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Exercises for Chapter 1

Exercises for Section 1.1: Describing a Set

1.1 Only (d) and (e) are sets.

12 (a) A={1,2,3}={zeS: >0}
(b) B={0,1,2,3'={zeS: = >0}
(c) C={-2,-1}={xeS: z<0}.
(d) D={zxeS:|z|>2}.

1.3 (a) |A| = 5. (b)|B|=11. (c)|C|=51. (d) D] =2. (e) |E|=1. (f)|F|=2.

14 (a) A={n€eZ: -4<n<4}={-3,-2,...,4}.
(b) B={ne€Z: n?<5}={-2-1,01,2}.
(c) C={neN: n?®<100} ={1,2,3,4}.
(d) D={zeR: 22 -2=0}={0,1}.
() E={zeR: 22+1=0}={}=0.

1.5 (a) A={-1,-2,-3,..}={z€Z: z< -1}

(by B={-3,-2,...,3}={ze€Z: 3<ax<3}={zeZ: |z| <3}

() C={-2,-1,1,2}={z€Z: —2<z2<2,2#£0}={zxeZ: 0<|z| <2}
1.6 (a) A={2z2+1: z€Z}={--,-5-3,-1,1,3,5,--}.

(b) B={4n: neZ}={--,-8,-4,0,4,8,--}.

() C={3q+1: qeZ}={--,-5,-2,1,4,7,---}.
17 () A={--,—4,-1,258, -} ={32+2: z€Z}.

(by B={--,-10,-5,0,5,10,---} = {bz: = € Z}.

(c) C=1{1,8,27,64,125,--} = {a®: z € N}.

Exercises for Section 1.2: Subsets

1.8 (a) A={1,2}, B={1,2},C=1{1,2,3}.
(b) A={1}, B={{1},2}. C={{{1},2},1}.
() A={1}, B={{1},2}, C ={1,2}.
1.9 Let 7 = min(c — a,b— ¢) and let I = (¢ —r,c+r). Then I is centered at ¢ and I C (a,b).
110 A=B=D=E={-1,0,1} and C = {0,1}.

1.11 See Figure 1.



Figure 1: Answer for Exercise 1.11

112 (a) P(A) ={0,{1},{2},{1,2}}; [P(4)| = 4.
(b) P(A) ={0,{0}, {1}, {{a}}, {0,1},{0,{a}}, {1, {a}},{0,1,{a}} }; [P(A)] = 8.
1.13 P(A) = {0,{0},{{0}}, A}.
114 P({1}) = {0,{1}}, P(P({1})) = {0, {0}, {{1}}, {0, {1}}}; IP(P({1}))| = 4.
115 P(A) = {0, {0}, {0}, {{0}},{0,0},{0,{0}}, {0, {0}}, A}; [P(4)] = 8.
116 (a) S={0,{1}}.
(b) S={1}.

)
)
(c) S={0,{1},{2} {3},{4,5}}.
(d) S=1{1,2,3,4,5}.

Exercises for Section 1.3: Set Operations

AUB =1{1,3,5,9,13,15}.
ANB=1{9}.
A—B={1,5,13}.
B —A={3,15}.
A={3,7,11,15}.
ANB={1,513}.
1.18 (a) A={1}, B={{1}},C ={1,2}.
(b) A={{1},1}, B={1},C ={1,2}.
() A={1}, B={{1}}, ¢ ={{1},2}.
1.19 Let A= {1,2}, B={1,3}, and C = {2,3}. Then B# C but B— A=C — A= {3}.



120 Let A = {1,2,...,6} and B = {4,5,...,9}. Then A~ B = {1,2,3}, B — A = {7,8,9}, and
ANB=1{4,5,6}. Thus |[A— B| =|ANB|=|B— A| = 3. See Figure 2.

Figure 2: Answer for Exercise 1.20

1.21 (a) and (b) are the same, as are (c) and (d).

1.22 Let U = {1,2,...,8} be a universal set, A = {1,2,3,4}, and B = {3,4,5,6}. Then A— B = {1,2},
B—-A={5,6}, AnNB ={3,4}, and AU B = {7,8}. See Figure 3.

