ∤ k, then 3 | a.

7.73 (a) Proof. Assume, to the contrary, that
√

2+
√

5 is rational. Then
√

2+
√

5 = a/b, where a and

b are nonzero integers. Thus
√

5 = a
b −

√
2. Squaring both sides, we have 5 = a2

b2 − 2a
b

√
2 + 2.

Hence
√

2 = a2−3b2

2ab . Since a2 − 3b2 and 2ab are integers and 2ab 6= 0, it follows that
√

2 is

rational, producing a contradiction.

(b) The number
√

2 +
√

7 is irrational. If we assume
√

2 +
√

7 is rational, then
√

7 = a
b −

√
2,

where a and b are nonzero integers.

(c) For each positive integer a, the number
√

2 +
√

a is irrational.

7.74 (a) Result If n ∈ Z, then 3 | (n3 − n).

Let n ∈ Z. Thus n = 3q, n = 3q +1, or n = 3q +2, where q ∈ Z and consider these three cases.

(b) If n ∈ Z, then 2 | (n2 − n).

Let n ∈ Z. Then n is even or n is odd. Consider these two cases.

(c) If n ∈ Z, then 2 | (n4 − n2).

Let n ∈ Z. Then n is even or n is odd. Consider these two cases.
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7.75 (a) The statement is true.

(b) The statement is true. Let x = y = 1.

(c) The statement is true.

(d) The statement is false.

(e) The statement is true. Let x = y = 3.

(f) For all x, y ∈ A, 6 | (x2 + 3y2).

This statement is false. Consider x = y = 1.

7.76 The proof is correct but it might have been useful to explain why −n 6= n + 2 and −n 6= n − 2.

7.77 (a) The statement is true. Let a = b = 2, c = 1, and d = 3.

(b) The statement is true. Let a = 2, b = 3, c = 6, and d = 7.

(c) There exist five positive integers a, b, c, d, and e such that a2 + b2 + c2 + d2 = e2.

Proof. Let a = b = c = d = 1 and e = 2.

(d) For every integer n ≥ 4, there exist n + 1 distinct positive integers a1, a2, . . . , an, a such that

a2
1 + a2

2 + · · · + a2
n = a2.

7.78 (a) m = 0: 3 = 12 + 12 + 12

m = 1: 11 = 32 + 12 + 12

m = 2: 19 = 32 + 32 + 12

m = 3: 27 = 32 + 32 + 32

m = 4: 35 = 52 + 32 + 12

m = 5: 43 = 52 + 32 + 32

m = 6: 51 = 52 + 52 + 12

m = 7: 59 = 52 + 52 + 32

m = 8: 67 = 72 + 32 + 32

m = 9: 75 = 52 + 52 + 52

m = 10: 83 = 92 + 12 + 12

(b) The statement is true.

Proof. Assume, to the contrary, that there exists a nonnegative integer m and positive integers

a, b, and c, not all odd, such that

a2 + b2 + c2 = 8m + 3.

Since 8m + 3 = 2(4m + 1) + 1 is an odd integer and not all of the integers a, b, and c are odd,

it follows that exactly one of a, b, and c is odd, say c. Thus a = 2x, b = 2y, and c = 2z + 1,

where x, y, z ∈ Z, and so

8m + 3 = a2 + b2 + c2 = (2x)2 + (2y)2 + (2z + 1)2

= 4x2 + 4y2 + 4z2 + 4z + 1.
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Therefore,

2 = 4x2 + 4y2 + 4z2 + 4z − 8m = 4(x2 + y2 + z2 + z − 2m).

Since x2 + y2 + z2 + z − 2m is an integer, 4 | 2, producing a contradiction.
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Exercises for Chapter 8

Exercises for Section 8.1: Relations

8.1 domR = {a, b} and ranR = {s, t}.

8.2 Let A = {a, b, c} and B = {{a}, {a, b}}. Then R = {(a, {a}), (a, {a, b}), (b, {a, b})}.

8.3 Since A × A = {(0, 0), (0, 1), (1, 0), (1, 1)} and |A × A| = 4, the number of subsets of A × A and

hence the number of relations on A is 24 = 16. Four of these 16 relations are ∅, A×A, {(0, 0)}, and

{(0, 0), (0, 1), (1, 0)}.

8.4 R = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, c)}.

Exercises for Section 8.2: Properties of Relations

8.5 The relation R is reflexive and transitive. Since (a, d) ∈ R and (d, a) /∈ R, it follows that R is not

symmetric.

8.6 The relation R is not reflexive since (b, b) /∈ R, for example, and R is not symmetric since, for

example, (a, b) ∈ R while (b, a) /∈ R. The only ordered pairs (x, y) and (y, z) that belong to R are

where (x, y) = (a, a). The possible choices for (y, z) in R are (a, a), (a, b), and (a, c). In every case,

(x, z) = (y, z) ∈ R and so R is transitive.

8.7 The relation R is transitive but neither reflexive nor symmetric.

8.8 Consider R = {(a, b), (b, c)}. The relation R is not reflexive since (a, a) /∈ R, is not symmetric since

(a, b) ∈ R but (b, a) /∈ R, and is not transitive since (a, b), (b, c) ∈ R and (a, c) /∈ R.

8.9 The relation R is reflexive and symmetric. Observe that 3 R 1 and 1 R 0 but 3 6R 0. Thus R is not

transitive.

8.10 Let R be a relation that is reflexive, symmetric, and transitive and contains the ordered pairs

(a, b), (b, c), and (c, d). Since R is reflexive, R contains (a, a), (b, b), (c, c), and (d, d). Since

(a, b), (b, c) ∈ R and R is transitive, (a, c) ∈ R. Since (a, b) ∈ R and R is symmetric, (b, a) ∈ R.

Now continue to obtain R = A × A. So the answer is 1.

8.11 The relation R is symmetric and transitive but not reflexive.

8.12 (a) R1 = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (2, 3), (3, 2)}.
(b) R2 = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 3), (1, 3)}.
(c) R3 = {(1, 1)}
(d) R4 = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 3)}.
(e) R5 = {(1, 2), (2, 1)}
(f) R6 = {(1, 2), (2, 3), (1, 3)}
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8.13 The relation R is reflexive and symmetric. Observe that −1 R 0 and 0 R 2 but −1 6R 2. Thus R is

not transitive.

Exercises for Section 8.3: Equivalence Relations

8.14 R ={(a, a), (b, b), . . ., (g, g), (a, c), (a, d), (a, g), (b, f), (c, a), (c, d), (c, g), (d, a), (d, c), (d, g), (f, b),

(g, a), (g, c), (g, d)}.

The three distinct equivalence classes are {a, c, d, g}, {b, f}, {e}.

8.15 Proof. Since a3 = a3 for each a ∈ Z, it follows that a R a and R is reflexive. Let a, b ∈ Z such

that a R b. Then a3 = b3 and so b3 = a3. Thus b R a and R is symmetric. Let a, b, c ∈ Z such that

a R b and b R c. Thus a3 = b3 and b3 = c3. Hence a3 = c3 and so a R c and R is transitive.

Let a, b ∈ Z. Note that a3 = b3 if and only if a = b. Thus [a] = {a} for every a ∈ Z.

8.16 (a) Proof. Let a ∈ Z. Then a + a = 2a is an even integer and so a R a. Thus R is reflexive.

Assume next that a R b, where a, b ∈ Z. Then a + b is even. Since b + a = a + b, it follows

that b + a is even. Therefore, b R a and R is symmetric.

Finally, assume that a R b and b R c, where a, b, c ∈ Z. Hence a+ b and b+ c are both even,

and so a + b = 2x and b + c = 2y for some integers x and y. Adding these two equations, we

obtain

(a + b) + (b + c) = 2x + 2y,

which implies that

a + c = 2x + 2y − 2b = 2(x + y − b).

Since x + y − b is an integer, a + c is even. Therefore, a R c and R is transitive.

The distinct equivalence classes are

[0] = {x ∈ Z : x R 0} = {x ∈ Z : x + 0 is even}
= {x ∈ Z : x is even} = {. . . ,−4,−2, 0, 2, 4, . . .}

[1] = {x ∈ Z : x R 1} = {x ∈ Z : x + 1 is even}
= {x ∈ Z : x is odd} = {. . . ,−5,−3,−1, 1, 3, 5, . . .}

(b) The relation R is symmetric but neither reflexive nor transitive.

8.17 There are three distinct equivalence classes, namely [1] = {1, 5}, [2] = {2, 3, 6}, and [4] = {4}.

8.18 R = {(1, 1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5), (2, 2), (2, 6), (6, 2), (6, 6), (3,

3)}.

8.19 Proof. Assume that a R b, c R d, and a R d. Since a R b and R is symmetric, b R a. Similarly,

d R c. Because b R a, a R d, and R is transitive, b R d. Finally, since b R d and d R c, it follows

that b R c, as desired.
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8.20 Proof. First assume that R is an equivalence relation on A. Thus R is reflexive. It remains only

to show that R is circular. Assume that x R y and y R z. Since R is transitive, x R z. Since R is

symmetric, z R x. Thus R is circular.

For the converse, assume that R is a reflexive, circular relation on A. Since R is reflexive, it

remains only to show that R is symmetric and transitive. Let x, y ∈ A such that x R y. Since R is

reflexive, y R y. Because (1) x R y and y R y and (2) R is circular, it follows that y R x and so R

is symmetric. Let x, y, z ∈ A such that x R y and y R z. Since R is circular, z R x. Now because

R is symmetric, we have x R z. Thus R is transitive. Therefore, R is an equivalence relation on

A.

Exercises for Section 8.4: Properties of Equivalence Classes

8.21 Let R = {(v, v), (w, w), (x, x), (y, y), (z, z), (v, w), (w, v), (x, y), (y, x)}. Then [v] = {v, w}, [x] =

{x, y}, and [z] = {z} are three distinct equivalence classes.

8.22 Proof. Let a ∈ N. Then a2 + a2 = 2(a2) is an even integer and so a R a. Thus R is reflexive.

Assume that a R b, where a, b ∈ N. Then a2 + b2 is even. Since b2 + a2 = a2 + b2, it follows that

b2 + a2 is even. Therefore, b R a and R is symmetric.

Finally, assume that a R b and b R c, where a, b, c ∈ N. Hence a2 + b2 and b2 + c2 are both even,

and so a2 + b2 = 2x and b2 + c2 = 2y for some integers x and y. Adding these two equations, we

obtain

(a2 + b2) + (b2 + c2) = 2x + 2y,

which implies that

a2 + c2 = 2x + 2y − 2b2 = 2(x + y − b2).

Since x + y − b2 is an integer, a2 + c2 is even. Therefore, a R c and R is transitive.

There are two distinct equivalence classes:

[1] = {x ∈ N : x2 + 1 is even} = {x ∈ N : x2 is odd} = {x ∈ N : x is odd}
[2] = {x ∈ N : x2 + 4 is even} = {x ∈ N : x2 is even} = {x ∈ N : x is even}

8.23 Observe that 2 R 6 and 6 R 3, but 2 6R 3. Thus R is not transitive, and so R is not an equivalence

relation.

8.24 (a) Proof. First, we show that R is reflexive. Let x ∈ S. Then x + 2x = 3x. Since 3 | (x + 2x),

it follows that x R x and R is reflexive. Next, we show that R is symmetric. Let x R y, where

x, y ∈ S. Then x+ 2y = 3a, where a ∈ Z, and so x = 3a− 2y. Thus y + 2x = y + 2(3a− 2y) =

6a− 3y = 3(2a− y). Since 2a− y is an integer, 3 | (y + 2x). Thus y R x and R is symmetric.

Finally, we show that R is transitive. Let x R y and y R z, where x, y, z ∈ S. Then

x + 2y = 3a and y + 2z = 3b, where a, b ∈ Z. Thus (x + 2y) + (y + 2z) = 3a + 3b and so

x + 2z = 3a + 3b − 3y = 3(a + b − y). Since a + b − y is an integer, 3 | (x + 2z).

(b) There are three distinct equivalence classes: [0] = {0,−6}, [1] = {1,−2, 4, 7}, and [−7] =

{−7, 5}.
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8.25 Proof. Let x ∈ Z. Since 3x − 7x = −4x = 2(−2x) and −2x is an integer, 3x − 7x is even. Thus

x R x and R is reflexive.

Next, we show that R is symmetric. Let x R y, where x, y ∈ Z. Thus 3x − 7y is even and so

3x − 7y = 2a for some integer a. Observe that

3y − 7x = (3x − 7y) − 10x + 10y = 2a − 10x + 10y = 2(a − 5x + 5y).

Since a − 5x + 5y is an integer, 3y − 7x is even. So y R x and R is symmetric.

Finally, we show that R is transitive. Assume that x R y and y R z, where x, y, z ∈ Z. Then

3x− 7y and 3y − 7z are even. So 3x− 7y = 2a and 3y − 7z = 2b, where a, b ∈ Z. Adding these two

equations, we obtain

(3x − 7y) + (3y − 7z) = 3x − 4y − 7z = 2a + 2b

and so 3x − 7z = 2a + 2b + 4y = 2(a + b + 2y). Since a + b + 2y is an integer, 3x − 7z is even.

Therefore, x R z and R is transitive.

There are two distinct equivalence classes, namely, [0] = {0,±2,±4, . . .} and [1] = {±1,±3,±5, . . .}.

8.26 (a) Proof. Suppose that R1 and R2 are two equivalence relations defined on a set S. Let R =

R1 ∩ R2. First, we show that R is reflexive. Let a ∈ S. Since R1 and R2 are equivalence

relations on S, it follows that (a, a) ∈ R1 and (a, a) ∈ R2. Thus (a, a) ∈ R and so R is reflexive.

Assume that a R b, where a, b ∈ S. Then (a, b) ∈ R = R1 ∩ R2. Thus (a, b) ∈ R1 and

(a, b) ∈ R2. Since R1 and R2 are symmetric, (b, a) ∈ R1 and (b, a) ∈ R2. Thus (b, a) ∈ R and

so b R a. Hence R is symmetric.

Now assume that a R b and b R c, where a, b, c ∈ S. Then (1) (a, b) ∈ R1 and (a, b) ∈ R2

and (2) (b, c) ∈ R1 and (b, c) ∈ R2. Since R1 and R2 are transitive, (a, c) ∈ R1 and (a, c) ∈ R2.

Thus (a, c) ∈ R and so a R c. Therefore, R is transitive.

(b) Let a ∈ Z. In R1, [a] = {x ∈ Z : x R1 a}. In particular, if x ∈ [a], then (x, a) ∈ R1 and so

(x, a) ∈ R2 and (x, a) ∈ R3. Therefore, x ≡ a (mod 2) and x ≡ a (mod 3). Hence x = a + 2k

and x = a + 3ℓ for some integers k and ℓ. Hence 2k = 3ℓ and so ℓ is even. Thus ℓ = 2m for

some integer m, implying that x = a + 3ℓ = a + 3(2m) = a + 6m and so x − a = 6m. Hence

x ≡ a (mod 6). Thus [a] = {x ∈ Z : x ≡ a (mod 6)}.
[0] = {. . . ,−12,−6, 0, 6, 12, . . .},
[1] = {. . . ,−11,−5, 1, 7, 13, . . .},
[2] = {. . . ,−10,−4, 2, 8, 14, . . .},
[3] = {. . . ,−9,−3, 3, 9, 15, . . .},
[4] = {. . . ,−8,−2, 4, 10, 16, . . .},
[5] = {. . . ,−7,−1, 5, 11, 17, . . .}.

8.27 For the set S = {1, 2, 3}, let

R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)} and R2 = {(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)}.
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Then R1 and R2 are equivalence relations on S, but

R = R1 ∪ R2 = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)}

is not an equivalence relation on S. For example, (1, 2), (2, 3) ∈ R but (1, 3) /∈ R, so R is not

transitive.

Exercises for Section 8.5: Congruence Modulo n

8.28 (a) True. (b) False. (c) True. (d) False.

8.29 Proof. Let a ∈ Z. Since 3a + 5a = 8a, it follows that 8 | (3a + 5a) and so 3a + 5a ≡ 0 (mod 8).

Hence a R a and R is reflexive.

Next, we show that R is symmetric. Assume that a R b, where a, b ∈ Z. Then 3a + 5b ≡
0 (mod 8), that is, 3a + 5b = 8k for some integer k. Observe that (3a + 5b) + (3b + 5a) = 8a + 8b.

Thus

3b + 5a = 8a + 8b − (3a + 5b) = 8a + 8b − 8k = 8(a + b − k).

Since a + b − k is an integer, 8 | (3b + 5a) and so 3b + 5a ≡ 0 (mod 8). Hence b R a and R is

symmetric.

Finally, we show that R is transitive. Assume that a R b and b R c, where a, b, c ∈ Z. Thus

3a + 5b ≡ 0 (mod 8) and 3b + 5c ≡ 0 (mod 8). So 3a + 5b = 8x and 3b + 5c = 8y, where x, y ∈ Z.

Observe that

(3a + 5b) + (3b + 5c) = 3a + 8b + 5c = 8x + 8y.

Thus 3a + 5c = 8x + 8y − 8b = 8(x + y − b). Since x + y − b is an integer, 8 | (3a + 5c) and

3a + 5c ≡ 0 (mod 8). Therefore, a R c and R is transitive.

8.30 Since 1 6R 1, the relation R is not reflexive and so R is not an equivalence relation.

8.31 There are two distinct equivalence classes, namely, [0] = {0, ±2, ±4, . . .} and [1] = {±1, ±3, ±5,

. . .}.

8.32 [0] = {x ∈ Z : x R 0} = {x ∈ Z : x3 ≡ 0 (mod 4)} = {. . . ,−4,−2, 0, 2, 4, . . .},

[1] = {x ∈ Z : x R 1} = {x ∈ Z : x3 ≡ 1 (mod 4)} = {. . . ,−7,−3, 1, 5, 9, . . .},

[3] = {x ∈ Z : x R 3} = {x ∈ Z : x3 ≡ 3 (mod 4)} = {. . . ,−5,−1, 3, 7, 11, . . .}.

8.33 Proof. Let a ∈ Z. Since 5a− 2a = 3a, it follows that 3 | (5a− 2a) and so 5a ≡ 2a (mod 3). Hence

a R a and R is reflexive.

Next, we show that R is symmetric. Assume that a R b, where a, b ∈ Z. Then 5a ≡ 2b (mod 3),

that is, 5a − 2b = 3k for some integer k. Observe that (5a − 2b) + (5b − 2a) = 3a + 3b. Thus

5b − 2a = 3a + 3b − (5a − 2b) = 3a + 3b − 3k = 3(a + b − k).

Since a+ b−k is an integer, 3 | (5b−2a) and so 5b ≡ 2a (mod 3). Hence b R a and R is symmetric.
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Finally, we show that R is transitive. Assume that a R b and b R c, where a, b, c ∈ Z. Thus

5a ≡ 2b (mod 3) and 5b ≡ 2c (mod 3). So 5a− 2b = 3x and 5b− 2c = 3y, where x, y ∈ Z. Observe

that

(5a − 2b) + (5b − 2c) = (5a − 2c) + 3b = 3x + 3y.

Thus 5a − 2c = 3x + 3y − 3b = 3(x + y − b). Since x + y − b is an integer, 3 | (5a − 2c) and

5a ≡ 2c (mod 3). Therefore, a R c and R is transitive.

There are three distinct equivalence classes, namely,

[0] = {0, ±3, ±6, . . .},
[1] = { . . . , −5, −2, 1, 4, . . .}, and

[2] = { . . . , −4, −1, 2, 5, . . .}.

8.34 Proof. Let a ∈ Z. Since 2a + 2a = 4a, it follows that 4 | (2a + 2a) and so 2a + 2a ≡ 0 (mod 4).

Hence a R a and R is reflexive.

Next, we show that R is symmetric. Assume that a R b, where a, b ∈ Z. Then 2a + 2b ≡
0 (mod 4). Since 2b + 2a = 2a + 2b, it follows that 2b + 2a ≡ 0 (mod 4) and so b R a and R is

symmetric.

Finally, we show that R is transitive. Assume that a R b and b R c, where a, b, c ∈ Z. Thus

2a + 2b ≡ 0 (mod 4) and 2b + 2c ≡ 0 (mod 4). So 2a + 2b = 4x and 2b + 2c = 4y, where x, y ∈ Z.

Observe that

(2a + 2b) + (2b + 2c) = 2a + 4b + 2c = 4x + 4y.

Thus 2a + 2c = 4x + 4y − 4b = 4(x + y − b). Since x + y − b is an integer, 4 | (2a + 2c) and

2a + 2c ≡ 0 (mod 4). Therefore, a R c and R is transitive.

The distinct equivalence classes are [0] = {0,±2,±4, . . .} and [1] = {±1,±3,±5, . . .}.

8.35 Proof. First, we show that R is reflexive. Let a ∈ Z. Since 2a+3a = 5a, it follows that 5 | (2a+3a)

and so a R a. Hence R is reflexive.

Next, we show that R is symmetric. Assume that a R b, where a, b ∈ Z. Then 2a + 3b ≡
0 (mod 5). Hence 2a + 3b = 5k for some integer k. Observe that (2a + 3b) + (2b + 3a) = 5a + 5b.

Thus

2b + 3a = 5a + 5b − (2a + 3b) = 5a + 5b − 5k = 5(a + b − k).

Since a + b − k is an integer, 5 | (2b + 3a) and so 2b + 3a ≡ 0 (mod 5). Hence b R a and R is

symmetric.

Finally, we show that R is transitive. Assume that a R b and b R c, where a, b, c ∈ Z. Thus

2a + 3b ≡ 0 (mod 5) and 2b + 3c ≡ 0 (mod 5). So 2a + 3b = 5x and 2b + 3c = 5y, where x, y ∈ Z.

Observe that

(2a + 3b) + (2b + 3c) = 2a + 5b + 3c = 5x + 5y.

Thus 2a + 3c = 5x + 5y − 5b = 5(x + y − b). Since x + y − b is an integer, 5 | (2a + 3c) and

2a + 3c ≡ 0 (mod 5). Therefore, a R c and R is transitive.

The distinct equivalence classes are [0], [1], [2], [3], and [4]. In fact, the set of distinct equivalence

classes is Z5.
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8.36 Proof. Let a ∈ Z. Since 5 | (a2 − a2), it follows that a2 ≡ a2 (mod 5). Hence a R a and

R is reflexive. Next, we show that R is symmetric. Assume that a R b, where a, b ∈ Z. Then

a2 ≡ b2 (mod 5). Hence a2 − b2 = 5k for some integer k. Thus b2 − a2 = 5(−k). Since −k is an

integer, 5 | (b2 − a2) and so b2 ≡ a2 (mod 5). Hence b R a and R is symmetric.

Finally, we show that R is transitive. Assume that a R b and b R c, where a, b, c ∈ Z. Thus

a2 ≡ b2 (mod 5) and b2 ≡ c2 (mod 5). So a2 − b2 = 5x and b2 − c2 = 5y, where x, y ∈ Z. Adding

these two equations, we obtain

a2 − c2 = 5x + 5y = 5(x + y).

Since x + y is an integer, 5 | (a2 − c2) and a2 ≡ c2 (mod 5). Therefore, a R c and R is transitive.

There are three distinct equivalence classes, namely, [0] = {5n : n ∈ Z}, [1] = {5n+1, 5n+4 : n ∈
Z}, and [2] = {5n + 2, 5n + 3 : n ∈ Z}.

Exercises for Section 8.6: The Integers Modulo n

8.37 The addition and multiplication tables in Z4 are shown below.

+ [0] [1] [2] [3]
[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]

· [0] [1] [2] [3]
[0] [0] [0] [0] [0]
[1] [0] [1] [2] [3]
[2] [0] [2] [0] [2]
[3] [0] [3] [2] [1]

8.38 (a) [2] + [6] = [8] = [0].

(b) [2] · [6] = [12] = [4].

(c) [−13] + [138] = [125] = [5].

(d) [−13] · [138] = [3][2] = [6].

8.39 (a) [7] + [5] = [12] = [1].

(b) [7] · [5] = [35] = [2].

(c) [−82] + [207] = [6] + [9] = [4].

(d) [−82] · [207] = [6] · [9] = [10].

8.40 (a) No. Consider [a] = [2] and [b] = [4]. Then [a] 6= [0] and [b] 6= [0], but [a] · [b] = [8] = [0].

(b) If Z8 is replaced by Z9 or Z10, then the answer is no; while if Z8 is replaced by Z11, then the

answer is yes.

(c) Let a, b ∈ Zn, where n ≥ 2 is prime. If [a] · [b] = [0], then [a] = [0] or [b] = [0].

8.41 Proof. Let [a], [b], [c], [d] ∈ Zn, where [a] = [b] and [c] = [d]. We prove that [ac] = [bd]. Since

[a] = [b], it follows that a R b, where R is the relation defined in Theorem 8.6. Similarly, c R d.

Therefore, a ≡ b (mod n) and c ≡ d (mod n). Thus, n | (a− b) and n | (c− d). Hence, there exist

integers x and y so that
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a − b = nx and c − d = ny.

Thus a = nx + b and c = ny + d and so ac = (nx + b)(ny + d) = nxny + nxd + bny + bd. Hence

ac − bd = nxny + nxd + bny = n(nxy + xd + by).

This implies that n | (ac− bd). Thus, ac ≡ bd (mod n). From this, we conclude that ac R bd, which

implies that [ac] = [bd].

Additional Exercises for Chapter 8

8.42 (a) True. Consider a = 0 or a = 3 for example.

(b) False. Consider a = b = 1.

(c) True. For a given a, let b = 0.

8.43 Proof. Since k + ℓ ≡ 0 (mod 3), it follows that 3 | (k + ℓ) and so k + ℓ = 3x for some integer x.

Assume that a ≡ b (mod 3). Thus a = b + 3y for some integer y. Observe that

ka + ℓb = k(b + 3y) + ℓb = kb + 3ky + ℓb

= b(k + ℓ) + 3ky = b(3x) + 3ky = 3(bx + ky).

Since bx + ky is an integer, 3 | (ka + ℓb) and so ka + ℓb ≡ 0 (mod 3).

8.44 Result. Let k and ℓ be integers such that k + ℓ ≡ 0 (mod n), where n ∈ Z and n ≥ 2. If a and b

are integers such that a ≡ b (mod n), then ka + ℓb ≡ 0 (mod n).

Proof. Since k + ℓ ≡ 0 (mod n), it follows that n | (k + ℓ) and so k + ℓ = nx for some integer x.

Assume that a ≡ b (mod n). Then a = b + ny for some integer y. Observe that

ka + ℓb = k(b + ny) + ℓb = b(k + ℓ) + nky

= bnx + nky = n(bx + ky).

Since bx + ky is an integer, n | (ka + ℓb) and so ka + ℓb ≡ 0 (mod n).

8.45 (a) (i) symmetric

(ii) symmetric and transitive

(iii) symmetric and transitive

(iv) symmetric and transitive

(v) symmetric and transitive

(vi) symmetric

(vii) reflexive and symmetric

(b) x − y ≥ 0 or x − y ≤ 0 or x 6= y.

8.46 (3) occurs. There may not be an element y ∈ A such that x R y.
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8.47 It is wrong to assume that a R a since this is what needed to be proved.

8.48 Proof. Let a ∈ Z. Since |a− 2| = |a− 2|, it follows that a R a and so R is reflexive. Next suppose

that a R b. Then |a − 2| = |b − 2|. Since |b − 2| = |a − 2|, it follows that b R a and so R is

symmetric. Finally, suppose that a R b and b R c. Then |a− 2| = |b− 2| and |b− 2| = |c− 2|. Thus

|a − 2| = |c − 2| and so a R c. Hence R is transitive.

In this case, [2] = {2}. More generally, for a ∈ Z, [a] = {a, 4 − a}.

8.49 Proof. Let a ∈ R. Since a−a = 0 ∈ Z, it follows that a R a and so R is reflexive. Let a, b ∈ R such

that a R b. Thus a − b ∈ Z and so −(a − b) = b − a ∈ Z. Thus b R a and so R is symmetric. Let

a, b, c ∈ R such that a R b and b R c. Then a−b ∈ Z and b−c ∈ Z. Thus a−c = (a−b)+(b−c) ∈ Z.

Therefore, a R c and R is transitive.

[1/2] = {k + 1/2 : k ∈ Z}, [
√

2] = {k +
√

2 : k ∈ Z}

8.50 (a) [4]3 = [4][4][4] = [4] in Z5 (b) [7]5 = [7] in Z10

8.51 (a) Proof. Let X ∈ P(A). Since X ∩B = X ∩B, it follows that X R X and so R is reflexive. Let

X, Y ∈ P(A) such that X R Y . Hence X ∩B = Y ∩B. Hence Y ∩B = X ∩B and so Y R X .

Thus R is symmetric. Let X, Y, Z ∈ P(A) such that X R Y and Y R Z. Thus X ∩B = Y ∩B

and Y ∩ B = Z ∩ B. So X ∩ B = Z ∩ B and X R Z. Therefore, R is transitive.

(b) [X ] = {X, {3, 4}}.

8.52 (a) The statement is true. Proof. Let a ∈ A. Since R1 ∩ R2 is reflexive, (a, a) ∈ R1 ∩ R2. Thus

(a, a) ∈ R1 and (a, a) ∈ R2. Hence both R1 and R2 are reflexive.

(b) The statement is false. Let A = {1, 2, 3} and suppose that

R1 = {(1, 2), (2, 1), (2, 3)} and R2 = {(1, 2), (2, 1), (3, 2)}.

Thus neither R1 nor R2 is symmetric; however, R1 ∩ R2 = {(1, 2), (2, 1)} is symmetric.

(c) The statement is false. Let A = {1, 2, 3} and suppose that

R1 = {(1, 2), (2, 3), (1, 3), (2, 1)} and R2 = {(1, 2), (2, 3), (1, 3), (3, 1)}.

Neither R1 nor R2 is transitive; however, R1 ∩ R2 = {(1, 2), (2, 3), (1, 3)} is transitive.

8.53 Proof. Let a ∈ A. Since a R a, it follows that a R−1 a and so R−1 is reflexive. Next, we show

that R−1 is symmetric. Assume that a R−1 b, where a, b ∈ A. Then b R a. Since R is symmetric,

a R b and so b R−1 a. Thus R−1 is symmetric.

Finally, we show that R−1 is transitive. Assume that a R−1 b and b R−1 c, where a, b, c ∈ A.

Thus b R a and c R b. Since R is transitive, c R a. Thus a R−1 c and so R−1 is transitive.

8.54 The statement is false. Let A = {1, 2, 3}. Then

R1 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)} and R2 = {(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)}
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are equivalence relations on A. Since

R = R1R2 = {(1, 1), (2, 2), (3, 3), (1, 3)}

is not symmetric, R is not an equivalence relation on A.

8.55 (a) The statement is true.

Proof. Let a ∈ Z. Then a = 3q, a = 3q + 1, or a = 3q + 2 for some integer q. We consider

these three cases.

Case 1. a = 3q. Then

a3 − a = (3q)3 − (3q) = 27q3 − 3q = 3(9q3 − q).

Since 9q3 − q ∈ Z, it follows that 3 | (a3 − a).

Case 2. a = 3q + 1. Then

a3 − a = (3q + 1)3 − (3q + 1) = 27q3 + 27q2 + 9q + 1 − 3q − 1

= 3(9q3 + 9q2 + 2q).

Since 9q3 + 9q2 + 2q ∈ Z, it follows that 3 | (a3 − a).

Case 3. a = 3q + 2. Then

a3 − a = (3q + 2)3 − (3q + 2) = 27q3 + 54q2 + 36q + 8 − 3q − 2

= 27q3 + 54q2 + 33q + 6 = 3(9q3 + 18q2 + 11q + 2).

Since 9q3 + 18q2 + 11q + 2 ∈ Z, it follows that 3 | (a3 − a).

Thus a R a for every integer a and so R is reflexive.

(b) The statement is true.

Proof. Let a, b, c ∈ Z such that a R b and b R c. Then 3 | (a3 − b) and 3 | (b3 − c). Hence

there are integers x and y such that a3 − b = 3x and b3 − c = 3y. Since R is reflexive, b R b

and so 3 | (b3 − b). Hence b3 − b = 3z for some integer z. Adding a3 − b = 3x and b3 − c = 3y,

we obtain

(a3 − b) + (b3 − c) = (a3 − c) + (b3 − b) = a3 − c + 3z = 3x + 3y.

Hence a3 − c = 3x + 3y − 3z = 3(x + y − z). Since x + y − z ∈ Z, it follows that 3 | (a3 − c).

Thus a R c and R is transitive.

8.56 The relation R is an equivalence relation on Z.

Proof. Let a ∈ Z. Since a ≡ a (mod 2) and a ≡ a (mod 3), it follows that R is reflexive.

Let a R b, where a, b ∈ Z. Then a ≡ b (mod 2) and a ≡ b (mod 3). So b ≡ a (mod 2) and

b ≡ a (mod 3). Then b R a and so R is symmetric.

Let a R b and b R c, where a, b, c ∈ Z. Thus (1) a ≡ b (mod 2) and a ≡ b (mod 3) and (2)

b ≡ c (mod 2) and b ≡ c (mod 3). Since a ≡ b (mod 2) and b ≡ c (mod 2), it follows that

a ≡ c (mod 2). Similarly, a ≡ c (mod 3). Thus a R c and so R is transitive.
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8.57 The relation R is not an equivalence relation on Z. For example, 0 R 2 and 2 R 5, but 0 6R 5.

8.58 The statement is true.

Proof. Let R be a symmetric, sequential relation on some set A. Let a ∈ A. Consider the sequence

a, a, a. Since R is sequential, a R a and so R is reflexive. We now show that R is transitive. Let

a, b, c ∈ A where (a, b), (b, c) ∈ R. We show that a R c. Consider the sequence a, c, a. Since R is

sequential, either a R c or c R a. If a R c, then (a, c) ∈ R, as desired. If c R a, then a R c since R

is symmetric and so (a, c) ∈ R. Thus R is transitive.

8.59 (a) Proof. Let (a, b) ∈ S. Since ab = ba, it follows that (a, b) R (a, b) and so R is reflexive. Let

(a, b), (c, d) ∈ S such that (a, b) R (c, d). Then ad = bc. Thus cb = da, which implies that

(c, d) R (a, b) and so R is symmetric.

Let (a, b), (c, d), (e, f) ∈ S such that (a, b) R (c, d) and (c, d) R (e, f). Hence ad = bc and

cf = de. We show that (a, b) R (e, f). Since ad = bc and cf = de, it follows that (ad)e = (bc)e

and a(cf) = a(de). Hence bce = acf . Since c 6= 0, it follows that be = af , which implies that

(a, b) R (e, f) and so R is transitive. Therefore, R is an equivalence relation.

(b) The equivalence class [(1, 2)] is the set of all points in the plane that lie on the line with

equation y = 2x excluding (0, 0) and [(3, 0)] is the set of all points in the plane that lie on the

x-axis excluding (0, 0).

8.60 (a) Let (a, b), (c, d), (e, f) ∈ R × R. We observe the following:

(1) |a| + |b| = |a| + |b|;
(2) if |a| + |b| = |c| + |d|, then |c| + |d| = |a| + |b|;
(3) if |a| + |b| = |c| + |d| and |c| + |d| = |e| + |f |, then |a| + |b| = |e| + |f |.

(b) [(1, 2)] = {(x, y) : |x| + |y| = 3} = [(3, 0)]. These are two equivalence classes consist of the set

of all points in the plane that lie on the diamond-shaped figure shown in Figure 12.
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Figure 12: The equivalence classes in Exercise 8.60(b)
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Exercises for Chapter 9

Exercises for Section 9.1: The Definition of Function

9.1 dom f = {a, b, c, d} and ran f = {y, z}.

9.2 R = {(1, a), (1, b), (2, b)}. The relation R is not a function from A to B because (1) dom f 6= A and

(2) there are two ordered pairs whose first coordinate is the same element of A (namely 1).

9.3 Since R is an equivalence relation, R is reflexive. So (a, a) ∈ R for every a ∈ A. Since R is also a

function from A to A, we must have R = {(a, a) : a ∈ A} and so R is the identity function on A.

9.4 (a) The relation R1 is a function from A1 to R.

(b) The relation R2 is not a function from A2 to R. For example, both (9, 1) and (9,−5) belong

to R2.

(c) The relation R3 is not a function from A3 to R. For example, both (0, 2) and (0,−2) belong

to R3.

9.5 Let A′ = {a ∈ A : (a, b) ∈ R for some b ∈ B}. Furthermore, for each element a′ ∈ A′, select exactly

one element b′ ∈ {b ∈ B : (a′, b) ∈ R}. Then f = {(a′, b′) : a′ ∈ A′} is a function from A′ to B.

9.6 (a) dom f1 = R, ran f1 = {x ∈ R : x ≥ 1}.

(b) dom f2 = R − {0}, ran f2 = R − {1}.

(c) dom f3 = {x ∈ R : x ≥ 1/3}, ran f3 = {x ∈ R : x ≥ 0}.

(d) dom f4 = R, ran f4 = R.

(e) dom f5 = R − {3}, ran f5 = R − {1}.

Exercises for Section 9.2: The Set of All Functions From A to B

9.7 BA = {f1, f2, . . . , f8}, where f1 = {(1, x), (2, x), (3, x)}, f2 = {(1, x), (2, x), (3, y)}, f3 = {(1, x), (2, y), (3, x)},
f4 = {(1, y), (2, x), (3, x)}. By interchanging x and y in f1, f2, f3, f4, we obtain f5, f6, f7, f8.

9.8 g = {(1, x), (2, y), (3, z), (4, z)} and h = {(x, y), (y, z), (z, x)}.

9.9 For A = {a, b, c} and B = {0, 1}, there are 8 different functions from A to B, namely

f1 = {(a, 0), (b, 0), (c, 0)}, f2 = {(a, 0), (b, 0), (c, 1)},

f3 = {(a, 0), (b, 1), (c, 0)}, f4 = {(a, 0), (b, 1), (c, 1)},

f5 = {(a, 1), (b, 0), (c, 0)}, f6 = {(a, 1), (b, 0), (c, 1)},

f7 = {(a, 1), (b, 1), (c, 0)}, f8 = {(a, 1), (b, 1), (c, 1)}.

9.10 (a) Let A = {1, 2, 3} and B = {a, b}.
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(b) f = {(1, b), (2, a), (3, a)}.

Exercises for Section 9.3: One-to-one and Onto Functions

9.11 Let f = {(w, r), (x, r), (y, r), (z, s)}. Since f(w) = f(x) = r and t is not an image of any element of

A, it follows that f is neither one-to-one nor onto.

9.12 Let A = {1, 2} and B = {3, 4, 5}. Then f = {(1, 3), (2, 4)} and g = {(3, 1), (4, 2), (5, 2)} have the

desired properties.

9.13 The function f is injective, but not surjective. There is no n ∈ Z such that f(n) = 2.

9.14 (a) The function f is injective.

Proof. Assume that f(a) = f(b), where a, b ∈ Z. Then a − 3 = b − 3. Adding 3 to both

sides,we obtain a = b.

(b) The function f is surjective.

Proof. Let n ∈ Z. Then n + 3 ∈ Z and f(n + 3) = (n + 3) − 3 = n.

9.15 The function f is injective but not surjective. There is no n ∈ Z such that f(n) = 5.

9.16 The statement is true. The function f : A → P(A) defined by f(a) = {a} has the desired property.

9.17 (a) Since f(0) = f(−4), it follows that f is not one-to-one.

(b) Note that f(x) = (x + 2)2 + 5 ≥ 5, so f is not onto. For example, there is no x ∈ R such that

f(x) = 4.

9.18 Consider the function f : R → R defined by f(x) = x3 − x = (x +1)x(x− 1). Since f(0) = f(1), it

follows that f is not one-to-one. One way to show that f is onto is to use the Intermediate Value

Theorem.

Method#1. Let r ∈ R. Since

limx→∞(x3 − x) = ∞ and limx→−∞(x3 − x) = −∞,

there exist real numbers a and b such that f(a) < r < f(b). Since f is continuous on the closed

interval [a, b], there exists c such that a < c < b and f(c) = r.

Method#2. Let r ∈ R. If r = 0, then f(0) = 0 = r. Suppose that r > 0. Then r + 1 > 1 and

r+2 > 1; so f(r+1) = r(r+1)(r+2) > r. Since f(0) < r < f(r+1), it follows by the Intermediate

Value Theorem that there exists c ∈ (0, r + 1) such that f(c) = r. If r < 0, then s = −r > 0 and,

as we just saw, there exists c ∈ (0, s + 1) such that f(c) = s. Then f(−c) = −s = r.

9.19 (a) Define f(n) = n for all n ∈ N.

(b) Define f(n) = 2n for all n ∈ N.

(c) Define f(1) = 1 and f(n) = n − 1 for each integer n ≥ 2.
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(d) Define f(n) = 1 for all n ∈ N.

Exercises for Section 9.4: Bijective Functions

9.20 Proof. First, we show that f is one-to-one. Assume that f(a) = f(b), where a, b ∈ R. Then

7a− 2 = 7b− 2. Adding 2 to both sides and dividing by 7, we obtain a = b, and so f is one-to-one.

Next, we show that f is onto. Let r ∈ R. We show that there exists x ∈ R such that f(x) = r.

Choose x = (r + 2)/7. Then x ∈ R and

f(x) = f

(

r + 2

7

)

= 7

(

r + 2

7

)

− 2 = r.

Thus f is onto.

9.21 Proof. We first show that f is one-to-one. Assume that f(a) = f(b), where a, b ∈ R−{2}. Then

5a + 1

a − 2
=

5b + 1

b − 2
. Multiplying both sides by (a−2)(b−2), we obtain (5a+1)(b−2) = (5b+1)(a−2).

Simplifying, we have 5ab − 10a + b − 2 = 5ab − 10b + a − 2. Subtracting 5ab − 2 from both sides,

we have −10a + b = −10b + a. Thus 11a = 11b and so a = b. Therefore, f is one-to-one.

To show that f is onto, let r ∈ R − {5}. We show that there exists x ∈ R − {2} such that

f(x) = r. Choose x =
2r + 1

r − 5
. Then x ∈ R − {2} and

f(x) = f

(

2r + 1

r − 5

)

=
5
(

2r+1
r−5

)

+ 1

2r+1
r−5 − 2

=
5(2r + 1) + (r − 5)

(2r + 1) − 2(r − 5)
=

11r

11
= r,

implying that f is onto. Therefore f is bijective.

9.22 (a) Proof. Let [a], [b] ∈ Z5 such that [a] = [b]. We show that f([a]) = f([b]), that is, [2a + 3] =

[2b + 3]. Since [a] = [b], it follows that a ≡ b (mod 5) and so a − b = 5x for some integer x.

Observe that

(2a + 3) − (2b + 3) = 2(a − b) = 2(5x) = 5(2x).

Since 2x is an integer, 5 | [(2a + 3) − (2b + 3)]. Therefore, 2a + 3 ≡ 2b + 3 (mod 5) and so

[2a + 3] = [2b + 3].

(b) Since f([0]) = [3], f([1]) = [0], f([2]) = [2], f([3]) = [4], and f([4]) = [1], it follows that f is

one-to-one and onto and so f is bijective.

9.23 (a) Consider S = {2, 5, 6}. Observe that for each y ∈ B, there exists x ∈ S such that x is related

to y. This says that γ(R) ≤ 3. On the other hand, let S′ ⊆ A such that for every element y

of B, there is an element x ∈ S′ such that x is related to y. Observe that S′ must contain 6,

at least one of 2 and 3, and at least one of 4, 5, and 7. Thus |S′| ≥ 3. Therefore, γ(R) = 3.
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(b) If R is an equivalence relation defined on a finite nonempty set A, then γ(R) is the number of

distinct equivalence classes of R.

(c) If f is a bijective function from A to B, then γ(f) = |A|.

9.24 Define f1(x) = x2 for x ∈ A and f2(x) =
√

x for x ∈ A. (f3(x) = 1 − x is another example.)

9.25 Proof. We first show that f is one-to-one. Let a, b ∈ A such that f(a) = f(b). Now

a = iA(a) = (f ◦ f)(a) = f(f(a)) = f(f(b))

= (f ◦ f)(b) = iA(b) = b.

Thus f is one-to-one.

Next, we show that f is onto. Let c ∈ A. Suppose that f(c) = d ∈ A. Observe that

f(d) = f(f(c)) = (f ◦ f)(c) = iA(c) = c.

Thus f is onto.