. U

®

Figure 3: Answer for Exercise 1.22

-3

1.23 See Figures 4.

A

A
(C—B)< CN(A-B)
67 ), |8,

(a) (b)

Figure 4: Answers for Exercise 1.23

1.24 (a) The sets (), {0} are elements of A.
(b) |A] =
(c) All of 0, {0}, {0,{0}} are subsets of A.
(d) pn A =0.
(e) {0} nA={0}.
(f) {0,{0}}nA={0,{0}}.
(g) DUA=A.



(h) {0}UA=A.
(i) {0,{0}}UA = A.

Exercises for Section 1.4: Indexed Collections of Sets

1.25 Let U ={1,2,...,8}, A=1{1,2,3,5}, B={1,2,4,6}, and C = {1, 3,4,7}. See Figure 5.

U

Figure 5: Answer for Exercise 1.25

126 (a) Upeg Ao = A1 U A2 U Ay = {1} U {4} U {16} = {1,4, 16}.
Nacs Aa =A1NAy N Ay =0
(b) Unes Ba =B1UByUBy = [0,2]U[1,3]U[3,5] = [0,5].
Nacs Ba = B1N By N By = 0.
(€) UnesCa =C1UC2UCs = (1,00) U (2,00) U (4,00) = (1,00).
Nueg Ca = C1 N Cy N Cy = (4,00).
127 Uyes X =AUBUC ={0,1,2,...,5} and (ycs X = ANBNC = {2}

1.28 Uyea Sa =51 US3U S, =[0,3]U[2,5]U [3,6] = [0, 6].
naeASa =S51NS3NS; = {3}
1.29 Since |A| = 26 and |A,| = 3 for each @ € A, we need to have at least nine sets of cardinality 3

for their union to be A; that is, in order for J,.g Ao = A, we must have [S| > 9. However, if we
let S = {a,d,g,j,m,p,s,v,y}, then | J,.g Aa = A. Hence the smallest cardinality of a set S with
Uaes Aa = Ais 9.

130 (a) Ap=[1,2+2), Upen4n =1[1,3), and ,cn 4n = [1,2].
(b) A, = (—222,2n), U, cn 4n = (—2,00), and (), cp An = (—1,2).

1.31 (a) {An}nen, where A, ={x € R:0<2<1/n}=][0,1/n].
(b) {An}nen, where A, ={a€Z: |a|<n}={-n,—(n—-1),...,(n—1),n}.

Exercises for Section 1.5: Partitions of Sets



1.32

1.33

1.34

1.35

1.36

1.37

1.38

1.39

1.40

1.41

1.42

1.43

1.44

1.45

S1 is a partition of A.

So is not a partition of A because g belongs to no element of Ss.

)

)

) Ss is a partition of A.

) S4 is not a partition of A because ) € Sy.
)

Sy is not a partition of A because b belongs to two elements of S5.

S1 is not a partition of A since 4 belongs to no element of Sj.
Ss is a partition of A. Sp can be written as {{1,2},{3,4,5}}.
S3 is not a partition of A because 2 belongs to two elements of S3.

Sy is not a partition of A since Sy is not a set of subsets of A.

S ={{1,2,3},{4,5},{6}}; [S| = 3.

A=1{1,2,3,4}. S; = {{1},{2},{3,4}} and S5 = {{1,2}, {3}, {4}}.

A={1,2,3,4}, S = {{1},{2},{3,4}} and S5 = {{{1},{2}},{{3,4}}}-

Let S = {A1, A2, As}, where Ay ={z € Q:2>1}, Ao ={z € Q:z <1}, and A3 = {1}.
Let S = {A1, A2, As}, where Ay = {z € N:z > 5}, Ay = {x € N:z <5}, and A3 = {5}.

Let S = {A1, A2, A3, A4}, where

Ay ={x €Z:zisodd and z is positive},

Ay ={x €Z:xis odd and x is negative},

As ={x € Z: x is even and z is nonnegative},

Ay ={x €Z: xis even and z is negative}.

Let S = {{1},{2},{3,4,5,6},{7,8,9,10},{11,12}} and T = {{1}, {2}, {3,4,5,6},{7,8,9,10}}.