Exercises for Section 9.5: Composition of Functions

9.26 g ◦ f = {(1, y), (2, x), (3, x), (4, x)}.

9.27 (g ◦ f)(1) = g(f(1)) = g(4) = 17 and (f ◦ g)(1) = f(g(1)) = f(2) = 13.

9.28 (a) (i) Direct Proof. Assume that g ◦ f is one-to-one. We show that f is one-to-one. Let

f(x) = f(y), where x, y ∈ A. Since g(f(x)) = g(f(y)), it follows that (g◦f)(x) = (g◦f)(y).

Since g ◦ f is one-to-one, x = y.

(ii) Proof by Contrapositive. Assume that f is not one-to-one. Hence there exist distinct

elements a, b ∈ A such that f(a) = f(b). Since

(g ◦ f)(a) = g(f(a)) = g(f(b)) = (g ◦ f)(b),

it follows that g ◦ f is not one-to-one.

(iii) Proof by Contradiction. Assume, to the contrary, that there exist functions f : A → B

and g : B → C such that g ◦ f is one-to-one and f is not one-to-one. Since f is not one-

to-one, there exist distinct elements a, b ∈ A such that f(a) = f(b). However then,

(g ◦ f)(a) = g(f(a)) = g(f(b)) = (g ◦ f)(b),

contradicting our assumption that g ◦ f is one-to-one.

(b) Let A = {1, 2, 3}, B = {w, x, y, z}, and C = {a, b, c}. Define f : A → B by f = {(1, w), (2, x), (3, y)}
and g : B → C by g = {(w, a), (x, b), (y, c), (z, c)}. Then g ◦ f = {(1, a), (2, b), (3, c)} is one-to-

one, but g is not one-to-one.

9.29 (a) The statement is true. This is Corollary 9.8.
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(b) The statement is false. Let A = {1, 2}, B = {a, b}, and C = {x, y}; and let f : A → B and

g : B → C be defined by f = {(1, a), (2, a)} and g = {(a, x), (b, y)}. Then g◦f = {(1, x), (2, x)}.
Thus g is onto but g ◦ f is not.

(c) The statement is false. Consider the functions f and g in (b).

(d) The statement is true. Proof. Let A = {1, 2}, B = {a, b, c}, and C = {x, y}; and let

f : A → B and g : B → C be defined by f = {(1, a), (2, b)} and g = {(a, x), (b, y), (c, y)}.
Then g ◦ f = {(1, x), (2, y)} is onto but f is not onto.

(e) The statement is false. We show that for functions f : A → B and g : B → C, if f is not

one-to-one, then g ◦ f : A → C is not one-to-one.

Since f is not one-to-one, there exist a, b ∈ A such that a 6= b and f(a) = f(b). Thus

(g ◦ f)(a) = g(f(a)) = g(f(b)) = (g ◦ f)(b) and so g ◦ f is not one-to-one.

9.30 Proof. Let a ∈ A. Then (f ◦ iA)(a) = f(iA(a)) = f(a) and (iB ◦ f)(a) = iB(f(a)) = f(a). Thus

f ◦ iA = f and iB ◦ f = f .

9.31 (a) Proof. Let (x, y) ∈ A × A. Then x = 4a and y = 4b, where a, b ∈ Z. Since f(x, y) = xy =

(4a)(4b) = 2(8ab) and 8ab ∈ Z, it follows that f(x, y) ∈ B′ and so g ◦ f is defined.

(b) (g ◦ f)(4k, 4ℓ) = g(f(4k, 4ℓ)) = g(16kℓ) = 8kℓ.

Exercises for Section 9.6: Inverse Functions

9.32 Let f = {(a, a), (b, a), (c, b)}. Then f is a function from A to A. But f−1 = {(a, a), (a, b), (b, c)} is

not a function.

9.33 Proof. First, we show that f is one-to-one. Assume that f(a) = f(b), where a, b ∈ R. Then

4a − 3 = 4b − 3. Adding 3 to both sides and dividing by 4, we obtain a = b. Next we show that f

is onto. Let r ∈ R. Then (r + 3)/4 ∈ R. Therefore, f
(

r+3
4

)

= 4
(

r+3
4

)

− 3 = r.

Note that f−1(x) = (x + 3)/4 for x ∈ R.

9.34 Proof. First, we show that f is one-to-one. Assume that f(a) = f(b), where a, b ∈ R − {3}.

Then
5a

a − 3
=

5b

b − 3
. Multiplying both sides by (a − 3)(b − 3), we obtain 5a(b − 3) = 5b(a − 3).

Simplifying, we have 5ab − 15a = 5ab − 15b. Adding −5ab to both sides and dividing by −15, we

obtain a = b. Thus f is one-to-one.

To show that f is onto, let r ∈ R − {5}. We show that there exists x ∈ R − {3} such that

f(x) = r. Consider x =
3r

r − 5
. (Since

3r

r − 5
6= 3, it follows that x ∈ R − {3}.) Then

f(x) = f

(

3r

r − 5

)

=
5
(

3r
r−5

)

3r
r−5 − 3

=
15r

3r − 3(r − 5)
=

15r

15
= r,

implying that f is onto. Therefore f is bijective.
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Since
(

f ◦ f−1
)

(x) = x for all x ∈ R − {5}, it follows that

(

f ◦ f−1
)

(x) = f
(

f−1(x)
)

=
5f−1(x)

f−1(x) − 3
= x.

Thus 5f−1(x) = x(f−1(x)−3) and 5f−1(x) = xf−1(x)−3x. Collecting the terms involving f−1(x)

on the same side of the equation and then factoring f−1(x), we have xf−1(x) − 5f−1(x) = 3x; so

f−1(x)(x − 5) = 3x. Solving for f−1(x), we obtain

f−1(x) =
3x

x − 5
.

9.35 (a) Proof. Let f(a) = f(b), where a, b ∈ R. Then 2a + 3 = 2b + 3. Adding −3 to both side and

dividing by 2, we have a = b and so f is one-to-one. Let r ∈ R. Letting x = (r − 3)/2, we

have

f(x) = 2

(

r − 3

2

)

+ 3 = (r − 3) + 3 = r

and so f is onto.

(b) The proof is similar to that in (a).

(c) (g ◦ f)(x) = −6x − 4.

(d) f−1(x) = x−3
2 and g−1(x) = 5−x

3 .

(e) (g ◦ f)−1(x) = (f−1 ◦ g−1)(x) = −(x + 4)/6.

9.36 (a) The proof is similar to that in Exercise .

(b) f = f−1.

(c) f ◦ f ◦ f = f .

9.37 (a) The statement is false. Let A = {1, 2}, B = {x, y}, and C = {r, s}. Define f = {(1, x), (2, x)},
g = {(x, r), (y, r)}, and h = {(x, r), (y, s)}. Then g ◦ f = {(1, r), (2, r)} = h ◦ f but g 6= h.

(b) The statement is false. Let A = {1}, B = {x, y}, and C = {r, s}. Define f = {(1, x)},
g = {(x, r), (y, r)}, and h = {(x, r), (y, s)}. Then f is one-to-one, g ◦ f = {(1, r)} = h ◦ f but

g 6= h.

Exercises for Section 9.7: Permutations

9.38 α ◦ β =

(

1 2 3 4 5
4 1 3 5 2

)

and β−1 =

(

1 2 3 4 5
5 3 1 4 2

)

.

9.39 (a) α−1 =

(

1 2 3 4 5 6
4 1 6 3 5 2

)

and β−1 =

(

1 2 3 4 5 6
5 4 2 6 1 3

)

.
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(b) α ◦ β =

(

1 2 3 4 5 6
5 4 3 6 2 1

)

and β ◦ α =

(

1 2 3 4 5 6
3 4 2 5 1 6

)

.

Additional Exercises for Chapter 9

9.40 (a) Since f(0) = f(−3) = 4, it follows that f is not injective.

(b) Let a, b ∈ R such that f(a) = f(b). Thus a2 + 3a + 4 = b2 + 3b + 4. So a2 + 3a = b2 + 3b and

a2 − b2 + 3a − 3b = (a + b)(a − b) + 3(a − b) = (a − b)(a + b + 3) = 0. Therefore, a = b or

a + b = −3.

(c) Observe that f(x) = x2 + 3x + 4 = (x + 3/2)2 + 7/4 ≥ 7/4. Thus there is no x ∈ R such that

f(x) = 0 and so f is not surjective.

(d) S = {s ∈ R : s < 7/4}.

(e) This is the complement of the range of f .

9.41 Proof. If a = 0, then f(x) = x2 + b. Since f(1) = f(−1) = 1 + b, it follows that f is not

one-to-one. If a 6= 0, then −a 6= 0. Since f(0) = f(−a) = b, it follows that f is not one-to-one.

9.42 Proof. Assume that f(x1) = f(x2), where x1, x2 ∈ R. Then ax1 + b = ax2 + b. Subtracting b

from both sides and dividing by a, we obtain x1 = x2.

9.43 The proof that f is one-to-one is correct. The proposed proof that f is onto is not written properly,

beginning with the second sentence. The symbols r and x are not identified and it is stated that

f(x) = r, when this is what we need to show for a given r ∈ R − {3}. Sentences 2–5 result in

solving for x in terms of r, which is not a part of the proof; however, these sentences supply the

necessary information to provide a proof. The information provided in the display is critical in a

proper proof.

9.44 (a) a, c, d, b, e.

(b) For example, let g = {(a, a), (b, a), (c, a), (d, a), (e, a)}. Then it is not possible to list elements

of A as in (a).

9.45 The function f : P(S) → P(P(S)) defined by f(A) = {A} for each A ∈ P(S) is injective.

9.46 (a) one-to-one and onto.

(b) one-to-one and onto.

(c) one-to-one but not onto.

(d) one-to-one and onto.

(e) one-to-one but not onto.

9.47 (a) Since every element x ∈ U satisfies x ∈ U , it follows that gU(x) = 1 for all x ∈ U .

(b) Since x /∈ ∅ for every x ∈ U , it follows that g∅(x) = 0 for all x ∈ U .
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(c) Let x ∈ U = R. If x ≥ 0, then x ∈ A and (gA◦gA)(x) = gA(gA(x)) = gA(1) = 1; while if x < 0,

then x /∈ A and gA(x) = 0. Since 0 ∈ A, it follows that (gA ◦ gA)(x) = gA(gA(x)) = gA(0) = 1.

Hence (gA ◦ gA)(x) = 1 for x ∈ R.

(d) Proof. Let x ∈ U . We consider three cases.

Case 1. x ∈ A and x ∈ B. Therefore, x ∈ C. Hence gC(x) = 1 and gA(x) · gB(x) = 1 · 1 = 1.

Thus gC(x) = (gA)(x) · (gB)(x).

Case 2. x belongs to exactly one of A and B, say x ∈ A and x /∈ B. Thus x /∈ C. Hence

gC(x) = 0. Since gA(x) = 1 and gB(x) = 0, it follows that gA(x) · gB(x) = 1 · 0 = 0 and so

gC(x) = (gA)(x) · (gB)(x).

Case 3. x /∈ A and x /∈ B. Thus x /∈ C. Therefore, gC(x) = gA(x) = gB(x) = 0 and so

gC(x) = (gA)(x) · (gB)(x).

Therefore, gC = (gA) · (gB).

(e) Proof. Let x ∈ U . If x ∈ A, then gA(x) = 1 and gA(x) = 0; while if x ∈ A, then gA(x) = 1

and gA(x) = 0. Thus in both cases, gA(x) = 1 − gA(x) .

9.48 (a) Proof. Let f(a) = f(b), where a, b ∈ A. Since g : B → A is a function, (g ◦ f)(a) = (g ◦ f)(b).

Because g ◦ f = iA, it follows that iA(a) = iA(b) and so a = b and f is one-to-one.

To show that g is onto, let a ∈ A. Suppose that f(a) = x ∈ B. Then g(x) = g(f(a)) =

(g ◦ f)(a) = iA(a) = a and so g is onto.

(b) Consider A = {1, 2}, B = {x, y, z}, f = {(1, x), (2, y)}, g = {(x, 1), (y, 2), (z, 2)}. Then

g ◦ f = {(1, 1), (2, 2)} = iA, but f is not onto.

(c) See the example in (b).

(d) Proof. Assume that f is onto. Suppose that g(x) = g(y), where x, y ∈ B. Since f is onto,

there exist a, b ∈ A such that f(a) = x and f(b) = y. Since g(x) = g(y), it follows that

g(f(a)) = g(f(b)) and so (g ◦ f)(a) = (g ◦ f)(b). Since g ◦ f = iA, we have a = b. Thus

x = f(a) = f(b) = y, implying that g is one-to-one.

(e) Proof. Assume that g is one-to-one. Let b ∈ B. Suppose that g(b) = x ∈ A. Then f(x) =

f(g(b)) and so g(f(x)) = g(f(g(b))). Observe that

g(f(x)) = g(f(g(b))) = (g ◦ f)(g(b)) = g(b).

Since g is one-to-one, f(x) = b and so f is onto.

(f) Suppose that f : A → B and g : B → A such that g ◦ f = iA. Then f is onto if and only if g

is one-to-one.

9.49 (a) Observe that

(f ◦ f)(x) = f(f(x)) = 1 − 1

f(x)
= 1 − 1

1 − 1
x

= 1 − x

x − 1
=

1

1 − x
.
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Thus

(f ◦ f ◦ f)(x) = f((f ◦ f)(x)) = 1 − 1
1

1−x

= 1 − (1 − x) = x

and so f ◦ f ◦ f = iA.

(b) f−1 = f ◦ f = 1
1−x .

9.50 Let A = {1, 2, 3}. Define f : A → A by f = {(1, 2), (2, 3), (3, 1)}.

9.51 In this case, gf = {(1, 1), (2, 4)}. Thus gf is a function from A to C. The reason that gf is a

function from A to C is because for each element x ∈ A and for each element y ∈ B to which x is

related, y is related to the same element z ∈ C.

9.52 (a) The relation f is not a function from R to R since (1, 1) ∈ f and (1,−1) ∈ f , for example.

(b) In this case, gf = {(x, x2) : x ∈ R}, that is, gf(x) = x2 for all x ∈ R.

(c) The reason that gf is a function from R to R is for each x ∈ R and for each y ∈ R to which

x is related, y is related to x2, that is, to the same element z ∈ R.

9.53 Let f ={(1, 2), (2, 1)} and g ={(1, 4), (2, 3), (3, 1), (3, 6), (4, 2), (4, 5)}. Then gf = {(1, 3), (2, 4)}.

9.54 (a) Proof. First, we show that R is reflexive. Let f ∈ F . Since f(x) = f(x) + 0 for all x ∈ R, it

follows that f R f and R is reflexive. Next, we show that R is symmetric. Let f R g, where

f, g ∈ F . Then there exists a constant C such that f(x) = g(x) + C for all x ∈ R. Thus

g(x) = f(x) + (−C) for all x ∈ R. Since −C is a constant, g R f and R is symmetric.

Finally, we show that R is transitive. Let f R g and g R h, where f, g, h ∈ F . Then there

exist constants C1 and C2 such that f(x) = g(x) + C1 and g(x) = h(x) + C2 for all x ∈ R.

Then f(x) = h(x) + (C1 + C2) for all x ∈ R. Since C1 + C2 is a constant, f R h and R is

transitive.

(b) For each f ∈ F , let f ′ denote the derivative of f . Then [f ] = {g ∈ F : g′ = f ′}.

9.55 (a) Consider the function f : S → {0, 1, 2, . . . , 6} defined by

f(a) = 0, f(b) = 1, f(c) = 4, f(d) = 6.

Then g({a, b}) = |f(a) − f(b)| = 1, g({c, d}) = 2, g({b, c}) = 3, g({a, c}) = 4, g({b, d}) = 5,

g({a, d}) = 6.

(b) Proof. Assume, to the contrary, that there exists an injective function f : S → {0, 1, 2, . . . , 10}
such that g : T → {1, 2, . . . , 10} is bijective. Let

A = {a ∈ S : f(a) is even} and B = {b ∈ S : f(b) is odd}.

Now |S| = |A ∪ B| = |A| + |B| = 5. For {x, y} ∈ T , g({x, y}) is odd if and only if one of x

and y belongs to A and the other belongs to B. Therefore, |A| · |B| = 5, but this is impossible

since |A| + |B| = 5.

(c) Define f : S → {0, 1, 2, . . . , 12} defined by

f(a) = 0, f(b) = 1, f(c) = 3, f(d) = 7, f(e) = 12.
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Then g has the desired properties.

(d) Does there exist an injective function f : S → {0, 1, 2, . . . , |T | + 1} such that the function

g : T → {1, 2, . . . , |T | + 1} defined by g({i, j}) = |f(i) − f(j)| is injective? The answer is no.

9.56 (a) The function F is not one-to-one since, for example, F (1) = F (5) = 1.

(b) The function F is not onto since, for example, there is no odd positive integer n such that

F (n) = 3. Suppose that there is an odd positive integer n such that F (n) = 3. Then

3n + 1 = 2m · 3 for some nonnegative integer m and so 2m · 3 − 3n = 3(2m − n) = 1. Since

2m − n ∈ Z, it follows that 3 | 1, which is a contradiction.

9.57 (a) The function F is not one-to-one since, for example, F (2) = F (4) = 0.

(b) The function F is onto.

First, we prove two lemmas.

Lemma 1. If m is an even nonnegative integer, then 2m ≡ 1 (mod 3).

Proof. We proceed by induction on m. If m = 0, then 2m = 20 = 1 and 2m ≡ 1 (mod 3).

Assume for some nonnegative even integer m that 2m ≡ 1 (mod 3). Thus 2m = 3x + 1 for

some integer x. Then 2m+2 = 4 · 2m = 4(3x + 1) = 3(4x + 1) + 1. Since 4x + 1 ∈ Z, we have

2m+2 ≡ 1 (mod 3).

Lemma 2. If m is an odd positive integer, then 5 · 2m ≡ 1 (mod 3).

Proof. Let m be an odd positive integer. Then m − 1 is a nonnegative even integer. By

Lemma 1, 2m−1 = 3x + 1 for some integer x. Thus

5 · 2m = 10 · 2m−1 = 10(3x + 1)

= 30x + 10 = 3(10x + 3) + 1.

. Thus 5 · 2m ≡ 1 (mod 3).

Proof. Let m be a nonnegative integer. First, consider m = 0. Let n be a positive even integer.

Then n = 2a, where a ∈ N. Since 3n + 1 = 3(2a) + 1 = 2(3a) + 1 is odd, F (n) = 0 = m.

Let m be a positive even integer. Then 2m ≡ 1 (mod 3) by Lemma 1. So 2m = 3x + 1 for

some x ∈ Z. Then F (x) = m.

Next, let m be a positive odd integer. Then 5·2m ≡ 1 (mod 3) by Lemma 2. So 5·2m = 3x+1

for some x ∈ Z. Then F (x) = m.

9.58 Proof. We proceed by induction. The derivative of f(x) = lnx is f ′(x) = f (1)(x) = 1/x. For

n = 1,

(−1)n+1(n − 1)!

xn
=

(−1)20!

x
=

1

x

and so the result holds for n = 1. Assume that the kth derivative of f(x) is

f (k)(x) =
(−1)k+1(k − 1)!

xk
= (−1)k+1(k − 1)!x−k,
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where k is a positive integer. We show that

f (k+1)(x) =
(−1)k+2k!

xk+1
.

Observe that

f (k+1)(x) =
d

dx
f (k)(x) =

d

dx

[

(−1)k+1(k − 1)!x−k
]

= (−1)k+1(k − 1)!(−k)x−(k+1)

= (−1)k+2k(k − 1)!x−(k+1) =
(−1)k+2k!

xk+1
.

The result then follows by the Principle of Mathematical Induction.

9.59 Proof. We use induction. Since

f ′(x) = e−x − xe−x = e−x(1 − x) = (−1)1e−x(x − 1),

the formula holds for n = 1. Assume that

f (k)(x) = (−1)ke−x(x − k)

for some positive integer k. We show that

f (k+1)(x) = (−1)k+1e−x[x − (k + 1)].

Observe that

f (k+1)(x) =
d

dx

(

f (k)(x)
)

= (−1)k[e−x − e−x(x − k)]

= (−1)ke−x[1 − (x − k)] = (−1)k+1e−x[x − (k + 1)].

The result then follows by the Principle of Mathematical Induction.

9.60 (a) Proof. We first show that f(A1 ∪ A2) ⊆ f(A1) ∪ f(A2). Let b ∈ f(A1 ∪ A2). Then there

exists a ∈ A1 ∪ A2 such that f(a) = b. Since a ∈ A1 ∪ A2, it follows that a ∈ A1 or a ∈ A2,

say the former. Thus b = f(a) ∈ f(A1). Since f(A1) is a subset of f(A1) ∪ f(A2), we have

b ∈ f(A1) ∪ f(A2) and so f(A1 ∪ A2) ⊆ f(A1) ∪ f(A2).

Next, we show that f(A1) ∪ f(A2) ⊆ f(A1 ∪ A2). Let b ∈ f(A1) ∪ f(A2). Then b ∈ f(A1)

or b ∈ f(A2), say the former. Thus there exists a ∈ A1 such that f(a) = b. Since a ∈ A1, it

follows that a ∈ A1 ∪ A2 and so b = f(a) ∈ f(A1 ∪ A2). Hence f(A1) ∪ f(A2) ⊆ f(A1 ∪ A2).

Therefore, f(A1) ∪ f(A2) = f(A1 ∪ A2).

(b) Proof. Let b ∈ f(A1 ∩ A2). Then there exists a ∈ A1 ∩ A2 such that f(a) = b. Since

a ∈ A1 ∩A2, it follows that a ∈ A1 and a ∈ A2. Thus b = f(a) ∈ f(A1) and b = f(a) ∈ f(A2),

implying that b ∈ f(A1) ∩ f(A2). Therefore, f(A1 ∩ A2) ⊆ f(A1) ∩ f(A2).
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(c) Proof. By (b), we see that f(A1 ∩ A2) ⊆ f(A1) ∩ f(A2). Thus it remains to show that

f(A1) ∩ f(A2) ⊆ f(A1 ∩ A2). Let b ∈ f(A1) ∩ f(A2). Then b ∈ f(A1) and b ∈ f(A2). Thus

there exist a1 ∈ A1 and a2 ∈ A2 such that b = f(a1) and b = f(a2). Since f is one-to-one and

f(a1) = f(a2), it follows that a1 = a2. Thus a1 = a2 ∈ A1 ∩A2, implying that b ∈ f(A1 ∩A2).

Therefore, f(A1) ∩ f(A2) ⊆ f(A1 ∩ A2) and so f(A1 ∩ A2) = f(A1) ∩ f(A2).

9.61 g(Z) = {x = 4k + 1 : k ∈ Z}, g(E) = {x = 8k + 1 : k ∈ Z}.

9.62 (a) Proof. Let [a] = [b], where [a], [b] ∈ Z16. Thus a ≡ b (mod 16) and so a − b = 16k for some

integer k. Thus 3a − 3b = 3(16k) = 48k = 24(2k). Since 2k ∈ Z, it follows that 24 | (3a − 3b)

and so 3a ≡ 3b (mod 24). Thus h([a]) = [3a] = [3b] = h([b]) in Z24 and so h is well-defined.

(b) h(A) = {[0], [3], [9], [12], [18], [21]}, h(B) = {[0]}.
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Exercises for Chapter 10

Exercises for Section 10.1: Denumerable Sets

10.1 Proof. Since A and B are denumerable, the sets A and B can be expressed as

A = {a1, a2, a3, . . .} and B = {b1, b2, b3, . . .}.

The function f : N → A ∪ B defined by

1 2 3 4 5 6 · · ·
↓ ↓ ↓ ↓ ↓ ↓ · · ·
a1 b1 a2 b2 a3 b3 · · ·

is bijective. Therefore, A ∪ B is denumerable.

10.2 Let A = {a1, a2, a3, . . .} and B = {b1, b2, b3, . . .}. Then C = {c1, c2, c3, . . .}, where ci = −bi for each

i ∈ N. Since A and C are disjoint denumerable sets, A ∪C is denumerable by Exercise 10.1. Also,

A ∪ C = {a1, c1, a2, c2, a3, c3, . . .} and so A ∪ C is denumerable.

10.3 (a) 1 +
√

2, (4 +
√

2)/2, (9 +
√

2)/3.

(b) Proof. Assume that f(a) = f(b), where a, b ∈ N. Then a2+
√

2
a = b2+

√
2

b . Multiplying by ab,

we obtain a2b +
√

2b = ab2 +
√

2a. Thus a2b − ab2 +
√

2b −
√

2a = ab(a − b) −
√

2(a − b) =

(a − b)(ab −
√

2) = 0. Thus a = b or ab =
√

2. Since ab ∈ N and
√

2 is irrational, ab 6=
√

2.

Therefore, a = b and f is one-to-one.

(c) Proof. Let x ∈ S. Then x = (n2 +
√

2)/n for some n ∈ N. Then f(n) = x.

(d) Yes, since N is denumerable and f : N → S is a bijection by (b) and (c).

10.4 Proof. We first show that f is one-to-one. Let f(a) = f(b), where a, b ∈ N. Then

1 + (−1)a(2a − 1)

4
=

1 + (−1)b(2b − 1)

4
.

Simplifying the equation, we obtain (−1)a−b(2a−1) = 2b−1. We claim that (−1)a−b = 1. Suppose

that (−1)a−b = −1. Then −(2a − 1) = 2b − 1, implying that a + b = 1, which is impossible since

a, b ∈ N. Thus, as claimed, (−1)a−b = 1. Then 2a − 1 = 2b − 1 and so a = b.

Next, we show that f is onto. Let x ∈ Z. We show that there exists n ∈ N such that f(n) = x.

For x = 0, choose n = 1; for x > 0, choose n = 2x > 0; while for x < 0, choose n = −2x + 1 > 0.

In each case, f(n) = x.

10.5 Since A is denumerable, A = {a1, a2, . . .}. Observe that

A × B = {(a1, x), (a1, y), (a2, x), (a2, y), . . .}.
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10.6 Either |A| = |B| and A is denumerable or |A| is finite. Therefore, the set A is countable.

10.7 Note that S is an infinite subset of the set N × N. The result follows by Theorem 10.3 and

Result 10.5.

10.8 Note that S is an infinite subset of the set N × N. The result follows by Theorem 10.3 and

Result 10.5.

10.9 Construct a table (as shown below), where the set {i, j} with i < j occurs in row j, column i.

1 2 3 4 · · ·
1
2 {1, 2}
3 {1, 3} {2, 3}
4 {1, 4} {2, 4} {3, 4}
...

...
...

...

10.10 Define f : G → Z × Z by f(a + bi) = (a, b). Then f is bijective and so |G| = |Z × Z|. Since Z × Z

is denumerable, G is denumerable.

10.11 Since the sets A1, A2, A3, . . . are denumerable sets, we can write Ai = {ai1, ai2, ai3, . . .} for each

i ∈ N. Construct a table where aij is in row i, column j.

10.12 Since A is denumerable and B is an infinite subset of A, it follows that B is denumerable by

Theorem 10.3.

10.13 Since Z−{2} is an infinite subset of the denumerable set Z, it follows by Theorem 10.3 that Z−{2}
is denumerable and so |Z| = |Z − {2}|.

10.14 (a) Proof. Assume that f(a) = f(b), where a, b ∈ R − {1}. Then

2a

a − 1
=

2b

b − 1
.

Crossmultiplying, we obtain 2a(b − 1) = 2b(a − 1) and so 2ab − 2a = 2ab − 2b. Subtracting

2ab from both sides and dividing by −2, we obtain a = b. Thus f is one-to-one.

Next, we show that f is onto. Let r ∈ R − {2}. Then r/(r − 2) ∈ R − {1}. Since

f

(

r

r − 2

)

=
2 r

r−2
(

r
r−2

)

− 1
=

2r

r − (r − 2)
= r,

f is onto.

(b) Since the function f : R − {1} → R − {2} in (a) is bijective, |R − {1}| = |R − {2}|.

Exercises for Section 103: Uncountable Sets
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10.15 Proof. Denote the set of irrational numbers by I. Assume, to the contrary, that I is denumerable.

Since Q and I are disjoint denumerable sets, Q∪I is denumerable by Exercise 10.1. Since Q∪I = R,

it follows that R is denumerable, which is a contradiction.

10.16 Since the set C of complex numbers contains R as a subset and R is uncountable, it follows by

Theorem 10.9 that C is uncountable.

10.17 Proof. Consider the function f : (0, 2) → R defined by

f(x) =
1 − x

x(x − 2)

for all x ∈ (0, 2). First, we show that f is one-to-one. Let f(a) = f(b), where a, b ∈ (0, 2). Then

1 − a

a2 − 2a
=

1 − b

b2 − 2b
.

Multiplying both sides by (a2 − 2a)(b2 − 2b) and simplifying, we obtain

(a − b)(a + b − ab − 2) = 0.

We claim that a = b. Assume, to the contrary, that a 6= b. We may assume that a > b. Then

a + b − ab − 2 = 0. Since a + b − ab − 2 = (a − 1)(1 − b) − 1 = 0, it follows that (a − 1)(1 − b) = 1.

Thus a 6= 1. If a < 1, then b < a < 1 and so (a − 1)(1 − b) < 0, which is impossible. Thus a > 1

and b < 1. Since 1 < a < 2 and 0 < b < 1, it follows that 0 < a− 1 < 1 and 0 < 1− b < 1. However

then, (a − 1)(1 − b) < 1, producing a contradiction. Thus a = b, as claimed, and f is one-to-one.

Next we show that f is onto. Let r ∈ R. Since f(1) = 0, we may assume that r 6= 0. For r 6= 0,

let x = 2r−1+
√

4r2+1
2r (obtained from the quadratic formula). Then 0 < x < 1 if r < 0 and 1 < x < 2

if r > 0. It follows that f(x) = r and so f is onto.

10.18 (a) Proof. Assume that f(a) = f(b), where a, b ∈ (0, 1). Then 2a = 2b and so a = b. Hence f is

one-to-one. For each r ∈ (0, 2), x = r/2 ∈ (0, 1) and f(x) = r. Therefore, f is onto. Thus f is

a bijective function from (0, 1) to (0, 2).

(b) It follows by (a).

(c) Define the function g : (0, 1) → (a, b) by g(x) = (b − a)x + a. Then g is bijective and so (0, 1)

and (a, b) have the same cardinality.

Exercises for Section 10.4: Comparing Cardinalities of Sets

10.19 (a) False. For example, |P(R)| > |R|.
(b) False. |Q| 6= |R|.
(c) True. Proof. Since A is denumerable and A ⊆ B, the set B is infinite. Since B is an

infinite subset of the denumerable set C, it follows that B is denumerable.
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(d) True. Consider the function f : N → S defined by f(n) =
√

2/n. The function f is bijective.

(e) True. (See (d).)

(f) False. Consider R.

(g) False. The function f : N → R defined by f(n) = n is injective but |N| 6= |R|.

10.20 False. The set A = {1} is countable but |A| < |N|.

10.21 The cardinalities of these sets are the same. Consider f : [0, 1] → [1, 3] defined by f(x) = 2x + 1

for all x ∈ [0, 1].

10.22 (a) B = {x ∈ A : x /∈ Ax} = {a, c}.

(b) The set B is not Ax for any x ∈ A and so g is not onto and therefore is not bijective.

10.23 Let b ∈ B. Then the function f : A → A × B defined by f(a) = (a, b) for each a ∈ A is one-to-one.

Thus |A| ≤ |A × B|.

Exercises for Section 10.5: The Schröder-Bernstein Theorem

10.24 Proof. Since A ⊆ B, the identity function iA from A to B defined by iA(x) = x is injective and so

|A| ≤ |B|. On the other hand, since |A| = |C|, there is a bijection f : C → A. Then the restriction

fB of f to B is an injective function from B to A and so |B| ≤ |A|. The result then follows by the

Schröder-Bernstein Theorem.

10.25 Proof. Since (0, 1) ⊆ [0, 1], the identity function i : (0, 1) → [0, 1] defined by i(x) = x is an injective

function. The function f : [0, 1] → (0, 1) defined by f(x) = 1
2x + 1

4 is also injective. It then follows

by the Schröder-Bernstein Theorem that |(0, 1)| = |[0, 1]|.

10.26 Since Q−{q} is an infinite subset of the denumerable set Q, it follows that Q−{q} is denumerable

and so |Q− {q}| = |Q| = ℵ0.

Since R − {r} ⊆ R, the identity function on R − {r} defined by f(x) = x for each x ∈ R − {r}
is injective. Next, consider the function g : R → R − {r} defined by

g(x) =

{

x if x < r
x + 1 if x ≥ r

Then g is injective. By the Schröder-Bernstein Theorem, |R − {r}| = |R| = c.

10.27 (a) Proof. We use induction on n. Since f(k) = 4k = 41k for all k ∈ Z, the result holds for

n = 1. Assume that fm(k) = 4mk for all k ∈ Z, where m is a positive integer. We show that

fm+1(k) = 4m+1k. Observe that

fm+1(k) = f(fm(k)) = f(4mk) = 4(4mk) = 4m+1k.

The result then follows by the Principle of Mathematical Induction.

98



(b) B′ = {fn(x) : x is odd, n ∈ N} = {4nx : x is odd, n ∈ N}.
C = {x : x is odd} ∪ B′ = {x : x is odd} ∪ {4nx : x is odd, n ∈ N} = {4nx : x is odd, n ∈
N ∪ {0}}.
D = 2Z− B′ = 2Z − {4nx : x is odd, n ∈ N} = {22t−1x : x is odd, t ∈ N}.
The function f1 is the restriction of f to C. Thus f1 : C → B′ is defined by f1(x) = 4x for

x ∈ {4ny : y is odd, n ∈ N ∪ {0}}.
The function h : C ∪ D → B′ ∪ D is defined by

h(x) =

{

f1(x) if x ∈ C
iD(x) if x ∈ D

=

{

4x if x ∈ C
x if x ∈ D.

10.28 (a) Proof. Assume that f(m/n) = f(r/s). Since f(m/n) has 2k digits for some integer k ≥ 2,

the integer f(m/n) contains at least k consecutive 0’s. Then the digits to the rightmost block

of k consecutive 0’s make up n while the digits to the left of this block make up m. Since

f(r/s) = f(m/n), it follows by the same argument that r = m and s = n. So m/n = r/s.

(b) Proof. The function g : N → Q+ defined by g(n) = n is injective. Combining this with

the function f in (a) gives us, by the Schröder-Bernstein Theorem, |Q+| = |N| and so Q+ is

denumerable.

Additional Exercises for Chapter 10

10.29 The proposed proof only says that |A − {a}| = |B − {b}|, but no proof of this fact has been given.

10.30 The function f in the proof is not onto since there is no x ∈ (0,∞) such that f(x) = 0.

10.31 (a) Proof. First we show that f is one-to-one. Assume that f(a) = f(b), where a, b ∈ N. Observe

that 1 is the only positive integer whose image under f is 0. Hence if f(a) = f(b) = 0, then

a = b = 1. Thus, we may assume that f(a) = f(b) 6= 0. We consider two cases.

Case 1. f(a) = f(b) > 0. Then a and b are both even, say a = 2x and b = 2y, where x, y ∈ N.

Thus f(a) = x and f(b) = y. Since f(a) = f(b), it follows that x = y and so a = 2x = 2y = b.

Case 2. f(a) = f(b) < 0. Then a and b are both odd, say a = 2x + 1 and b = 2y + 1, where

x, y ∈ N. Thus f(a) = −x and f(b) = −y. Since f(a) = f(b), it follows that x = y and so

a = 2x + 1 = 2y + 1 = b.

Hence f is one-to-one. Next, we show that f is onto. Let n ∈ Z. If n ∈ N, then f(2n) = n.

If n ≤ 0, then f(−2n + 1) = n. Thus f is onto.

(b) The set of integers is denumerable.

10.32 (a) Consider the function f : (0, 1) → (0,∞) defined by f(x) = x
1−x for all x ∈ (0, 1). First,

we show that f is one-to-one. Let f(a) = f(b), where a, b ∈ (0, 1). Then a
1−a = b

1−b . Thus

a(1 − b) = b(1 − a) and so a = b. Hence f is one-to-one.
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Next we show that f is onto. Let r ∈ (0,∞). Let x = r
r+1 . Thus 0 < x < 1 and

f(x) = f

(

r

r + 1

)

=
r

r+1

1 − r
r+1

=
r

(r + 1) − r
= r.

Therefore, f is onto. Since f is bijective, (0, 1) and (0,∞) are numerically equivalent.

(b) Consider the function f : (0, 1] → [0,∞) defined by f(x) = 1−x
x for all x ∈ (0, 1]. The proof

that f is bijective is similar to that in (a). Thus (0, 1] and [0,∞) are numerically equivalent.

(c) One possibility is to show:

(1) [0, 1) and [0,∞) are numerically equivalent.

(2) [0, 1) and [b, c) are numerically equivalent.

(3) [0,∞) and [a,∞) are numerically equivalent.

For (1), consider f(x) = x
1−x .

For (2), consider g(x) = (c − b)x + b.

For (3), consider h(x) = x + a.

Another possibility is to consider the function φ : [b, c) → [a,∞) defined by

φ(x) =
(ac − b) − (a − 1)x

c − x

for all x ∈ [b, c).

10.33 Since |S − T | = |T − S|, there exists a bijective function g : S − T → T − S. Let i : S ∩ T → S ∩ T

be the identity function on S ∩ T . Then the function f : S → T defined by

f(x) =

{

g(x) if x ∈ S − T
i(x) if x ∈ S ∩ T

is bijective.

10.34 (a) Proof. Assume first that S is countable. Then S is either finite or denumerable. If S is finite,

then S = {s1, s2, . . . , sk} for some k ∈ N and the function f : N → S defined by

f(n) =

{

sn if 1 ≤ n ≤ k
sk if n > k

is surjective. If S is denumerable, then there exists a bijective function from N to S.

For the converse, assume that there exists a surjective function f : N → S. For each s ∈ S,

let ns be a positive integer such that f(ns) = s. Let S′ = {ns : s ∈ S}. Since S′ ⊆ N and

|S′| = |S|, it follows that S has the same cardinality as a subset of N and so S is countable.
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(b) The proof is similar to (a).

10.35 Proof. Let A be a finite nonempty set. Thus A = {a1, a2, . . . , ak} for some k ∈ N. Since f : A → N

defined by f(ai) = i for each i with 1 ≤ i ≤ k is injective, it follows that |A| ≤ |N|. Since A is not

denumerable, there is no bijective function from A to N. Thus |A| < |N|.

10.36 (a) |A × A| ≤ |A|.
Proof. For each a, b ∈ A, where a = 0.a1a2a3 · · · and b = 0.b1b2b3 · · ·,

f(a, b) = 0.a1b1a2b2a3b3 · · ·

is the decimal expansion of a unique element of A. Thus f : A×A → A is a function. We now

show that f is injective. Let f(a, b) = f(c, d) = 0.r1r2r3 · · ·. Then a = c = 0.r1r3r5 · · · and

b = d = 0.r2r4r6 · · ·. Since these are unique decimal expansions of elements of A, (a, b) = (c, d)

and so f is injective.

Note that we cannot conclude (b) since for example, if c = 0.101010 · · · and g(c) = (a, b),

then b = 0 /∈ A. Also, if c = 0.191919 · · · and g(c) = (a, b), then b = 1 /∈ A. Also, if

c1 = 0.51010101 · · · and c2 = 0.41919191 · · · and g(c1) = (a1, b1) and g(c2) = (a2, b2), then

a1 = 0.5000 · · ·, b1 = 0.1111 · · ·, a2 = 0.4999 · · ·, b2 = 0.1111 · · ·. Thus (a1, b1) = (a2, b2). Since

c1 6= c2, it follows that f is not injective.

10.37 Proof. We proceed by induction. By Result 10.5, the statement is true for n = 2. Assume for some

integer k ≥ 2 that if B1, B2, . . . , Bk are denumerable sets, then B1 ×B2 × · · · ×Bk is denumerable.

Let A1, A2, . . . , Ak+1 be denumerable sets. Let A = A1 × A2 × · · · × Ak and B = Ak+1. By the

induction hypothesis, A is denumerable. Since

A × B = (A1 × A2 × · · · × Ak) × Ak+1

= A1 × A2 × · · · × Ak+1,

it follows by Result 10.5 that A1 ×A2 × · · · ×Ak+1 is denumerable. The result then follows by the

Principle of Mathematical Induction.
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Exercises for Chapter 11

Exercises for Section 11.1: Divisibility Properties of Integers

11.1 Proof. Assume that a | b and c | d. Then b = ax and d = cy for integers x and y. Then

ad + bc = a(cy) + (ax)c = ac(y + x). Since y + x is an integer, ac | (ad + bc).

11.2 Proof. Assume that a | b. Then b = ax for some integer x. Thus −b = −(ax) = a(−x) and

b = (−a)(−x). Since −x is an integer, a | (−b) and (−a) | b.

11.3 Proof. Assume that ac | bc. Then bc = (ac)x = c(ax) for some integer x. Since c 6= 0, we can

divide by c, obtaining b = ax. So a | b.

11.4 Proof. First, observe that 3 | (n3 − n) for n = 0, n = 1, and n = 2. Suppose that n ∈ Z and

n 6= 0, 1, 2. Then n = 3q + r, where q ∈ Z and 0 ≤ r ≤ 2. Thus

n3 − n = (3q + r)3 − (3q + r) = (27q3 + 27q2r + 9qr2 + r3) − (3q + r)

= 3(9q3 + 9q2r + 3qr2 − q) + (r3 − r).

Since 3 | (r3 − r), it follows that r3 − r = 3s for some integer s. Thus

n3 − n = 3(9q3 + 9q2r + 3qr2 − q) + 3s = 3(9q3 + 9q2r + 3qr2 − q + s).

Since 9q3 + 9q2r + 3qr2 − q + s is an integer, 3 | (n3 − n).

11.5 Proof. Assume, to the contrary, that there exists a prime n ≥ 3 that can be expressed as k3+1 ≥ 3

for some integer k. Since n = k3 +1 = (k+1)(k2−k+1), it follows that k+1 = 1 or k2−k+1 = 1,

which implies that k = 0 or k = 1. Thus n = 1 or n = 2, which is a contradiction.

11.6 Proof. Let p be a prime that can be expressed as n3 − 1 = (n− 1)(n2 +n+1) for some integer n.

Since p is prime, either n − 1 = 1 or n2 + n + 1 = 1. Thus n = 2 or n = 0,−1. If n = 0 or n = −1,

then p < 0, which is impossible. Therefore, n = 2 and p = 7 = 23 − 1 is the only prime that is 1

less than a perfect cube.

11.7 Proof. We employ induction. For n = 1, we have 52·1 +7 = 32 and 8 | 32. Thus the result is true

for n = 1. Assume that

8 |
(

52k + 7
)

for some positive integer k. We show that

8 |
(

52(k+1) + 7
)

.

Since 8 |
(

52k + 7
)

, it follows that 52k + 7 = 8a for some integer a and so 52k = 8a − 7. Thus

52(k+1) + 7 = 52 · 52k + 7 = 25(8a− 7) + 7

= 200a− 175 + 7 = 200a− 168 = 8(25a− 21).

Since 25a − 21 is an integer, 8 |
(

52(k+1) + 7
)

. The result then follows by the Principle of Mathe-

matical Induction.
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11.8 Proof. We employ mathematical induction. For n = 1, we have 33n+1 + 2n+1 = 34 +22 = 85 and

5 | 85. Thus the result is true for n = 1. Assume that

5 |
(

33k+1 + 2k+1
)

for some positive integer k. We show that

5 |
(

33(k+1)+1 + 2k+2
)

.

Since 5 |
(

33k+1 + 2k+1
)

, it follows that 33k+1 + 2k+1 = 5a for some integer a. Thus

33k+1 = 5a − 2k+1 = 5a − 2 · 2k.

Now observe that

33(k+1)+1 + 2k+2 = 33 · 33k+1 + 22 · 2k = 27 · 33k+1 + 4 · 2k

= 27(5a− 2 · 2k) + 4 · 2k = 5(27a)− 50 · 2k

= 5(27a− 10 · 2k).

Since 27a − 10 · 2k is an integer, 5 |
(

33(k+1)+1 + 2k+2
)

. The result follows by the Principle of

Mathematical Induction.

11.9 Consider the n numbers

2 + (n + 1)!, 3 + (n + 1)!, . . . , n + (n + 1)!, (n + 1) + (n + 1)!.