Exercises for Section 1.6: Cartesian Products of Sets

Ax B ={(z,),(z,y), (y,2), (,9), (2, 2), (2,9)}-

AxA={11), (1 {1}), (4 {1}, {1} 1, {13 1), (1) {11, ({0, ({1}, {1),
{13 {1}

P(A) = {(Z)a {a}7 {b}aA}v

A xP(A) ={(a,0), (a,{a}), (a,{b}), (a, A), (b,0), (b, {a}), (b, {b}), (b, A)}.

P(A) = {(Z)a {Q}v {{@}},A},

AxP(A)={(0,0),(0,{0}), 0, {{0}}), (0, 4), {0}, 0), ({0},{0}), ({0}, {{0}}), ({0}, A)}.
P(A) ={0,{1},{2}, A}, P(B) = {0, B}, A x B ={(1,0),(2,0)},

P(A) x P(B) ={(0,0), (9, B), ({1}, 0), {1}, B), ({2},0), ({2}, B). (4,0), (4, B)}.

8



1.46 {(x,y): 2% +y? = 4}, which is a circle centered at (0, 0) with radius 2.

147 S = {(3,0),(2,1),(1,2),(0,3),(-3,0),(-2,1), (-1,2),(2,-1),(1,-2),(0,-3), (=2, 1), (=1,—-2) }.
See Figure 6.

(0,3)
(-1,2) (1,2)
(-2,1) (2,1)
(—3,0) (3,0)
(.72 ~1) * &
-2 | (L2
(0773)

Figure 6: Answer for Exercise 1.47

Additional Exercises for Chapter 1

148 (a) A={zeS: |z|>1}={zeS: x40}
(b) B={zeS: z<0}.
() C={xeS: 5<a<Ty={ze8: [r—1]<6}.
d) D={zeS: z+#5}

1.49 (a) {0,2,-2} (b) {} () {3,4,5} (d) {1,2,3}
( ) {_272} (f) { } (g) {_3’_2’_1’172’3}
150 (a) [A|=6 (b) |B|=0 (c) |C|=3

@

(@) IDI=0 (¢) |E=10 (1) |F|=20

151 Ax B={(-1,2),(—1,y),(0,z),(0,9), (1,2), (1,y)}.
152 (a
(b
(c
(d

(AUB)— (BNC) ={1,2,3} — {3} = {1,2}.
A= {3}

BUC =1{1,2,3} =0.

Ax B={(1,2),(1,3),(2,2),(2,3)}.

)
)
)
)

1.53 Let S = {{1},{2},{3,4}, A} and let B = {3,4}.

9



1.54 P(A) = {0,{1}}, P(C) ={0,{1},{2},C}. Let B={0,{1},{2}}.
1.55 Let A= {0} and B=P(A) = {0,{0}}.
1.56 Only B=C =0 and D = F.

157 U ={1,2,3,5,7,8,9}, A={1,2,5,7}, and B = {5,7,8}.

1.58 (a) A, is the set of all points in the plane lying on the circle 22 + 3% = r2.

U,er Ar = R x R (the plane) and ,c; 4, = 0.

(b) B, is the set of all points lying on and inside the circle 22 + y? = 12,

U,er Br =R xRand (,c; B ={(0,0)}.

(c) O, is the set of all points lying outside the circle 22 + y? = r2.

UT‘GI CT =RXxR- {(0’0)} and ﬂrEI CT = (Z)

1.59 Let A1 = {1,2,3,4}, AQ = {3,5,6}7 A3 = {1,3}, A4 = {1,2,4,5,6}. Then |A1 ﬂA2| = |A2 ﬂA3| =
|A3 ﬁA4| =1, |A1 ﬁA3| = |A2 ﬁA4| =2, and |A1 ﬁA4| =3.

1.60 (a) (i) Give an example of five sets A; (1 < i < 5) such that |4, N A;| = |i — j| for every two
integers ¢ and j with 1 <¢ < j <5.
(ii) Determine the minimum positive integer k such that there exist four sets 4; (1 < i < 4)
satisfying the conditions of Exercise and |A; U Ay U A3 U Ay| = k.
(b) (1) A1 =1{1,2,3,4,7,8,9,10},
Ay = {3,5,6,11,12,13},
As = {1,3,14, 15},
Ay = {1,2,4,5,6,16},
As = {7,8,9,10,11,12,13, 14, 15, 16}.
(ii) The minimum positive integer k is 5. The example below shows that k < 5.
Let A; = {1,2,3,4}, Ax = {1,5}, A3 = {1,4}, Ay ={1,2,3,5}.
If k = 4, then, since |A; N A4| = 3, A1 and A4 have exactly three elements in common,
say 1, 2, 3. So each of A; and Ay is either {1,2,3} or {1,2,3,4}. They cannot both be
{1,2,3,4}. Also, they cannot both be {1,2,3} because A3 would have to contain two of
1, 2, 3, and so |A3 N Ay| > 2, which is not true. So we can assume that 4; = {1, 2, 3,4}
and A4 = {1,2,3}. However, A; must contain two of 1, 2, 3, and so |A; N Az| > 2, which