Observe for 2 ≤ k ≤ n + 1 that k divides k + (n + 1)!. Thus these n numbers are composite.

11.10 Note that (p1, c1) = (2, 4), (p2, c2) = (3, 6), (p3, c3) = (5, 8), (p4, c4) = (7, 9), (p5, c5) = (11, 10),

(p6, c6) = (13, 12), and (p7, c7) = (17, 14). Since every even integer that is at least 4 is composite

(and not prime), p7+k ≥ 17 + 2k and c7+k ≤ 14 + 2k for all integers k ≥ 0. Thus |p7+k − c7+k| ≥ 3

for all k ≥ 0. Therefore, 5 and 6 are the only positive integers n such that |pn − cn| = 1.

11.11 Proof. We employ induction. By Theorem 11.2, if a and x are integers such that d | a, then d | ax.

Thus the statement is true for n = 1. Assume for some positive integer k, that if a1, a2, . . . , ak and

x1, x2, . . . , xk are 2k ≥ 2 integers such that d | ai for all i (1 ≤ i ≤ k), then d | ∑k
i=1 aixi. Let

b1, b2, . . . , bk+1 and y1, y2, . . . , yk+1 be 2(k + 1) integers such that d | bi for all i (1 ≤ i ≤ k + 1).

Let b =
∑k

i=1 biyi. By the induction hypothesis, d | b. By Theorem 11.2, d | bk+1yk+1. Again by

Theorem 11.2, d | (b + bk+1yk+1). Thus d | ∑k+1
i=1 biyi. The result then follows by the Principle of

Mathematical Induction.

Exercises for Section 11.2: The Division Algorithm

11.12 Proof. We first show that there exist integers q and r such that b = aq + r and 0 ≤ r < |a|.
Consider the set

S = {b − ax : x ∈ Z and b − ax ≥ 0}.
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Suppose first that b ≥ 0. If a > 0, then letting x = −1 we see that b − ax = b + a > 0 and so

b − ax ∈ S. If a < 0, then letting x = 1, we see that b − ax = b − a > 0 and so b − ax ∈ S. Next,

suppose that b < 0. If a > 0, then letting x = b, we see that b − ax = b − ab = b(1 − a) ≥ 0 and

so b − ax ∈ S. If a < 0, then letting x = −b, we see that b − ax = b + ab = b(1 + a) ≥ 0 and so

b − ax ∈ S. Hence in any case, S is nonempty. By Theorem 6.7, S has a smallest element r and

thus r ≥ 0. Since r ∈ S, there exists an integer q such that r = b − aq. Therefore, b = aq + r with

r ≥ 0.

Next, we show that r < |a|. Assume, to the contrary, that r ≥ |a|. Let t = r − |a| ≥ 0. Since

|a| > 0, it follows that t < r. Moreover,

t = r − |a| = (b − aq) − |a|.

If a > 0, then t = (b − aq) − a = b − a(q + 1); while if a < 0, then t = (b − aq) + a = b − a(q − 1).

In either case, t ∈ S, contradicting the fact that r is the smallest element of S. Thus r < |a|, as

desired. (The remainder of the proof is identical to the proof of Theorem 11.4).

11.13 (a) 125 = 17 · 7 + 6 (q = 7, r = 6).

(b) 125 = (−17) · (−7) + 6 (q = −7, r = 6).

(c) 96 = 8 · 12 + 0 (q = 12, r = 0).

(d) 96 = (−8) · (−12) + 0 (q = −12, r = 0).

(e) −17 = 22 · (−1) + 5 (q = −1, r = 5).

(f) −17 = (−22) · 1 + 5 (q = 1, r = 5).

(g) 0 = 15 · 0 + 0 (q = 0, r = 0).

(h) 0 = (−15) · 0 + 0 (q = 0, r = 0).

11.14 Proof. Let p be a prime different from 2 and 5. Dividing p by 10, we obtain p = 10k + r for some

integers k and r, where 0 ≤ r ≤ 9. If r = 0, then 10 | p, which is impossible. If r = 2, then

p = 10k + 2 = 2(5k + 1). Since 5k + 1 is an integer, 2 | p, again, an impossibility since p 6= 2. If

r = 4, then p = 10k + 4 = 2(5k + 2). Since 5k + 2 is an integer, 2 | p, which is a contradiction. If

r = 5, then p = 10k + 5 = 5(2k + 1). Since 2k + 1 is an integer, 5 | p, which is impossible since

p 6= 5. If r = 6, then p = 10k + 6 = 2(5k + 3). Since 5k + 3 is an integer, 2 | p, which is impossible.

If r = 8, then p = 10k + 8 = 2(5k + 4). Since 5k + 4 is an integer, 2 | p, which is impossible. Hence

p = 10k + r, where r ∈ {1, 3, 7, 9}.

11.15 Proof. Let a be an odd integer. Then a = 2b + 1 for some integer b. Thus

a2 = (2b + 1)2 = 4b2 + 4b + 1 = 4(b2 + b) + 1.

Since k = b2 + b is an integer, a = 4k + 1.

11.16 (a) Proof. Let n be an integer that is not a multiple of 3. Then n = 3q +1 or n = 3q +2 for some

integer q. We consider these two cases.
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Case 1. n = 3q + 1. Then

n2 = (3q + 1)2 = 9q2 + 6q + 1 = 3(3q2 + 2q) + 1.

Letting k = 3q2 + 2q, we see that n2 = 3k + 1, where k ∈ Z.

Case 2. n = 3q + 2. Then

n2 = (3q + 2)2 = 9q2 + 12q + 4 = 9q2 + 12q + 3 + 1 = 3(3q2 + 4q + 1) + 1.

Letting k = 3q2 + 4q + 1, we see that n2 = 3k + 1, where k ∈ Z.

(b) Proof. Assume, to the contrary, that there exists an integer n such that n2 = 3m − 1 =

3(m− 1) + 2 for some integer m. Thus n2 is not a multiple of 3. By (a), n2 = 3k + 1 for some

integer k. Thus 3m− 1 = 3k + 1 or 3m− 3k = 3(m− k) = 2. Since m− k ∈ Z, it follows that

3 | 2, which is impossible.

11.17 Result The square of an integer that is not a multiple of 5 is either of the form 5k + 1 or 5k + 4

for some integer k.

Proof. Let n be an integer that is not a multiple of 5. Then a = 5q + r for some integers q and r

with 1 ≤ r ≤ 4. We consider these four cases.

Case 1. n = 5q + 1. Then

n2 = (5q + 1)2 = 25q2 + 10q + 1 = 5(5q2 + 2q) + 1,

where 5q2 + 2q ∈ Z.

(The other three cases are handled similarly.)

11.18 (a) Observe that m = 5q + r, where q, r ∈ Z and 0 ≤ r ≤ 4. If m = 5q, then m is a multiple of 5.

If m = 5q + 1, then m + 4 is a multiple of 5. If m = 5q + 2, then m + 8 is a multiple of 5. If

m = 5q + 3, then m + 12 is a multiple of 5. If m = 5q + 4, then m + 16 is a multiple of 5.

(b) Result Let n ∈ Z. For every integer m, one of the integers

m, m + (n − 1), m + 2(n − 1), . . . , m + (n − 1)2

is a multiple of n.

Proof. By the Division Algorithm, there exist integers q and r such that m = nq + r, where

0 ≤ r ≤ n − 1. For the number m + r(n − 1), we have

m + r(n − 1) = (nq + r) + r(n − 1) = nq + rn = n(q + r).

Since q + r ∈ Z, it follows that n | [m + r(n − 1)].

11.19 (a) Proof. Let p be an odd prime. Then p = 2a + 1 for some integer a. We consider two cases,

depending on whether a is even or a is odd.

Case 1. a is even. Then a = 2k, where k ∈ Z. Thus p = 2a + 1 = 2(2k) + 1 = 4k + 1.

Case 2. a is odd. Then a = 2k + 1, where k ∈ Z. Thus p = 2a + 1 = 2(2k + 1) + 1 = 4k + 3.

105



(b) Proof. Let p ≥ 5 be an odd prime. Then p = 2a + 1 for some integer a. We consider three

cases, depending on whether a = 3k, a = 3k + 1, a = 3k + 2 or some integer k.

Case 1. a = 3k. Then p = 2a + 1 = 2(3k) + 1 = 6k + 1.

Case 2. a = 3k + 1. Then p = 2a + 1 = 2(3k + 1) + 1 = 6k + 3 = 3(2k + 1). Since 2k + 1 is an

integer, 3 | p, which is impossible as p ≥ 5 is a prime. Thus this case cannot occur.

Case 3. a = 3k + 2. Then p = 2a + 1 = 2(3k + 2) + 1 = 6k + 5.

11.20 (a) 13 = 4 · 3 + 1. (b) 11 = 4 · 2 + 3. (c) 7 = 6 · 1 + 1. (d) 17 = 6 · 2 + 5.

11.21 (a) Observe that n = 6q + 5 = 3(2q) + 3 + 2 = 3(2q + 1) + 2. Letting k = 2q + 1, we see that

n = 3k + 2.

(b) The converse is false. The integer 2 = 3 · 0 + 2 is of the form 3k + 2, but 2 is not of the form

6q + 5 since 6q + 5 = 2(3q + 2) + 1 is always odd.

11.22 Proof. We proceed by induction. By Result 4.11, the statement is true for n = 2. Assume

that if a1, a2, . . . , ak are k ≥ 2 integers such that ai ≡ 1 (mod 3) for each i (1 ≤ i ≤ k), then

a1a2 · · ·ak ≡ 1 (mod 3). Now let b1, b2, . . . , bk+1 be k + 1 integers such that bi ≡ 1 (mod 3) for all

i (1 ≤ i ≤ k + 1). We show that b1b2 · · · bk+1 ≡ 1 (mod 3). Let b = b1b2 · · · bk. By the induction

hypothesis, b ≡ 1 (mod 3). Since b ≡ 1 (mod 3) and bk+1 ≡ 1 (mod 3), it follows by Result 4.11

that b1b2 · · · bk+1 = bbk+1 ≡ 1 (mod 3). The result then follows by the Principle of Mathematical

Induction.

11.23 Proof. Assume that an even number of a, b, and c are congruent to 1 modulo 3. We consider two

cases.

Case 1. None of a, b, and c is congruent to 1 modulo 3. We consider two subcases.

Subcase 1.1. At least one of a, b, and c is congruent to 0 modulo 3, say a ≡ 0 (mod 3). Then a = 3q

for some integer q. Thus abc = 3qbc. Since qbc ∈ Z, it follows that 3 | abc and abc ≡ 0 (mod 3).

Hence abc 6≡ 1 (mod 3).

Subcase 1.2. None of a, b, and c is congruent to 0 modulo 3. Then all of a, b, and c are congruent to

2 modulo 3. By Result 4.11, ab ≡ 1 (mod 3). Applying Result 4.11 again, we have abc ≡ 2 (mod 3)

and so abc 6≡ 1 (mod 3).

Case 2. Exactly two of a, b, and c are congruent to 1 modulo 3, say a and b are congruent to 1

modulo 3 and c is not congruent to 1 modulo 3. (The proof is similar to that of Case 1.)

11.24 The statement is true.

Proof. Since a and b are odd integers, a = 2x + 1 and b = 2y + 1, where x, y ∈ Z. If 4 | (a − b),

then we have the desired result. Thus we may assume that 4 ∤ (a− b). Then a− b = 2(x− y), where

x − y is an odd integer. Let x − y = 2z + 1, where z ∈ Z. Thus a = b + 2(x − y) = b + 4z + 2 and

a + b = 2b + 4z + 2 = 2(2y + 1) + 4z + 2

= 4(y + z + 1).
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Since y + z + 1 ∈ Z, it follows that 4 | (a + b).

11.25 (a) Proof. Let Sk = {a1, a2, . . . , ak} for each integer k with 1 ≤ k ≤ n. For each integer k

(1 ≤ k ≤ n),
k
∑

i=1

ai ≡ r (mod n) for some integer r, where 0 ≤ r ≤ n − 1. We consider two

cases.

Case 1.
k
∑

i=1

ai ≡ 0 (mod n) for some integer k. Then n |
k
∑

i=1

ai, that is, n divides the sum of

the elements of Sk.

Case 2.

k
∑

i=1

ai 6≡ 0 (mod n) for all integers k (1 ≤ k ≤ n). Hence there exist integers s and

t with 1 ≤ s < t ≤ n such that

s
∑

i=1

ai ≡ r (mod n) and

t
∑

i=1

ai ≡ r (mod n) for an integer r

with 1 ≤ r ≤ n − 1. Therefore,

s
∑

i=1

ai ≡
t
∑

i=1

ai (mod n)

and so

n |
(

t
∑

i=1

ai −
s
∑

i=1

ai

)

.

Hence

n |
t
∑

i=s+1

ai,

that is, n divides the sum of the elements of the set T = {as+1, as+2, . . . , at}.
(b) No, except it would be better not to use the word “set”. Show, for every n integers a1, a2, . . . , an,

distinct or not, that n divides the sum of some k of them (1 ≤ k ≤ n).

Exercises for Section 11.4: The Euclidean Algorithm

11.26 (a) gcd(51, 288) = 3. (b) gcd(357, 629) = 17. (c) gcd(180, 252) = 36.

11.27 (a) gcd(51, 288) = 3 = 51 · (17) + 288 · (−3).
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(b) gcd(357, 629) = 17 = 357 · (−7) + 629 · 4.

(c) gcd(180, 252) = 36 = 180 · 3 + 252 · (−2).

11.28 Observe that if d = as + bt and k ∈ Z, then d = a(s + kb) + b(t − ka).

11.29 Proof. Assume first that n is a linear combination of a and b. Thus n = as+ bt for some integers

s and t. Since d = gcd(a, b), it follows that d | a and d | b. By Result 11.2, d | (as+ bt) and so d | n.

For the converse, assume that d | n. Then n = dc for some integer c. Since d = gcd(a, b), it

follows by Theorem 11.7 that d = ax + by for some integers x and y. Therefore,

n = dc = (ax + by)c = a(xc) + b(yc).

Since xc and yc are integers, n is a linear combination of a and b.

11.30 Since n | (7m+3), it follows that n | 5(7m+3). Hence n | [(35m+26)− (35m+15)]. Thus n = 11.

11.31 Proof. Since d = gcd(a, b), it follows by Theorem 11.7 that d = as + bt for some integers s and t.

Thus

d = as + bt = (a1d)s + (b1d)t = d(a1s + b1t).

Dividing both sides by d, we obtain a1s + b1t = 1. It then follows by Theorem 11.12 that

gcd(a1, b1) = 1.

11.32 Proof. Since a ≡ b (mod m) and a ≡ c (mod n), it follows that a = b + mx and a = c + ny for

some integers x and y. Hence b + mx = c + ny and so b − c = ny − mx. Since d = gcd(m, n), it

follows that d | m and d | n. Thus m = dr and n = ds, where r, s ∈ Z. Therefore,

b − c = ny − mx = (ds)y − (dr)x = d(sy − rx).

Since sy − rx is an integer, d | (b − c) and so b ≡ c (mod d).

Exercises for Section 11.5: Relatively Prime Integers

11.33 (a) Consider a = 4 and b = c = 2.

(b) Consider a = b = c = 2.

11.34 Proof. Assume, to the contrary, that
√

3 is rational. Then
√

3 = a/b, where a and b are nonzero

integers. We may assume that a/b has been reduced to lowest terms. Thus a2 = 3b2. Since b2

is an integer, 3 | a2. It then follows by Corollary 11.14 that 3 | a. Thus a = 3x for some integer

x. So a2 = (3x)2 = 3(3x2) = 3b2 and so 3x2 = b2. Since x2 is an integer, 3 | b2 and so 3 | b by

Corollary 11.14. However, 3 is a common factor of a and b, contradicting the fact that a/b has been

reduced to lowest terms.

11.35 Proof. Assume, to the contrary, that
√

6 is rational. Then
√

6 = a/b, where a, b ∈ N. Further-

more, we may assume that gcd(a, b) = 1. Hence 6 = a2/b2 and a2 = 6b2 = 2(3b2). Since 3b2

is an integer, a2 is even. By Theorem 3.12, a is even. Thus a = 2c for some integer c. Hence
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a2 = (2c)2 = 4c2 = 6b2 and so 2c2 = 3b2. Since c2 is an integer, 2 | 3b2. Since gcd(2, 3) = 1, it

follows by Theorem 11.13 that 2 | b2. By Theorem 3.12, b is even. This contradicts our assumption

that a/b has been reduced to lowest terms.

11.36 Proof. Assume, to the contrary, that p1/n is rational. Then p1/n = a/b, where a and b are

nonzero integers. We may assume that a/b has been reduced to lowest terms. Thus an/bn = p

and so an = pbn. Since bn is an integer, p | an. Since p is a prime, it follows by Corollary 11.15

that p | a. Since p | a, it follows that a = pc for some integer c. Thus an = (pc)n = pncn = pbn.

Hence bn = pn−1cn = p(pn−2cn). Since n ≥ 2, we have that pn−2cn is an integer and so p | bn. By

Corollary 11.15, p | b. This contradicts our assumption that a/b has been reduced to lowest terms.

11.37 Proof. We give a proof by contrapositive. Hence we show that if p ≥ 2 is an integer that is not a

prime, then there exist two integers a and b such that p | ab but p ∤ a and p ∤ b. Assume that p is

not a prime. Then there exist two integers a and b such that 1 < a < p, 1 < b < p, and p = ab.

Thus p | ab. Since a < p and b < p, it follows that p ∤ a and p ∤ b.

11.38 (a) Proof. Let a and b be two consecutive odd positive integers. Then a = 2k+1 and b = 2k+3

for some integer k. Since

1 = (2k + 1) · (k + 1) + (2k + 3) · (−k)

is a linear combination of 2k + 1 and 2k + 3, the integers 2k + 1 and 2k + 3 are relatively

prime.

(b) One possibility: Every two consecutive integers k and k + 1 are relatively prime since 1 can

be expressed as a linear combination of k and k + 1, namely, 1 = (k + 1) · 1 + k · (−1). In part

(a), we saw that every two consecutive odd positive integers a = 2k + 1 and b = 2k + 3 are

relatively prime by writing 1 = ax + by, where x = k + 1 and y = −k. (Note the values of x

and y.) The integers a = 3k + 2 and b = 3k + 5 are relatively prime as well since we can write

1 = ax + by, where x = 2k + 3 and y = −(2k + 1). (Again, note the values of x and y.) More

generally, we have:

Result For every positive integer n and every integer k, the integers a = nk + (n − 1) and

b = nk + (2n − 1) are relatively prime.

Proof. Observe that 1 = ax+by, where x = (n−1)k+(2n−3) and y = −[(n−1)k+(n−2)].

11.39 (a) False. Consider n = 3.

(b) True since (−3)(2n + 1) + 2(3n + 2) = 1

11.40 Let p and q be primes with p ≥ q ≥ 5. By Exercise 11.19(b), p = 6a ± 1 and q = 6b ± 1 for some

integers a and b. Hence

p2 − q2 = (36a2 ± 12a + 1) − (36b2 ± 12b + 1) = 12(3a2 ± a) − 12(3b2 ± b).

By Theorem 3.12, a2 and a (and b2 and b) are of the same parity. Thus 3a2 ± a and 3b2 ± b are

both even and we can write p2 − q2 = 24k for some integer k.
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11.41 (a) Proof. Let (a, b, c) be a Pythagorean triple. Then a2 + b2 = c2. Therefore, (an)2 + (bn)2 =

a2n2 + b2n2 = (a2 + b2)n2 = c2n2 = (cn)2. Thus (an, bn, cn) is a Pythagorean triple.

(b) Proof. Assume, to the contrary, that ab is odd. So a and b are both odd. Then a = 2x + 1

and b = 2y + 1, where x, y ∈ Z. Observe that

a2 + b2 = (2x + 1)2 + (2y + 1)2 = 4x2 + 4x + 1 + 4y2 + 4y + 1.

Thus c2 = 4x2+4x+4y2+4y+2 = 2(2x2+2x+2y2+2y+1). Since 2x2+2x+2y2+2y+1 ∈ Z,

it follows that c2 is even and so c is even. Let c = 2z, where z ∈ Z. Thus

2 = (2z)2 − (4x2 + 4x + 4y2 + 4y) = 4z2 − (4x2 + 4x + 4y2 + 4y) = 4(z2 − x2 − x − y2 − y).

This implies that 4 | 2, which is a contradiction.

(c) Proof. Assume, to the contrary, that a and b are of the same parity. By (b), ab is even and

so at least one of a and b is even. By our assumption then, a and b are both even. Thus

gcd(a, b) ≥ 2, which is a contradiction.

11.42 Proof. Assume that a ≡ b (mod m) and a ≡ b (mod n), where gcd(m, n) = 1. Thus m | (a − b)

and n | (a − b). By Theorem 11.16, mn | (a − b). Hence a ≡ b (mod mn).

11.43 Proof. Assume that ac ≡ bc (mod n) and gcd(c, n) = 1. Thus n | (ac − bc) and so n | c(a − b).

Since gcd(c, n) = 1, it follows by Theorem 11.13 that n | (a − b). Hence a ≡ b (mod n).

Exercises for Section 11.6: The Fundamental Theorem of Arithmetic

11.44 (a) Since 539 = 72 · 11, the smallest prime factor of 539 is 7.

(b) Since 1575 = 32 · 52 · 7, the smallest prime factor of 1575 is 3.

(c) Since 529 = 232, the smallest prime factor of 529 is 23.

(d) Since 1601 is a prime, the smallest prime factor of 1601 is 1601.

11.45 (a) 4725 = 33 · 52 · 7. (b) 9702 = 2 · 32 · 72 · 11. (c) 180625 = 54 · 172.

11.46 (a) Proof. Let p = 3n+1 be a prime. We claim that n must be even. If n is odd, then n = 2k+1 for

some integer k. So p = 3(2k+1)+1 = 6k+4 = 2(3k+2). Thus 2 | p, which is impossible. Thus,

as claimed, n is even and so n = 2k for some integer k. Therefore, p = 3(2k) + 1 = 6k + 1.

(b) Proof. Let n be a positive integer such that n = 3ℓ + 2, where ℓ ∈ Z. If n is a prime, then

the proof is complete. Assume, to the contrary, that no prime factor of n is of the form 3k + 2

for some k ∈ Z. We consider two cases.

Case 1. Some prime factor p of n is of the form 3k, where k ∈ Z. Necessarily then, 3 | p and

so p = 3, contradicting our assumption that n = 3ℓ + 2, where ℓ ∈ Z.

Case 2. Every prime factor of n is of the form 3k + 1, where k ∈ Z. By Exercise 11.22, n is

of the form 3k + 1, which is a contradiction.
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11.47 (a) 4278 = 2 · 3 · 23 · 31 and 71929 = 11 · 13 · 503.

(b) gcd(4278, 71929) = 1

Exercises for Section 11.7: Concepts Involving Sums of Divisors

11.48 (a) Proof. Assume that k is composite. Then k = ab, where a, b ∈ Z and 1 < a, b < k.

Therefore,

2k − 1 = 2ab − 1 = (2a)b − 1.

Letting x = 2a, we have 2k − 1 = xb − 1, where x ≥ 4. Since b ≥ 2, we have

xb − 1 = (x − 1)(xb−1 + xb−2 + · · · + 1).

Thus (x − 1) | (xb − 1) and so 2k − 1 is not prime.

(b) Proof. Assume that 2k − 1 is prime. Let p = 2k − 1. Then k ≥ 2. The proper divisors

of n = 2k−1(2k − 1) = 2k−1p are then p, 2p, 22p, . . . , 2k−2p and 1, 2, 22, . . . , 2k−1. The sum of

these integers is

p(1 + 2 + 22 + · · · + 2k−2) + (1 + 2 + 22 + · · · + 2k−1) = p(2k−1 − 1) + (2k − 1)

= (2k − 1)[(2k−1 − 1) + 1]

= 2k−1(2k − 1) = n,

as desired.

Additional Exercises for Chapter 11

11.49 (a) Proof. Let f(m/n) = f(s/t), where m, n, s, t ∈ N, m and n are relatively prime, and s

and t are relatively prime. Since m and n are relatively prime, as are s and t, the positive

rational numbers m/n and s/t are uniquely expressed as the ratios of two positive integers.

Then 2m3n = 2s3t. By the uniqueness of the canonical factorization of a positive integer, it

follows that m = s and n = t and so m/n = s/t.

(b) Since the identity function from N to Q+ is injective and there is an injective function from

Q+ to N by (a), it follows by the Schröder-Bernstein Theorem that Q+ and N have the same

cardinality.

11.50 (a) Proof. Suppose that a is a composite. Then a = rs for some integers r and s, where 1 < r < a

and 1 < s < a. Then f(r) = r2 − r + rs = r(r − 1 + s). Since r > 1 and r − 1 + s > 1, it

follows that f(r) is not a prime.

(b) 2, 3, 5.

(c) The number f(a) = a2 is not a prime.

11.51 Result Let p and q = p + 2 be two primes. Then pq − 2 is prime if and only if p = 3.
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11.52 Two possibilities:

Result Let p and q = p + 4 be two primes. Then pq − 2 is a prime if and only if p = 3.

Result Let p and q = p + 8 be two primes. Then pq − 20 is a prime if and only if p = 3.

11.53 It is wrong to say: “Then 3 | n and so n is not prime.” Note that 3 | 3 and 3 is prime.

11.54 Let 2 = p1, p2, . . . , p8 be the first eight primes. Since pi is odd for 2 ≤ i ≤ 8, it follows that
∑8

i=1 pi = k is odd. Let {A, B} be any partition of S = {p1, p2, . . . , p8}, where the sum of primes in

A is a and the sum of primes in B is b. Thus a + b = k. Since k is odd, a and b are of the opposite

parity and so a 6= b. Note that 2 + 5 + 11 + 13 + 19 = 3 + 7 + 17 + 23 = 50.

11.55 Proof. We use the Strong Principle of Mathematical Induction. Since a1 = a0 = 1, it follows that

gcd(a0, a1) = gcd(1, 1) = 1. Hence the statement is true for n = 0. Assume for a positive integer

k, that gcd(ai, ai+1) = 1 for every integer i with 0 ≤ i < k. We show that gcd(ak, ak+1) = 1. We

consider two cases, according to whether k is even or k is odd.

Case 1. k is even. Then k = 2ℓ for some positive integer ℓ. Thus ak = aℓ−1 + aℓ. Since

k + 1 = 2ℓ + 1, it follows that ak+1 = aℓ. Because ak = ak+1 + aℓ−1, it follows by Lemma 11.9 that

gcd(ak, ak+1) = gcd(aℓ−1, ak+1) = gcd(aℓ−1, aℓ) = 1.

Case 2. k is odd. Then k = 2ℓ + 1 for some positive integer ℓ. Thus ak = aℓ. Since k + 1 = 2ℓ + 2,

it follows that ak+1 = aℓ + aℓ+1. Because ak+1 = ak + aℓ+1, it follows by Lemma 11.9 that

gcd(ak, ak+1) = gcd(ak, aℓ+1) = gcd(aℓ, aℓ+1) = 1.

By the Strong Principle of Mathematical Induction, an and an+1 are relatively prime for every

nonnegative integer n.

11.56 (a) Since
√

5039 < 71 and 5039 has no prime factor less than 71, it follows by Lemma 11.19 that

5039 is prime. Since 5041 = 712, 5041 is not prime.

(b) Of course, all of the even integers between 5033 and 5047 are composite. Because

7 | 5033, 5 | 5035, 3 | 5037, 71 | 5041, 3 | 5043, 5 | 5045, 7 | 5047,

it follows that 5039 is the only prime between 5033 and 5047.

11.57 Proof. Assume, to the contrary, that log2 3 is rational. Then log2 3 = a
b , where a, b ∈ N. We

may assume that gcd(a, b) = 1. Thus 2
a

b = 3 and so
(

2
a

b

)b
= 3b. Therefore, 2a = 3b. Since 2 | 2a,

it follows that 2 | 3b and so 2 | 3 by Corollary 11.15. This is a contradiction.

11.58 Result If p and q are distinct primes, then logp q is irrational.

Proof. Assume, to the contrary, that logp q is rational. Then logp q = a
b , where a, b ∈ N. We

may assume that gcd(a, b) = 1. Thus p
a

b = q and so
(

p
a

b

)b
= qb. Therefore, pa = qb. Since p | pa,

it follows that p | qb and so p | q by Corollary 11.15. This is a contradiction.

11.59 (c) |A| = |B|.
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Proof. We first show that f and g are injective, beginning with f . Assume that f({i, j}) = f({r, s}),
where i < j and r < s. Then {i, j, i + j} = {r, s, r + s}. Hence i < j < i + j and r < s < r + s.

Thus i = r, j = s, and {i, j} = {r, s}. Therefore, f is injective.

Next we show that g is injective. Let g({i, j, k}) = g({r, s, t}), where i < j < k and r < s < t.

Then {2i, 3j5k} = {2r, 3s5t}. Since 2i is the only even element of U = {2i, 3j5k} and 2r is the only

even element of W = {2r, 3s5t} and U = W , it follows that 2i = 2r and so i = r. This also implies

that 3j5k = 3s5t. By the uniqueness of the canonical factorization of an integer as a product of

primes, it follows that j = s and k = t and so g is injective.

By the Schröder-Bernstein Theorem, |A| = |B|.

11.60 (a) Proof. Suppose that

f((ai1 , ai2 , . . . , ain
)) = f((aj1 , aj2 , . . . , ajn

)),

where (ai1 , ai2 , . . . , ain
), (aj1 , aj2 , . . . , ajn

) ∈ An. Then

pi1
1 pi2

2 · · · pin

n = pj1
1 pj2

2 · · · pjn

n .

By the uniqueness of the canonical factorization of an integer as a product of primes, it follows

that ik = jk for every k with 1 ≤ k ≤ n. Thus (ai1 , ai2 , . . . , ain
) = (aj1 , aj2 , . . . , ajn

). Hence f

is injective.

(b) Proof. Since the function g : A → An defined by f(a) = (a, a, . . . , a) is injective, it follows by

this fact, (a), and the Schröder-Bernstein Theorem that An and A are numerically equivalent.

(c) Proof. Let A and B be denumerable sets. Thus |A| = |B|. By (b), |An| = |A| and |Bm| = |B|.
Thus |An| = |Bm|.

11.61 Proof. Assume, to the contrary, that M is not a prime. Then M = ab for some integers a and b

with 1 < a < M and 1 < b < M . Let p be the smallest prime such that p | a and let q be the

smallest prime such that q | b. We may assume, without loss of generality, that p ≤ q. We now

consider two cases, according to whether p ∈ S or p /∈ S.

Case 1. p ∈ S. Then either p = qi for some i with 1 ≤ i ≤ s or p = rj for some j with 1 ≤ j ≤ t,

but not both. Suppose that p = qi, where 1 ≤ i ≤ s. Since p | a, it follows that p | M . Also,

p | q1q2 · · · qs. Thus p | (M − q1q2 · · · qs) and so p | r1r2 · · · rt. This implies that p = rj for some j

with 1 ≤ j ≤ t, a contradiction.

Case 2. p /∈ S. Hence q ≥ p ≥ pn+1 and so M ≥ pq ≥ p2
n+1, a contradiction.
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Exercises for Chapter 12

Exercises for Section 12.1: Limits of Sequences

12.1 Proof. Let ǫ > 0 be given. Choose N = ⌈1/2ǫ⌉ and let n > N . Thus n > 1/2ǫ and so
∣

∣

1
2n − 0

∣

∣ = 1
2n < ǫ.

12.2 Proof. Let ǫ > 0. Choose N = ⌈ 1√
ǫ
⌉ and let n be any integer such that n > N . Thus n > 1√

ǫ

and so 1
n2 < ǫ. Now observe that

∣

∣

∣

∣

1

n2 + 1
− 0

∣

∣

∣

∣

=
1

n2 + 1
<

1

n2
< ǫ.

12.3 Proof. Let ǫ > 0 be given. Choose N = max
(

1, ⌈log2

(

1
ǫ

)

⌉
)

and let n > N . Thus n > log2

(

1
ǫ

)

,

and so 2n > 1/ǫ and 1/2n < ǫ. Therefore,
∣

∣

(

1 + 1
2n

)

− 1
∣

∣ = 1
2n < ǫ.

12.4 Proof. Let ǫ > 0. Choose N = ⌈ 1
ǫ ⌉ and let n be any integer such that n > N . Thus n > 1

ǫ and

so 1
n < ǫ. Then

∣

∣

∣

∣

n + 2

2n + 3
− 1

2

∣

∣

∣

∣

=
1

4n + 6
<

1

n
< ǫ.

12.5 There exists a real number ǫ > 0 such that for each positive integer N , there exists an integer

n > N such that |an − L| ≥ ǫ.

Let P (L, ǫ, n) : |an − L| ≥ ǫ.

∀L ∈ R, ∃ǫ ∈ R+, ∀N ∈ N, ∃n ∈ N, n > N , P (L, ǫ, n).

12.6 Proof. Let M > 0 be given. Choose N = ⌈M 1
4 ⌉ and let n > N . Then n > M

1
4 and so n4 > M .

12.7 Proof. Let M be a positive number. Choose N =
⌈

3
√

M
⌉

and let n be any integer such that

n > N . Hence n > 3
√

M and so n3 > M . Thus
n5 + 2n

n2
= n3 +

2

n
> n3 > M .

Exercises for Section 12.2: Infinite Series

12.8 Let sn =
∑n

i=1
1

(3i−2)(3i+1) for each integer n ≥ 1.

(a) s1 = 1
1·4 = 1

4 , s2 = 1
1·4 + 1

4·7 = 2
7 , s3 = 1

1·4 + 1
4·7 + 1

7·10 = 3
10 .

Conjecture sn = n
3n+1 for all n ∈ N.

(b) Proof. We proceed by induction. By (a), s1 = 1
1·4 = 1

4 and so the formula holds for n = 1.

Assume that sk = k
3k+1 for a positive integer k. We show that sk+1 = k+1

3(k+1)+1 . Observe that

k+1
∑

i=1

1

(3i − 2)(3i + 1)
=

k
∑

i=1

1

(3i − 2)(3i + 1)
+

1

[3(k + 1) − 2][3(k + 1) + 1]
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=
k

3k + 1
+

1

(3k + 1)(3k + 4)
=

k(3k + 4) + 1

(3k + 1)(3k + 4)

=
3k2 + 4k + 1

(3k + 1)(3k + 4)
=

(k + 1)(3k + 1)

(3k + 1)(3k + 4)
=

k + 1

3k + 4
.

By the Principle of Mathematical Induction, sn = n
3n+1 for all n ∈ N.

(c) We show that limn→∞
n

3n+1 = 1
3 .

Proof. Let ǫ > 0. Choose N = ⌈ 1
ǫ ⌉ and let n be any integer such that n > N . Thus n > 1

ǫ

and so 1
n < ǫ. Then

∣

∣

∣

∣

n

3n + 1
− 1

3

∣

∣

∣

∣

=
1

9n + 3
<

1

n
< ǫ.

12.9 Let sn =
∑n

i=1
1
2i for each integer n ≥ 1.

(a) s1 = 1
2 , s2 = 1

2 + 1
22 = 1

2 + 1
4 = 3

4 , s3 = 1
2 + 1

22 + 1
23 = 1

2 + 1
4 + 1

8 = 7
8 .

Conjecture sn = 1 − 1
2n for all n ∈ N.

(b) Proof. We proceed by induction. Since s1 = 1
2 = 1− 1

21 , the formula sn holds for n = 1. Thus

the statement is true for n = 1. Assume that sk = 1 − 1
2k for a positive integer k. We show

that sk+1 = 1 − 1
2k+1 . Observe that

k+1
∑

i=1

1

2i
=

(

k
∑

i=1

1

2i

)

+
1

2k+1
= 1 − 1

2k
+

1

2k+1

= 1 −
(

1

2k
− 1

2k+1

)

= 1 − 2 − 1

2k+1
= 1 − 1

2k+1
.

By the Principle of Mathematical Induction, sn = 1 − 1
2n for all n ∈ N.

(c) The proof that limn→∞(1 − 1
2n ) = 1 is similar to the one in Exercise 12.3.

12.10 Observe that a1 = 1
6 = 1

2·3 , a2 = 1
6 − 2

2·3·4 = 1
6 − 1

12 = 1
12 = 1

3·4 , and a3 = 1
12 − 2

3·4·5 = 3
3·4·5 = 1

4·5 .

From this, we are led to conjecture that

an =
1

(n + 1)(n + 2)

for all n ∈ N, which we now prove.

Proof. We proceed by mathematical induction. Since a1 = 1
6 = 1

(1+1)(1+2) , the formula holds for

n = 1. Assume that ak = 1
(k+1)(k+2) for some positive integer k. We show that ak+1 = 1

(k+2)(k+3) .
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Since k ≥ 1, it follows that k + 1 ≥ 2. Therefore,

ak+1 = ak − 2

(k + 1)(k + 2)(k + 3)

=
1

(k + 1)(k + 2)
− 2

(k + 1)(k + 2)(k + 3)

=
1

(k + 1)(k + 2)

(

1 − 2

(k + 3)

)

=
1

(k + 2)(k + 3)
,

which is the desired result.

Next, we prove that the series
∑∞

i=1 ai is convergent and determine its value.

Proof. The nth partial sum of the series is

sn =

n
∑

i=1

ai =

n
∑

i=1

1

(i + 1)(i + 2)
=

n
∑

i=1

(

1

(i + 1)
− 1

(i + 2)

)

=

(

1

2
− 1

3

)

+

(

1

3
− 1

4

)

+ · · · +
(

1

n + 1
− 1

n + 2

)

=
1

2
− 1

n + 2
.

We now show that the sequence {sn} converges to 1/2. Let ǫ > 0 be given and let N = ⌈ 1
ǫ ⌉. Now

let n > N and so n > N ≥ 1
ǫ . Thus 1

n < ǫ. Then

∣

∣

∣

∣

(

1

2
− 1

n + 2

)

− 1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

− 1

n + 2

∣

∣

∣

∣

=
1

n + 2
<

1

n
< ǫ.

Therefore,
∑∞

i=1 ai = limn→∞ sn = 1
2 .

Exercises for Section 12.3: Limits of Functions

12.11 Proof. Let ǫ > 0 be given and choose δ = 2ǫ/3. Let x ∈ R such that 0 < |x − 2| < δ = 2ǫ/3.

Thus
∣

∣

(

3
2x + 1

)

− 4
∣

∣ =
∣

∣

3
2x − 3

∣

∣ = 3
2 |x − 2| < 3

2 · 2ǫ
3 = ǫ.

12.12 Proof. Let ǫ > 0 be given. Choose δ = ǫ/3. Let x ∈ R such that 0 < |x + 1| < δ = ǫ/3. Then

|(3x − 5) − (−8)| = |3x + 3| = 3|x + 1| < 3δ = 3(ǫ/3) = ǫ,

as desired.
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12.13 lim
x→3

x2 − 2x − 3

x2 − 8x + 15
= −2. Proof. For a given ǫ > 0, choose δ = min (1, ǫ/3). Let x ∈ R such that

0 < |x − 3| < δ ≤ 1. Thus 2 < x < 4 and so |x − 5| > 1. Hence 1
|x−5| < 1. Observe that

x2 − 2x − 3

x2 − 8x + 15
− (−2) =

x2 − 2x − 3

x2 − 8x + 15
+ 2 =

(x2 − 2x − 3) + 2(x2 − 8x + 15)

x2 − 8x + 15

=
3x2 − 18x + 27

x2 − 8x + 15
=

3(x2 − 6x + 9)

x2 − 8x + 15

=
3(x − 3)2

(x − 3)(x − 5)
=

3(x − 3)

(x − 5)
.

Thus
∣

∣

∣

(

x2−2x−3
x2−8x+15

)

− (−2)
∣

∣

∣
= 3|x−3|

|x−5| < 3|x − 3| < 3(ǫ/3) = ǫ.

12.14 Proof. Let ǫ > 0 be given. Choose δ = min(1, ǫ/9)and let x ∈ R such that 0 < |x− 2| < δ. Since

|x − 2| < δ ≤ 1, it follows that −1 < x − 2 < 1 and so 1 < x < 3. Hence 5 < 2x + 3 < 9 and so

|2x+ 3| < 9. Then |(2x2 − x− 5)− 1| = |(x− 2)(2x+ 3)| = |x− 2||2x+ 3| < 9|x− 2| < 9(ǫ/9) = ǫ.

12.15 Proof. Let ǫ > 0 be given and choose δ = min(1, ǫ/19). Let x ∈ R such that 0 < |x − 2| <

δ = min(1, ǫ/19). Since |x − 2| < 1, it follows that −1 < x − 2 < 1 and so 1 < x < 3. Thus

|x2 + 2x + 4| < 19. Because |x − 2| < ǫ/19, it follows that |x3 − 8| = |x − 2||x2 + 2x + 4| <

|x − 2| · 19 < (ǫ/19) · 19 = ǫ.

12.16 Proof. Let ǫ > 0 be given. Choose δ = min(1, 33ǫ). Let x ∈ R such that 0 < |x − 3| < δ. Since

|x − 3| < δ ≤ 1, it follow that 2 < x < 4. Thus 11 < 4x + 3 < 19 and so |4x + 3| > 11. Hence
1

|4x+3| < 1
11 . Therefore,

∣

∣

∣

∣

3x + 1

4x + 3
− 2

3

∣

∣

∣

∣

=

∣

∣

∣

∣

x − 3

12x + 9

∣

∣

∣

∣

=
|x − 3|

3|4x + 3| <
|x − 3|
3 · 11

<
δ

33
<

1

33
(33ǫ) = ǫ,

as desired.

12.17 lim
x→1

1

5x − 4
= 1. Proof. For a given ǫ > 0, choose δ = min (1/10, ǫ/10). Let x ∈ R such that

0 < |x − 1| < δ. Since |x − 1| < δ ≤ 1
10 , it follow that 9

10 < x < 11
10 and so 1

2 < 5x − 4 < 3
2 . Hence

|5x − 4| > 1
2 and 1

|5x−4| < 2. Therefore,

∣

∣

∣

∣

1

5x − 4
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

−5x + 5

5x − 4

∣

∣

∣

∣

=
5|x − 1|
|5x − 4| < 10|x − 1| < 10

ǫ

10
= ǫ,

as desired.
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12.18 Proof. Assume, to the contrary, that lim
x→0

1

x2
exists. Then there exists a real number L such that

lim
x→0

1

x2
= L. Let ǫ = 1. There exists δ > 0 such that if 0 < |x| < δ, then

∣

∣

∣

∣

1

x2
− L

∣

∣

∣

∣

< ǫ = 1. Let n

be an integer such that n >
⌈

1/δ2
⌉

. So n > 1/δ2 and
√

n > 1/δ. Let x = 1/
√

n < δ. Then

∣

∣

∣

∣

1

x2
− L

∣

∣

∣

∣

= |n − L| = |L − n| < 1

and so −1 < L − n < 1. Thus n − 1 < L < n + 1. Now, let y =
1√

n + 2
< x < δ. Then

∣

∣

∣

∣

1

y2
− L

∣

∣

∣

∣

= |L − (n + 2)| < 1.

Hence n + 1 < L < n + 3. Therefore, n + 1 < L < n + 1, which is a contradiction.

12.19 (a) lim
x→3

f(x) does not exist. Proof. Assume, to the contrary, that lim
x→3

f(x) exists. Then

lim
x→3

f(x) = L for some real number L. Let ǫ = 1/2. Then there exists δ > 0 such that if

x ∈ R and 0 < |x − 3| < δ, then |f(x) − L| < ǫ = 1
2 . If 0 < x − 3 < δ, then f(x) = 2. So

|2 − L| < 1
2 . Thus L > 1.5. If −δ < x − 3 < 0, then f(x) = 1 and |1 − L| < 1

2 . So L < 1.5.

Since 1.5 < L < 1.5, this is a contradiction.

(b) limx→π f(x) = 2. Proof. Let ǫ > 0 be given. Choose δ = .1. Let x ∈ R such that 0 <

|x − π| < δ. Then x > π − .1 > 3. Thus f(x) = 2 and so |f(x) − 2| = 0 < ǫ.