is impossible.
1.61 (a) |S| =|T| = 10.
(b) [S]=T| = 5.
(©) 1] = |T| = 6.
1.62 Let A={1,2,3,4}, Ay ={1,2}, Ay = {1,3}, A3 = {3,4}. These examples show that k < 4. Since

|A; — Asz| = |As — Aq| = 2, it follows that A; contains two elements not in Ag, while A3 contains two

elements not in Ay. Thus |A| > 4 and so k = 4 is the smallest positive integer with this property.

10



Exercises for Chapter 2

Exercises for Section 2.1: Statements

2.1 (a) A false statement.

A true statement.

Not a statement.

Not a statement (an open sentence).
Not a statement.

(f) Not a statement (an open sentence).

(g) Not a statement.

2.2 (a) A true statement since A={3n—2: n€ N} andso3-9—-2=25¢ A.

(b) A false statement. Starting with the 3rd term in D, each element is the sum of the two

preceding terms. Therefore, all terms following 21 exceed 33 and so 33 ¢ D.

(c¢) A false statement since 3-8 —2 =22 € A.
(d) A true statement since every prime except 2 is odd.
(e) A false statement since B and D consist only of integers.
(f) A false statement since 53 is prime.
2.3 (a) False. 0 has no elements.
(b) True.
(¢) True.
(d) False. {0} has @ as its only element.
(e) True.
(f) False. 1 is not a set.

24 (a) z=-2and z=3.
(b) All z € R such that z # —2 and x # 3.

25 (a) {z€Z: z>2}
(b) {zxe€eZ: x<2}
2.6 (a) A can be any of the sets 0, {1}, {2}, {1,2}, that is, A is any subset of {1,2,4} that does not
contain 4.

(b) A can be any of the sets {1,4},{2,4},{1,2,4},{4}, that is, A is any subset of {1,2,4} that

contains 4.

(c) A=10.

11



2.7 3,5, 11, 17, 41, 59.

Exercises for Section 2.2: The Negation of a Statement

2.8 (a) +/2is not a rational number.
(b) 0 is a negative integer.

(¢) 111 is not a prime number.

2.9 See Figure 7.

P Q ~P ~@Q
T|T| F | F
T|F| F | T
FlT| T | F
F|F| T | T

Figure 7: Answer for Exercise 2.9

Exercises for Section 2.3: The Disjunction and Conjunction of Statements

210 (a) PV @Q: 15is odd or 21 is prime. (True)

(a)

(b) P AQ: 15is odd and 21 is prime. (False)

(¢) (~P)Vv@Q: 15is not odd or 21 is prime. (False)
)

(d) PA(~Q): 15is odd and 21 is not prime. (True)
2.11 (a) True, (b) False, (c) False, (d) True, (e) True.

2.12 See Figure 8.

P Q~Q PA~Q
T|T|F F
T|F| T T
F|T| F F
F|F| T F

Figure 8: Answer for Exercise 2.12

2.13 (a) All nonempty subsets of {1,3,5}.
(b) All subsets of {1,3,5}.
(c¢) There are no subsets A of S for which (~ P(A)) A (~ Q(A)) is true.

Exercises for Section 2.4: The Implication

12



2.14 (a)
(b)
(¢) PAQ: 17 is even and 19 is prime. (False)
(d)

~ P: 17 is not even (or 17 is odd). (True)
PV @: 17 is even or 19 is prime. (True)

P = @Q: If 17 is even, then 19 is prime. (True)

2.15 See Figure 9.

P Q ~PP=QP=>Q=(P)
T|T|F T F
T|F|F| F T
Flr|r| T T
F|F|T| T T

Figure 9: Answer for Exercise 2.15

2.16 (a) P = Q: If v/2 is rational, then 22/7 is rational. (True)
(b) Q= P: If 22/7 is rational, then /2 is rational. (False)
(c) (~ P)= (~Q): If v/2 is not rational, then 22/7 is not rational. (False)
(d) (~ Q)= (~ P): If 22/7 is not rational, then v/2 is not rational. (True)

2.17 (a) (PAQ) = R: If 2 is rational and 2 is rational, then /3 is rational. (True)
(b) (PAQ) = (~ R): If 2 is rational and 2 is rational, then v/3 is not rational. (True)
(c) ((~ P)AQ)= R: If /2 is not rational and 2 is rational, then /3 is rational. (False)
(d) (PV Q)= (~ R): If V2 is rational or Z is rational, then /3 is not rational. (True)

Exercises for Section 2.5: More On Implications

Q(n): If 5n + 3 is prime, then 7n + 1 is prime.

=
(b) P(2) = Q(2): If 13 is prime, then 15 is prime. (False)
(¢) P(6) = Q(6): If 33 is prime, then 43 is prime. (True)
219 (a) P(z) = Q(x): If |z| = 4, then x = 4.
P(—4) = Q(—4) is false.
P(-3) = Q(-3) is true.
P(1) = Q(1) is true
P(4) = Q(4) is true
P(5) = Q(5) is true
(b) P(x) = Q(x): If 22 = 16, then |x| = 4. True for all x € S.
(¢) P(z) = Q(x): If x > 3, then 4z — 1 > 12. True for all z € S.

220 (a) Allz € S for which = # 7.

13



(b) All z € S for which z > —1.
(c) Allz e S.
(d) Allzes.

2.21 (a) True for (z,y) = (3,4) and (z,y) = (5,5), false for (z,y) = (1, —1).
(b) True for (z,y) = (1,2) and (z,y) = (6,6), false for (z,y) = (2, —2).
(c) True for (z,y) € {(1,-1),(—3,4),(1,0)} and false for (z,y) = (0, —1).

Exercises for Section 2.6: The Biconditional

2.22 P& (): 18is odd if and only if 25 is even. (True)

223 (a) ~ P(z): v # —2. True if z =0, 2.
(b) P(z)VQ(x): x = =2 or 22 = 4. True if x = —2,2.
(c) P(x) AQ(x): x = —2 and 2% = 4. True if x = —2.
(d) P(x) = Q(x): If z = —2, then 22 = 4. True for all z.
(e) Q(z) = P(z): If 22 = 4, then x = —2 True if 2 = 0, —2.
(f) P(z) & Q(x): x = —2 if and only if 22 = 4. True if z = 0, —2.

2.24 (a) Truefor all z € S — {—4}.
(b) True for z € S — {3}.
(¢) True for x € S — {—4,0}.
2.25 x is odd if and only if 22 is odd.

That z is odd is a necessary and sufficient condition for 22 to be odd

2.26 The real number |z — 3] < 1 if and only if € (2,4).

That |z — 3] < 1 is a necessary and sufficient condition for = € (2,4).

2.27 (a) True for (z,y) € {(3,4), (5,5)}.
(b) True for (z,y) € {(1,2), (6,6)}.
(c) True for (z,y) € {(1,—1),(1,0)}.

2.28 P(1) = Q(1) is false (since P(1) is true and Q(1) is false).
Q(3) = P(3) is false (since Q(3) is true and P(3) is false).
P(2) & Q(2) is true (since P(2) and Q(2) are both true).

2.29 (i) P(1) = Q(1) is false;

(i) Q(4) = P(4) is true;
(iii) P(2) < R(2) is true;
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(iv) Q(3) & R(3) is false.

Exercises for Section 2.7: Tautologies and Contradictions

2.30 The compound statement P = (P V Q) is a tautology since it is true for all combinations of truth

values for the component statements P and (). See the truth table below.

PVQ | P> VvV Q)

SRR v
CELIE S
g <
R

2.31 The compound statement (PA(~ Q))A(PAQ) is a contradiction since it is false for all combinations

of truth values for the component statements P and . See the truth table below.