Exercises for Section 12.4: Fundamental Properties of Limits of Functions

12.20 Proof. We use mathematical induction. Let p be a constant polynomial, that is, p(x) = c ∈ R

for all x ∈ R. Then p(a) = c. By Theorem 12.28, limx→a p(x) = limx→a c = c. Thus the result

holds for n = 0. Assume that the result holds for polynomials q defined as

q(x) = akxk + ak−1x
k−1 + · · · + a1x + a0

for all x ∈ R, where k is a nonnegative integer and a0, a1, . . . , ak are fixed real numbers. By

assumption, limx→a q(x) = q(a). Let p be a polynomial defined by

p(x) = ck+1x
k+1 + ckxk + · · · + c1x + c0

for all x ∈ R, where c0, c1, . . . , ck+1 are fixed real numbers. We show that

lim
x→a

p(x) = p(a).

Observe that
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p(x) = ck+1x
k+1 + r(x),

where the polynomial r is defined by

r(x) = ckxk + · · · + c1x + c0.

By Theorems 12.25, 12.28, and 12.30,

lim
x→a

ck+1x
k+1 = ck+1a

k+1.

By the induction hypothesis, limx→a r(x) = r(a). It then follows by Theorem 12.23 that

lim
x→a

p(x) = lim
x→a

ck+1x
k+1 + lim

x→a
r(x) = ck+1a

k+1 + r(a) = p(a).

The result then follows by the Principle of Mathematical Induction.

12.21 By Theorem 12.23,

lim
x→a

(f1(x) + f2(x)) = lim
x→a

f1(x) + lim
x→a

f2(x) = L1 + L2

and so the result is true for n = 2. Assume that if g1, g2, . . . , gk are k functions, where k ≥ 2, such

that lim
x→a

gi(x) = Li for 1 ≤ i ≤ k, then

lim
x→a

(g1(x) + g2(x) + · · · + gk(x)) = L1 + L2 + · · · + Lk.

Let f1, f2, . . . , fk+1 be k + 1 functions such that lim
x→a

fi(x) = Mi for 1 ≤ i ≤ k + 1. We show that

lim
x→a

(f1(x) + f2(x) + · · · + fk+1(x)) = M1 + M2 + · · · + Mk+1.

Observe that

f1(x) + f2(x) + · · · + fk+1(x) = [f1(x) + f2(x) + · · · + fk(x)] + fk+1(x).

We can use Theorem 12.23 and the induction hypothesis to obtain the desired result.

12.22 (a) Observe that

lim
x→1

(x3 − 2x2 − 5x + 8) = lim
x→1

x3 + lim
x→1

(−2x2) + lim
x→1

(−5x) + lim
x→1

8

= 1 − 2 − 5 + 8 = 2.

(b) limx→1(4x + 7)(3x2 − 2) = limx→1(4x + 7) · limx→1(3x2 − 2) = 11 · 1 = 11.

(c) limx→2
2x2−1
3x3+1 = limx→2(2x2−1)

limx→2(3x3+1) = 7
25 .

Exercises for Section 12.5: Continuity

12.23 Proof. We prove by induction on the degree n of a polynomial p that for every real number a,

limx→a p(x) = p(a). Suppose first that n = 0 and that p is a polynomial c of degree 0. Then p is a
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constant polynomial and limx→a p(x) = limx→a c = c = p(a). Assume that the result is true for all

polynomials of degree k ≥ 0, and let p be a polynomial of degree k + 1. Hence

p(x) = ck+1x
k+1 + ckxk + · · · + c1x + c0,

where ci ∈ R for 0 ≤ i ≤ k + 1. Let q(x) = ckxk + ck−1x
k−1 · · · + c1x + c0. By the induction

hypothesis, limx→a q(x) = q(a). Also, limx→a ck+1x
k+1 = ck+1a

k+1. By Theorem 12.23,

lim
x→a

p(x) = lim
x→a

(ck+1x
k+1 + ckxk + · · · + c1x + c0)

= lim
x→a

(ck+1x
k+1 + q(x)) = lim

x→a
ck+1x

k+1 + lim
x→a

q(x)

= ck+1a
k+1 + q(a) = p(a).

The result then follows by the Principle of Mathematical Induction.

12.24 Proof. Let a be a real number that is not an integer. Then n < a < n + 1 for some n ∈ Z and

f(a) = ⌈a⌉ = n + 1. We show that lim
x→a

f(x) = f(a) = n + 1. Let ǫ > 0 be given and choose

δ = min(a − n, (n + 1) − a).

Let x ∈ R such that 0 < |x−a| < δ. Thus n ≤ a−δ < x < a+δ ≤ n+1 and so f(x) = ⌈x⌉ = n+1.

Therefore,

|f(x) − f(a)| = |(n + 1) − (n + 1)| = 0 < ǫ,

completing the proof.

12.25 Yes, define f(3) = 2. Then lim
x→3

x2 − 9

x2 − 3x
= 2. (Use an argument similar to that in Result 12.15.)

12.26 Observe that f is not defined at x = 2 and

lim
x→2

x2 − 4

x3 − 2x2
= 1.

(Use an argument similar to that in Result 12.15.) Thus if we define f(2) = 1, then limx→2 f(x) =

1 = f(2) and so f is continuous at 2.

12.27 We show that limx→10

√
x − 1 = f(10) = 3. Proof. Let ǫ > 0 be given and choose δ = min(1, 5ǫ).

Let x ∈ R such that 0 < |x − 10| < δ. Since |x − 10| < 1, it follows that 9 < x < 11 and so√
x − 1 + 3 > 5. Therefore, 1/(

√
x − 1 + 3) < 1/5. Hence

|
√

x − 1 − 3| =

∣

∣

∣

∣

(
√

x − 1 − 3)(
√

x − 1 + 3)√
x − 1 + 3

∣

∣

∣

∣

=
|x − 10|√
x − 1 + 3

<
1

5
(5ǫ) = ǫ,

completing the proof.
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Exercises for Section 12.6: Differentiability

12.28 f ′(3) = 6. Proof. Let ǫ > 0 be given and choose δ = ǫ. Let x ∈ R such that 0 < |x − 3| < δ = ǫ.

Then
∣

∣

∣

∣

f(x) − f(3)

x − 3
− 6

∣

∣

∣

∣

=

∣

∣

∣

∣

x2 − 9

x − 3
− 6

∣

∣

∣

∣

=

∣

∣

∣

∣

(x − 3)(x + 3)

x − 3
− 6

∣

∣

∣

∣

= |(x + 3) − 6| = |x − 3| < ǫ.

Thus f ′(3) = 6.

12.29 f ′(1) = − 1
9 . Proof. Let ǫ > 0 be given and choose δ = min(1, 18ǫ). Let x ∈ R such that

0 < |x − 1| < δ. Since |x − 1| < 1, it follows that 2 < x + 2 < 4 and so 1
x+2 < 1

2 . Then

∣

∣

∣

∣

f(x) − f(1)

x − 1
−
(

−1

9

)
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
x+2 − 1

3

x − 1
+

1

9

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

−1 + x

9(x + 2)

∣

∣

∣

∣

=
|x − 1|

9(x + 2)
<

|x − 1|
18

<
18ǫ

18
= ǫ.

Thus f ′(1) = − 1
9 .

12.30 f ′(0) = 0. Proof. Let ǫ > 0 be given and choose δ = ǫ. Let x ∈ R such that 0 < |x| < δ = ǫ. Then

∣

∣

∣

∣

x2 sin 1
x − 0

x − 0
− 0

∣

∣

∣

∣

=

∣

∣

∣

∣

x sin
1

x

∣

∣

∣

∣

= |x|
∣

∣

∣

∣

sin
1

x

∣

∣

∣

∣

< δ · 1 = ǫ.

Thus f ′(0) = 0.

Additional Exercises for Chapter 12

12.31 Proof. Let ǫ > 0. Choose N = ⌈(4 + 3ǫ)/9ǫ⌉ and let n be any integer such that n > N . Thus

n > 4+3ǫ
9ǫ and so 3n − 1 > 4

3ǫ . Hence

∣

∣

∣

∣

n + 1

3n− 1
− 1

3

∣

∣

∣

∣

=

∣

∣

∣

∣

4

9n − 3

∣

∣

∣

∣

=
4

3
· 1

3n − 1
<

4

3
· 3ǫ

4
= ǫ,

as desired.

12.32 Proof. Let ǫ > 0. Choose N = ⌈ 1√
ǫ
⌉ and let n be any integer such that n > N . Thus n > 1√

ǫ

and so 1
n2 < ǫ. Therefore,

∣

∣

∣

∣

2n2

4n2 + 1
− 1

2

∣

∣

∣

∣

=
1

8n2 + 2
<

1

n2
< ǫ.
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12.33 Proof. Assume, to the contrary, that limn→∞[1+ (−2)n] = L for some real number L. Let ǫ = 1.

Thus there exists a positive integer N such that if n > N , then |1 + (−2)n − L| < 1. Hence

−1 < 1 + (−2)n − L < 1 and so L > (−2)n and L < (−2)n + 2. Thus if n > N and n is even, then

L > (−2)n > 0; while if n > N and n is odd, then L < (−2)n + 2 < 0. So 0 < L < 0, which is a

contradiction.

12.34 Proof. Let ǫ > 0. Choose N =
⌈

1
2ǫ

⌉

. We show that if n is an integer with n > N , then

|
(√

n2 + 1 − n
)

− 0| < ǫ. Let n ∈ Z such that n > N . Hence n >
⌈

1
2ǫ

⌉

≥ 1
2ǫ and so 1/(2n) < ǫ.

Therefore,

∣

∣

∣

(

√

n2 + 1 − n
)

− 0
∣

∣

∣
=

(

√

n2 + 1 − n
)

·
√

n2 + 1 + n√
n2 + 1 + n

=
(n2 + 1) − n2

√
n2 + 1 + n

=
1√

n2 + 1 + n
<

1√
n2 + n

=
1

n + n
=

1

2n
< ǫ,

as desired.

12.35 Proof. For a given ǫ > 0, choose δ = ǫ/|c1|. Let x ∈ R such that 0 < |x − a| < δ. Then

|(c1x + c0) − (c1a + c0)| = |c1||x − a| < |c1| (ǫ/|c1|) = ǫ.

12.36 Observe that lim
x→2

f(x) = 4 and so this limit does exist. Since lim
x→2

f(x) = 4 6= 2 = f(2), the function

f is not continuous at x = 2. However, this is not the question that was asked.

12.37 The integer N is required to be a positive integer. If ǫ is large, then N (as defined) need not be a

positive integer. For example, if ǫ = 10, then

N =

⌈

10

9ǫ
− 5

3

⌉

=

⌈

1

9
− 5

3

⌉

=

⌈

−14

9

⌉

= −1,

which is not permitted. We would choose N = max(1,
⌈

10
9ǫ − 5

3

⌉

).

12.38 Notice that if |2x − 3| < 7, then 1
|2x−3| > 1

7 . Thus

2|x − 1|
|2x − 3| 6<

2

7
· 7ǫ

2
.

Notice also that the “proof” concerns real numbers x with 0 < x < 2. One such value of x is 1.5,

for which 1
2x−3 is not defined. One way to eliminate this problem is to choose δ = min(1

4 , 7ǫ
2 ).

12.39 Proof. Assume, to the contrary, that the sequence
{

(−1)n+1 n
2n+1

}

converges. Then

lim
n→∞

(−1)n+1 n

2n + 1
= L
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for some real number L. We consider three cases, depending on whether L = 0, L > 0, or L < 0.

Case 1. L = 0. Let ǫ =
1

3
. Then there exists a positive integer N such that if n > N , then

∣

∣

∣

∣

(−1)n+1 n

2n + 1
− 0

∣

∣

∣

∣

<
1

3
or

n

2n + 1
<

1

3
. Then 3n < 2n+1 and so n < 1, which is a contradiction.

Case 2. L > 0. Let ǫ =
L

2
. Then there exists a positive integer N such that if n > N , then

∣

∣

∣

∣

(−1)n+1 n

2n + 1
− L

∣

∣

∣

∣

<
L

2
. Let n be an even integer such that n > N . Then

−L

2
< − n

2n + 1
− L <

L

2
.

Hence
L

2
< − n

2n + 1
<

3L

2
, which is a contradiction.

Case 3. L < 0. Let ǫ = −L

2
. Then there exists a positive integer N such that if n > N , then

∣

∣

∣

∣

(−1)n+1 n

2n + 1
− L

∣

∣

∣

∣

< −L

2
. Let n be an odd integer such that n > N . Then

L

2
<

n

2n + 1
− L < −L

2

and so
3L

2
<

n

2n + 1
<

L

2
. This is a contradiction.

12.40 Proof. Let ǫ > 0 be given. Choose N = ⌈1/9ǫ⌉ and let n > N . Then n >
1

9ǫ
>

1

9ǫ
− 1

3
, and so

9n >
1

ǫ
− 3 and 9n + 3 > 1/ǫ. Hence

1

9n + 3
< ǫ. Thus

∣

∣

∣

∣

n

3n + 1
− 1

3

∣

∣

∣

∣

=

∣

∣

∣

∣

3n − 3n − 1

3(3n + 1)

∣

∣

∣

∣

=

∣

∣

∣

∣

− 1

9n + 3

∣

∣

∣

∣

=
1

9n + 3
< ǫ,

as desired.

12.41 (a) Proof. Let ǫ > 0 be given. Since lim
n→∞

an = L, there exists a positive integer N1 such that if

n ∈ Z and n > N1, then |an−L| < ǫ/2. Also, since lim
n→∞

cn = L, there exists a positive integer
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N2 such that if n ∈ Z and n > N2, then |cn − L| < ǫ/2. Let N = max(N1, N2) and let n ∈ Z

such that n > N . Then

|(cn − an) − 0| = |cn − an| = |(cn − L) + (L − an)|
≤ |cn − L| + |an − L| <

ǫ

2
+

ǫ

2
= ǫ,

as desired.

(b) Proof. Since an ≤ bn ≤ cn for every positive integer n, it follows that 0 ≤ bn − an ≤ cn − an.

Let ǫ > 0 be given. By (a), lim
n→∞

(cn − an) = 0. Hence there exists a positive integer N ′ such

that if n ∈ Z and n > N ′, then |cn − an| < ǫ/4. Since lim
n→∞

cn = L, there exists a positive

integer N ′′ such that if n ∈ Z and n > N ′′, then |cn − L| < ǫ/2. Let N = max(N ′, N ′′) and

let n ∈ Z with n > N . Then

|bn − L| = |(bn − an) + (an − cn) + (cn − L)|
≤ |bn − an| + |an − cn| + |cn − L|
≤ |cn − an| + |cn − an| + |cn − L|
= 2|cn − an| + |cn − L| < 2

( ǫ

4

)

+
ǫ

2
= ǫ,

completing the proof.

12.42 Proof. Let a be an irrational number. Let ǫ > 0 and let n =
⌈

1
ǫ

⌉

. Then n ≥ 1
ǫ and so 1

n ≤ ǫ. Let

d = min(|qi − a| : 1 ≤ i ≤ n} and let δ = min{ǫ, d}. Suppose that x ∈ R such that |x − a| < δ.

Consider |f(x) − f(a)| = |f(x)| = f(x). If x /∈ Q, then f(x) = 0 < ǫ. If x ∈ Q, then x = qm for

some integer m with m > n. Then f(x) = 1
m < 1

n ≤ ǫ. Hence f is continuous at a.
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Exercises for Chapter 13

Exercises for Section 13.1: Binary Operations

13.1 (a) x ∗ (y ∗ z) = x ∗ x = y and (x ∗ y) ∗ z = z ∗ z = y. So x ∗ (y ∗ z) = (x ∗ y) ∗ z.

(b) x ∗ (x ∗ x) = x ∗ y = z and (x ∗ x) ∗ x = y ∗ x = y.

(c) y ∗ (y ∗ y) = y ∗ x = y and (y ∗ y) ∗ y = x ∗ y = z.

(d) The binary operation ∗ is neither associative nor commutative.

13.2 (a) Yes. G1, G4 (b) No.

(c) Yes. None (d) Yes. G1, G2 (e = 1), G4

(e) Yes. G1, G2 (e = 0), G4 (f) Yes. G1, G2 (e = 1), G3 (s = 2 − a), G4

(g) Yes. None (h) Yes. G1, G2 (e = 2), G3 (s = a/(a − 1)), G4

(i) No. (j) No.

13.3 (a) Let A1, A2 ∈ T . Then A1 =

[

a1 −b1

b1 a1

]

and A2 =

[

a2 −b2

b2 a2

]

for some a1, b1, a2, b2 ∈ R.

Then A1 +A2 =

[

a1 + a2 −(b1 + b2)
b1 + b2 a1 + a2

]

. Since A1 +A2 ∈ T , it follows that T is closed under

addition.

(b) Since A1A2 =

[

a1 −b1

b1 a1

] [

a2 −b2

b2 a2

]

=

[

a1a2 − b1b2 −(a1b2 + b1a2)
a1b2 + b1a2 a1a2 − b1b2

]

∈ T , it follows

that T is closed under matrix multiplication.

13.4 Proof. Let a, b ∈ T . Then a ∗ x = x ∗ a and b ∗ x = x ∗ b for all x ∈ S. For each x ∈ S,

(a ∗ b) ∗ x = a ∗ (b ∗ x) = a ∗ (x ∗ b) = (a ∗ x) ∗ b

= (x ∗ a) ∗ b = x ∗ (a ∗ b)

and so a ∗ b ∈ T .

13.5 Proof. Let a, b ∈ T . Thus a ∗ a = a and b ∗ b = b. Hence

(a ∗ b) ∗ (a ∗ b) = (a ∗ b) ∗ (b ∗ a) = a ∗ (b ∗ (b ∗ a)) = a ∗ ((b ∗ b) ∗ a)

= a ∗ (b ∗ a) = a ∗ (a ∗ b) = (a ∗ a) ∗ b = a ∗ b,

as desired.

Exercises for Section 13.2: Groups
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13.6 (a) See the table.

∗ a b c d
a a b c d
b b c d a
c c d a b
d d a b c

(b) Yes.

13.7 See the table.

∗ a b c d
a d c b a
b c d a b
c b a d c
d a b c d

13.8 (a) Since (1∗16)∗16 =
√

16∗16 = 4∗16 =
√

64 = 8 and 1∗(16∗16) = 1∗
√

162 = 1∗16 =
√

16 = 4,

it follows that ∗ is not associative and so (R+, ∗) is not a group.

(b) Since (1 ∗ 1) ∗ 2 = 1 ∗ 2 = 1/2 and 1 ∗ (1 ∗ 2) = 1 ∗ 1/2 = 2, it follows that ∗ is not associative

and so (R∗, ∗) is not a group.

(c) Since there is no identity, (R∗, ∗) is not a group. If e ∈ R∗ such that a ∗ e = e ∗ a = a, then

a ∗ e = a + e + ae = a and so e + ae = e(1 + a) = 0. Since e ∈ R∗, it follows that e 6= 0 and so

e(1 + a) 6= 0 for all a ∈ R∗ − {−1}.

Exercises for Section 13.3: Permutation Groups

13.9 The table for (F, ◦) is shown below. Composition of functions is always associative. All other

properties can be obtained from the table.

◦ f1 f2 f3 f4 f5 f6

f1 f1 f2 f3 f4 f5 f6

f2 f2 f1 f4 f3 f6 f5

f3 f3 f5 f1 f6 f2 f4

f4 f4 f6 f2 f5 f1 f3

f5 f5 f3 f6 f1 f4 f2

f6 f6 f4 f5 f2 f3 f1

13.10 Let a, b, c ∈ A. Let α, β ∈ SA such that α(a) = b, α(b) = a, and α(x) = x for x 6= a, b; while

β(b) = c, β(c) = b, and β(x) = x for x 6= b, c. Then (α ◦ β)(b) = α(β(b)) = α(c) = c; while

(β ◦ α)(b) = β(α(b)) = β(a) = a. Thus α ◦ β 6= β ◦ α.

13.11 (a) S2 (b) S3 (c) (Z, +) (d) (M∗
2 (R), ·)

13.12 x2 = α1 for all x ∈ {α1, α2, α3, α4}, x3 = α1 for all x ∈ {α1, α5, α6}.
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13.13 The table for (G, ◦) is shown below. That G is an abelian group can be seen from the table.

◦ γ1 γ2 γ3 γ4

γ1 γ1 γ2 γ3 γ4

γ2 γ2 γ3 γ4 γ1

γ3 γ3 γ4 γ1 γ2

γ4 γ4 γ1 γ2 γ3

Exercises for Section 13.4: Fundamental Properties of Groups

13.14 Proof. Assume that b ∗ a = c ∗ a. Let s be an inverse for a. Then (b ∗ a) ∗ s = (c ∗ a) ∗ s. Thus

b = b ∗ e = b ∗ (a ∗ s) = (b ∗ a) ∗ s = (c ∗ a) ∗ s = c ∗ (a ∗ s) = c ∗ e = c

and so b = c.

13.15 Proof. Let s be an inverse for a and let x = b ∗ s. Then

x ∗ a = (b ∗ s) ∗ a = b ∗ (s ∗ a) = b ∗ e = b.

Hence x = b ∗ s is a solution of the equation x ∗ a = b.

Next we show that x ∗ a = b has a unique solution in G. Suppose that x1 and x2 are both

solutions of x ∗ a = b. Then x1 ∗ a = b and x2 ∗ a = b. Hence x1 ∗ a = x2 ∗ a. Applying the Right

Cancellation Law, we have x1 = x2.

13.16 (a) x = a−1 ∗ c∗ b−1. (If x1 and x2 are two solutions, then a∗x1 ∗ b = a∗x2 ∗ b = c. An application

of the Left and Right Cancellation Laws yield x1 = x2.)

(b) x = b−1 ∗ a−1 ∗ c. (Verifying the uniqueness is similar to (a).)

13.17 Since G has even order, G − {e} has an odd number of elements. Consider those elements g ∈ G

for which g 6= g−1 and let Sg = {g, g−1}. Hence Sg = Sg−1 . If we take the union of all such sets

Sg for which g 6= g−1, then ∪Sg ⊂ G − {e}. Hence there exists an element h ∈ G − {e} such that

h /∈ ∪Sg and so h = h−1. Thus h2 = e.

13.18 Proof. Let a, b ∈ G. Then (a ∗ a) ∗ (b ∗ b) = e = (a ∗ b) ∗ (a ∗ b). Applying the Left and Right

Cancellation Laws, we obtain a ∗ b = b ∗ a.

13.19 Proof. Assume that ab = ba. Applying Theorem 13.11, we obtain

a−1b−1 = (ba)−1 = (ab)−1 = b−1a−1,

giving the desired result.

13.20 Proof. Assume that G is abelian. Let a, b ∈ G. By Theorem 13.11, (ab)−1 = b−1a−1. Since G is

abelian, b−1a−1 = a−1b−1. For the converse, assume that G is a group such that b−1a−1 = a−1b−1

for every pair a, b of elements of G. We show that G is abelian. Let x, y ∈ G. Then x−1, y−1 ∈ G.

By assumption,
(

x−1
)−1 (

y−1
)−1

=
(

y−1
)−1 (

x−1
)−1

and so xy = yx. Thus G is abelian.
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13.21 See the table below.

+ [0] [1] [2] [3] [4] [5] [6] [7] [8]
[0] [0] [1] [2] [3] [4] [5] [6] [7] [8]
[3] [3] [4] [5] [6] [7] [8] [0] [1] [2]
[6] [6] [7] [8] [0] [1] [2] [3] [4] [5]
[1] [1] [2] [3] [4] [5] [6] [7] [8] [0]
[4] [4] [5] [6] [7] [8] [0] [1] [2] [3]
[7] [7] [8] [0] [1] [2] [3] [4] [5] [6]
[2] [2] [3] [4] [5] [6] [7] [8] [0] [1]
[5] [5] [6] [7] [8] [0] [1] [2] [3] [4]
[8] [8] [0] [1] [2] [3] [4] [5] [6] [7]

Exercises for Section 13.5: Subgroups

13.22 (a) No. There is no identity for N under addition.

(b) No. The subset is not closed under +. For example, [2] + [4] = [6] /∈ {[0], [2], [4]}.

(c) Yes. (d) Yes.

13.23 Proof. First assume that H is a subgroup of G and let a, b ∈ H . Since b ∈ H , it follows by

the Subgroup Test that b−1 ∈ H . Since a, b−1 ∈ H , we have, again by the Subgroup Test, that

ab−1 ∈ H .

We now verify the converse. Assume, for a nonempty subset H of a group G, that ab−1 ∈ H

whenever a, b ∈ H . Since H 6= ∅, the set H contains an element h. Thus hh−1 = e ∈ H . Let a ∈ H .

Then e, a ∈ H and so ea−1 = a−1 ∈ H . Now let a, b ∈ H . Then b−1 ∈ H and so a, b−1 ∈ H .

Therefore, a
(

b−1
)−1

= ab ∈ H . By the Subgroup Test, H is a subgroup of G.

13.24 (a) Proof. Since H is closed under ∗, it suffices to show that g−1 ∈ H for each g ∈ H by the

Subgroup Test. Let H = {g1, g2, . . . , gk} and let g ∈ H . We claim that g ∗ g1, g ∗ g2, . . . , g ∗ gk

are k distinct elements in H , for suppose this is not the case. Then g ∗ gs = g ∗ gt for distinct

elements gs, gt ∈ H . By the Left Cancellation Law, gs = gt, which is impossible. Thus, as

claimed, g ∗ g1, g ∗ g2, . . . , g ∗ gk are k distinct elements in H and so

H = {g ∗ g1, g ∗ g2, . . . , g ∗ gk}.

Since g ∈ H , it follows that g = g∗gi for some integer i with 1 ≤ i ≤ k. Hence g = g∗gi = g∗e

for the identity e of G. By the Left Cancellation Law, gi = e and so e ∈ H . Therefore, g∗gj = e

for some integer j with 1 ≤ j ≤ k and so gj = g−1, implying that g−1 ∈ H .

(b) The set N is a subset of the infinite group (Z, +). Note that N is closed under +, but N is

not a subgroup of (Z, +) by Exercise 13.22(a).

13.25 (a) The statement is true.

Proof. Since H and K are subgroups of G, it follows that e ∈ H and e ∈ K. So e ∈ H ∩ K

and H ∩K 6= ∅. Let a, b ∈ H ∩K. Then a, b ∈ H and a, b ∈ K. Since H and K are subgroups
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of G, it follows that ab ∈ H and ab ∈ K. So ab ∈ H ∩ K. Let a ∈ H ∩ K. It remains to show

that a−1 ∈ H ∩ K. Since a ∈ H , a ∈ K, and H and K are subgroups of G, it follows that

a−1 ∈ H and a−1 ∈ K. So a−1 ∈ H ∩K. By the Subgroup Test, H ∩K is a subgroup of G.

(b) The statement is false. For example, H = {[0], [3]} and K = {[0], [2], [4]} are subgroups of

(Z6, +), but H ∪ K is not a subgroup of (Z6, +).

13.26 (a) No. Let A = B =

[

1 1
1 0

]

∈ H . Then AB =

[

2 1
1 1

]

/∈ H .

(b) The algebraic structure (H, ·) is a subgroup of (M∗
2 (R), ·).

Proof. First, observe that

[

1 0
0 1

]

∈ H and so H 6= ∅. Let A1, A2 ∈ H . Then A1 =

[

a1 b1

0 c1

]

and A2 =

[

a2 b2

0 c2

]

, where ai, bi, ci ∈ R and aici 6= 0 for i = 1, 2. Then

A1A2 =

[

a1a2 a1b2 + b1c2

0 c1c2

]

.

Since the entries of A1A2 are real numbers and a1a2c1c2 6= 0, it follows that A1A2 ∈ H . Also,

for A =

[

a b
0 c

]

∈ H ,

A−1 =

[

1
a − b

ac

0 1
c

]

∈ H .

Thus (H, ·) is a subgroup of (M∗
2 (R), ·) by the Subgroup Test.

13.27 Proof. Since
√

3 ∈ H , it follows that H 6= ∅. First, we show that H is closed under multiplication.

Let r = a + b
√

3 and s = c + d
√

3 be elements of H , where at least one of a and b is nonzero and

at least one of c and d is nonzero. Therefore, r 6= 0 and s 6= 0. Hence

rs = (ac + 3bd) + (ad + bc)
√

3 6= 0.

Thus at least one of ac + 3bd and ad + bc is nonzero. Since ac + 3bd, ad + bc ∈ Q, it follows that

rs ∈ H , and so H is closed under multiplication.

Next, we show that every element of H has an inverse in H . Let r = a + b
√

3 ∈ H , where at

least one of a and b is nonzero. Then

1

r
=

1

a + b
√

3
=

1

a + b
√

3
· a − b

√
3

a − b
√

3

= − a

3b2 − a2
+

b

3b2 − a2

√
3.

129



Observe that 3b2 − a2 6= 0; for if 3b2 − a2 = 0, then a/b = ±
√

3, which is impossible since a/b ∈ Q

and
√

3 ∈ I. Hence 1/r ∈ H .

By the Subgroup Test, H is a subgroup.

13.28 Proof. Let α1 be the identity of Sn. Then α1(t) = t for all t ∈ {1, 2, · · · , n} and consequently

α1(t) = t for all t ∈ T . Thus α1 ∈ GT and so GT 6= ∅. Let α, β ∈ GT and let t ∈ T . Thus

(αβ)(t) = α(β(t)) = α(t) = t. So αβ ∈ GT . Again, let α ∈ GT . We show that α−1 ∈ GT . Since

α−1 ◦ α = α1, it follows for each t ∈ T that

(α−1 ◦ α)(t) = α1(t) = t.

Hence (α−1 ◦ α)(t) = α−1(α(t)) = α−1(t) = t. Thus α−1 ∈ GT . By the Subgroup Test, GT is a

subgroup of (Sn, ◦).

13.29 Proof. Let e be the identity in G. Since e2 = e ∈ H , it follows that H 6= ∅. Let a2, b2 ∈ H , where

a, b ∈ G. Since G is abelian, a2b2 = (ab)2 ∈ H . Also, if a2 ∈ H , then (a2)−1 = (a−1)2 ∈ H . By the

Subgroup Test, H is a subgroup of G.

13.30 Proof. For the identity e of G, it follows that e2 = e ∈ H and so H 6= ∅. Let a, b ∈ H . Then

a2 = b2 = e. Then (ab)2 = a2b2 = e · e = e and so ab ∈ H . Therefore, H is closed under

multiplication. Let a ∈ H . Then a2 = e. Thus
(

a2
)−1

= e. However,
(

a2
)−1

=
(

a−1
)2

= e and so

a−1 ∈ H . By the Subgroup Test, H is a subgroup of G.

Exercises for Section 13.6: Isomorphic Groups

13.31 (a) Proof. Since

[

1 0
0 1

]

∈ H , it follows that H 6= ∅. Let A, B ∈ H . Then A =

[

1 a
0 1

]

and

B =

[

1 b
0 1

]

, where a, b ∈ Z. Then AB =

[

1 a + b
0 1

]

∈ H . Also, if A =

[

1 a
0 1

]

∈ H ,

then A−1 =

[

1 −a
0 1

]

∈ H . By the Subgroup Test, H is a subgroup of (M∗
2 (R), ·).

(b) Proof. First, we show that f is one-to-one. Suppose that f(a) = f(b), where a, b ∈ Z. Then

[

1 a
0 1

]

=

[

1 b
0 1

]

. Hence a = b. Next, we show that f is onto. Let A =

[

1 n
0 1

]

∈ H .

Then f(n) = A and so f is onto. Finally, we show that f is operation-preserving. Let a, b ∈ Z.

Then

f(a + b) =

[

1 a + b
0 1

]

=

[

1 a
0 1

]

·
[

1 b
0 1

]

= f(a) · f(b)

and so f is operation-preserving. Therefore, f is an isomorphism.

(c) It suggests that
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H1 =

{[

1 a
0 1

]

: a ∈ Q

}

and H2 =

{[

1 r
0 1

]

: r ∈ R

}

are also subgroups of (M∗
2 (R), ·), where (Q, +) is isomorphic to (H1, ·) and (R, +) is isomorphic

to (H2, ·).

13.32 (a) Since 1 is not the image of any integer under φ, the function φ is not onto and so φ is not an

isomorphism.

(b) Since φ(0) = 1, the image of the identity 0 in (Z, +) is not the identity in (Z, +). By Theo-

rem 13.16(a), φ is not an isomorphism.

(c) The function φ is an isomorphism.

Proof. First, we show that φ is one-to-one. Suppose that φ(a) = φ(b), where a, b ∈ R. Then

2a = 2b. Thus a = log2 2a = log2 2b = b and so φ is one-to-one. Next, we show that φ is onto.

Let r ∈ R+. Then log2 r ∈ R. Hence φ(log2 r) = 2log2 r = r and so φ is onto. Finally, we show

that φ is operation-preserving. For a, b ∈ R,

φ(a + b) = 2a+b = 2a · 2b = φ(a) · φ(b).

Therefore, φ is an isomorphism.

(d) Let A =

[

1 0
0 1

]

and B =

[

2 0

0 1
2

]

. Then φ(A) = φ(B) = 1, but A 6= B. Thus φ is not

one-to-one and so φ is not an isomorphism.

13.33 The function φ is an isomorphism.

Proof. First we show that φ is one-to-one. Let φ(r) = φ(s), where r, s ∈ R+. Then r2 = s2.

Since r, s ∈ R+, it follows that r = s and so φ is one-to-one. Given r ∈ R+, let x =
√

r ∈ R+.

Then φ(x) = r and so φ is onto. Moreover, φ(rs) = (rs)2 = r2s2 = φ(r)φ(s). Therefore, φ is

operation-preserving and so φ is an isomorphism.

13.34 Proof. Assume that φ : G → H is an isomorphism. Since φ is a bijection, φ−1 is a bijection by

Theorem 8.10. It remains to show that φ−1 is operation-preserving. Let h1, h2 ∈ H . Then there

exist g1, g2 ∈ G such that φ(g1) = h1 and φ(g2) = h2. Thus φ−1(h1) = g1 and φ−1(h2) = g2.

Furthermore, φ(g1 ∗g2) = φ(g1)◦φ(g2) = h1 ◦h2. Hence φ−1(h1 ◦h2) = g1 ∗g2 = φ−1(h1)∗φ−1(h2).

Thus φ−1 is operation-preserving and so φ−1 is an isomorphism.

13.35 Proof. By Corollary 9.8, the composition φ2 ◦ φ1 of two bijections φ1 and φ2 is also a bijection.

Since φ1 : G → H and φ2 : H → K are isomorphisms, φ1(st) = φ1(s)φ1(t) for s, t ∈ G and

φ2(ab) = φ2(a)φ2(b) for a, b ∈ H . Therefore, if s, t ∈ G, then

(φ2 ◦ φ1)(st) = φ2(φ1(st)) = φ2(φ1(s)φ1(t))

= φ2(φ1(s))φ2(φ1(t)) = (φ2 ◦ φ1)(s)(φ2 ◦ φ1)(t),

implying that φ2 ◦ φ1 is an isomorphism.
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13.36 (a) Proof. Let a, b ∈ G. Since a ◦ b = b ∗ a ∈ G, it follows that ◦ is a binary operation on G.

Let a, b, c ∈ G. Then (a ◦ b) ◦ c = c ∗ (a ◦ b) = c ∗ (b ∗ a) = (c ∗ b) ∗ a = (b ◦ c) ∗ a = a ◦ (b ◦ c).

Thus ◦ is an associative operation. Let e be the identity of (G, ∗). Then

a ◦ e = e ∗ a = a = a ∗ e = e ◦ a

and so e is the identity of (G, ◦). Let g ∈ (G, ◦) and let g−1 be the inverse of g in (G, ∗). Then

g ◦ g−1 = g−1 ∗ g = e = g ∗ g−1 = g−1 ◦ g.

Thus g−1 is the inverse of g in (G, ◦). Therefore, (G, ◦) is a group.

(b) Proof. Consider the function φ : (G, ∗) → (G, ◦) defined by φ(g) = g−1 for each g ∈ G.

We show that φ is an isomorphism. First, we show that φ is bijective. Let φ(g1) = φ(g2),

where g1, g2 ∈ (G, ∗). Then g−1
1 = g−1

2 . Since
(

g−1
1

)−1
=
(

g−1
2

)−1
in (G, ◦), it follows that

g1 = g2 in (G, ∗). Thus φ is one-to-one. Let h ∈ (G, ◦). Then φ(h−1) =
(

h−1
)−1

= h

and so φ is onto. It remains to show φ is operation-preserving. Let g1, g2 ∈ (G, ∗). Then

φ(g1 ∗ g2) = (g1 ∗ g2)
−1 = (g2 ◦ g1)

−1 = g−1
1 ◦ g−1

2 = φ(g1) ◦ φ(g2) and so φ is operation-

preserving. Therefore, φ is an isomorphism, implying that (G, ∗) and (G, ◦) are isomorphic.

Additional Exercises for Chapter 13

13.37 Proof. Since e ∗ e = e, it follows that G has an idempotent, namely e. Let g be an idempotent

in G. Then g ∗ g = g = g ∗ e. Applying the Left Cancellation Law, we obtain g = e. Thus e is the

only idempotent in G.

13.38 Proof. Since ea = ae, it follows that e ∈ Z(a) and so Z(a) 6= ∅. Let g1, g2 ∈ Z(a). Then gia = agi

for i = 1, 2. Thus (g1g2)(a) = g1(g2a) = g1(ag2) = (g1a)g2 = (ag1)g2 = a(g1g2) and so g1g2 ∈ Z(a).

Hence Z(a) is closed under multiplication. Next, let g ∈ Z(a). We show that g−1 ∈ Z(a). Since

g ∈ Z(a), it follows that ga = ag. Thus

g−1a = (g−1a)gg−1 = g−1(ag)g−1 = g−1(ga)g−1

= (g−1g)(ag−1) = e(ag−1) = ag−1.

Hence g−1 ∈ Z(a). By the Subgroup Test, Z(a) is a subgroup of G.

13.39 Proof. Since H has at least two elements, H contains a nonzero integer k. Since H is a subgroup

of (Z, +), it follows that H contains the inverse of k, namely −k. Because either k or −k is positive,

H contains some positive integers. By the Well-Ordering Principle (Chapter 6), H contains a

smallest positive integer m.

Now we show that every multiple of m is an element of H , that is, mZ ⊆ H . Since (H, +) is

a subgroup, 0 = 0 · m ∈ H . Next we show that nm ∈ H for every positive integer n. We employ

mathematical induction. Certainly, 1m = m ∈ H . Suppose that km ∈ H , where k ∈ N. Then

(k + 1)m = km + m ∈ H since H is a subgroup and is therefore closed under addition. Thus
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nm ∈ H for every positive integer n. Since nm + (−n)m = 0, the inverse of nm is (−n)m. Again,

because (H, +) is a subgroup, (−n)m ∈ H . Therefore, nm ∈ H for every integer n.

It remains to show that every element of H is a multiple of m, that is, H ⊆ mZ. Let n ∈ H .

By the Division Algorithm, n = qm+r, where 0 ≤ r < m. Since r = n+(−q)m and n, (−q)m ∈ H ,

it follows that r ∈ H . Because m is the smallest positive integer in H , the integer r cannot be

positive. Thus r = 0 and n = qm is a multiple of m.

13.40 (a) Proof. Since 0 = a · 0 + b · 0 is a linear combination of a and b, it follows that 0 ∈ H and so

H 6= ∅. Let x1, x2 ∈ H . Then x1 = am1 + bn1 and x2 = am2 + bn2, where m1, m2, n1, n2 ∈ Z.

Now x1 + x2 = a(m1 + m2) + b(n1 + n2) and so x1 + x2 ∈ H . Let x ∈ H . Then x = am + bn

for integers m and n. Thus −x = a(−m) + b(−n). Since −m and −n are integers, −x ∈ H .

By the Subgroup Test, H is a subgroup of (Z, +).

(b) Proof. Let d = gcd(a, b). By Theorem 11.7, d = ar + bs for some integers r and s. Thus

d ∈ H . Let x ∈ dZ. Hence x = dk for some integer k. Therefore,

x = dk = (ar + bs)k = a(rk) + b(sk).

Since rk, sk ∈ Z, it follows that x ∈ H and so dZ ⊆ H . Next, we show that H ⊆ dZ. Let

ℓ ∈ H . Then ℓ = am + bn for some integers m and n. By Exercise 11.29, d | ℓ and so ℓ ∈ dZ.

Therefore, H = dZ.

13.41 (a) Proof. First, we show that ∗ is a binary operation on R−{1}. Let a, b ∈ R−{1}. We show

that a ∗ b = a + b − ab ∈ R − {1}. If a ∗ b = a + b − ab = 1, then ab − a − b + 1 = 0, or

(a − 1)(b − 1) = 0. So a = 1 or b = 1, which is impossible. Thus ∗ is a binary operation on

R − {1}.
It remains to show that the operation ∗ satisfies properties G1, G2, and G3. Let a, b, c ∈

R − {1}. Since

(a ∗ b) ∗ c = (a + b − ab) ∗ c = (a + b − ab) + c − (a + b − ab)c

= a + b + c − ab − ac − bc + abc

and

a ∗ (b ∗ c) = a ∗ (b + c − bc) = a + (b + c − bc) − a(b + c − bc)

= a + b + c − ab − ac − bc + abc,

it follows that (a ∗ b) ∗ c = a ∗ (b ∗ c) and so property G1 is satisfied. Since a ∗ 0 = 0 ∗ a = a

for all a ∈ R − {1}, it follows that 0 is the identity and so property G2 is satisfied. For each

a ∈ R−{1}, let b = a
a−1 . We show that b ∈ R−{1}. If b = a

a−1 = 1, then a = a−1, implying

that 0 = −1, which is impossible. Since

a ∗ b = a +
a

a − 1
− a2

a − 1
= 0,

it follows that b is the inverse of a. Therefore, (R − {1}, ∗) is a group. Moreover,
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a ∗ b = a + b − ab = b + a − ba = b ∗ a

and so (R − {1}, ∗) is an abelian group.

(b) Proof. Define φ : (R − {1}, ∗) → (R∗, ·) by φ(a) = 1 − a. Then φ is a bijection. Moreover,

φ(a ∗ b) = 1 − a ∗ b = 1 − (a + b − ab) = (1 − a)(1 − b) = φ(a)φ(b).

Thus φ is an isomorphism.

13.42 The proposed proof contains a mistake. The statement “Since x and y are the only two elements

of G that do not commute, x−1 and y do commute.” assumes that x and x−1 are distinct. Thus

the proof is incomplete. The case where x = x−1 (or y = y−1) must also be considered.

13.43 This proof is correct.

13.44 The statement is true.

Proof. Suppose that G is abelian and contains an odd number k ≥ 3 of elements x such that

x2 = e. Denote these elements by g1 = e, g2, g3, . . . , gk and let H = {g1, g2, . . . , gk}. Since g2
i = e

for 1 ≤ i ≤ k, it follows that g−1
i = gi. Hence if gi ∈ H , then g−1

i ∈ H . Let gi, gj ∈ H . Thus

g2
i = g2

j = e and so (gigj)
2 = g2

i g2
j = e. Hence gigj ∈ H . By the Subgroup Test, H is a subgroup

of G. Suppose that the elements g1 = e, g2, g3, . . . , gk of H are labeled so that g2gi = gi+1 for each

odd integer i with 1 ≤ i < k. Observe that for 1 ≤ i, j ≤ k and i 6= j, we cannot have g2gi = g2gj ,

for otherwise, gi = gj by the Left Cancellation Law. Thus

g2g1 = g2, g2g3 = g4, . . . , g2gk−2 = gk−1.

Since g2gi = gi+1 for each odd integer i with 1 ≤ i < k, we must have g2gi+1 = gi since

g2gi+1 = g2(g2gi) = g2
2gi = egi = gi.

Therefore, for each i with 1 ≤ i ≤ k − 1, g2gi 6= gk. Consequently, g2gk = gk, which implies that

g2 = e = g1, which is impossible.

[Another approach is as follows: By Exercise 13.30, H is a subgroup of G. Let a ∈ H and a 6= e.

Then A = {a, e} is a subgroup of order 2 in H . Define a relation R on H by x R y if xy−1 ∈ A for

x, y ∈ H . Then R is an equivalence relation on H . Futhermore, for each h ∈ H , the equivalence

class

[h] = {x ∈ H : x R h} = {x ∈ H : xh−1 ∈ A}
= {x ∈ H : xh−1 = a or xh−1 = e} = {h, ah}.

Suppose that [h1], [h2], . . . , [ht] are the distinct equivalence classes of R. Then |H | = |∑t
i=1[hi]| =

2t, which is even.]
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