PlQI~Q| PAQ | PA(~Q) [ (PA(~QNAPAQ)
T|T| F T F F
T|F| T F T F
F|T| F F F F
F|F| T F F F

2.32 The compound statement (P A (P = Q)) = @ is a tautology since it is true for all combinations of

truth values for the component statements P and (). See the truth table below.

Pl Q] P=Q| PAP=>Q) ] (PAN(P=Q)=Q
T T T T T
T F F F T
F T T F T
F F T F T

(PA(P=Q)) = Q: If P and P implies @, then Q.

2.33 The compound statement ((P = Q) A (Q = R)) = (P = R) is a tautology since it is true for all

combinations of truth values for the component statements P, @), and R. See the truth table below.

=
=

Q

Q P=QAQ=R) | P (P=QAQ=R)=>(P=>R)

HHHH"EE Y
HTHTHEAa T A0
R R NN N ey

Hamaa3gAll

Amamaa334)

IR RN

HHaAAa-d

Hr™gaTs

(P=Q)AN(Q=R)) = (P= R): If Pimplies @ and @ implies R, then P implies R.

Exercises for Section 2.8: Logical Equivalence
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2.34

2.35

2.36

(a)

(a)

(a)

See the truth table below.

PlQI~P|~Q[P=Q ][ (~P)=(~Q)
T|T]| F F T T
T|F| F T F T
F|T| T F T F
F|F| T T T T

Since P = @ and (~ P) = (~ @) do not have the same truth values for all combinations of
truth values for the component statements P and @, the compound statements P = () and
(~ P) = (~ Q) are not logically equivalent. Note that the last two columns in the truth table

are not the same.

The implication @ = P is logically equivalent to (~ P) = (~ Q).

See the truth table below.

PlQ[~P|~Q[PVQ | ~@PVQ) | (~P)V(~Q)
T|T]| F F T F F
T|F| F T T F T
F|T| T F T F T
F|F| T T F T T

Since ~ (P V Q) and (~ P) V (~ Q) do not have the same truth values for all combinations
of truth values for the component statements P and @, the compound statements ~ (P V Q)
and (~ P)V (~ Q) are not logically equivalent.

The biconditional ~ (PV Q) < ((~ P)V(~ Q)) is not a tautology as there are instances when

this biconditional is false.

The statements P = @ and (P A Q) < P are logically equivalent since they have the same
truth values for all combinations of truth values for the component statements P and Q. See
the truth table.

PIQ | P=Q | PAQ | (PAQ &P
T | T T T T
T|F F F F
F|T T F T
F|F T F T

The statements P = (Q V R) and (~ Q) = ((~ P) V R) are logically equivalent since they
have the same truth values for all combinations of truth values for the component statements
P, @, and R. See the truth table.

PIQ|R|~P | ~Q | QVRE | P=>=QVR | ~PVE | ~Q) = (~P)VE)
T T T F F T T T T
T F T F T T T T T
F T T T F T T T T
F F T T T T T T T
T T F F F T T F T
T F F F T F F F F
F T F T F T T T T
F F F T T F T T T

2.37 The statements @ and (~ Q) = (P A(~ P)) are logically equivalent since they have the same truth

values for all combinations of truth values for the component statements P and (). See the truth
table below.
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PlQ[~P]~Q|PA(P) | (~Q = (PA(~P)
T|T]| F F F T
T|F| F T F F
F|T| T F F T
F|F| T T F F

2.38 The statements (P V Q) = R and (P = R) A (Q = R) are logically equivalent since they have the

same truth values for all combinations of truth values for the component statements P, @), and R.

See the truth table.

P

D

(PVQ)=R

=y

=y

P= R A(Q= R

Rl R R v
CEETCIE TSR Iy
Rl RSN N R | oy

THHH"EAHH<

HemdmgHHaAA

Hemm a4l

Smamaaa4l

L

Exercises for Section 2.9: Some Fundamental Properties of Logical Equiv-

alence

2.39 (a) The statement PV (Q A R) is equivalent to (P V Q) A (P V R) since the last two columns in
the truth table below are the same.

P QR PYQ PVR QAR PV(QAR) (PVQA(PVR)
T|T|T| T T T T T
TI|F|T| T T F T T
FlT|T| T T T T T
F|F|lT| F T F F F
T|T|F| T T F T T
T|F|F| T T F T T
Flr |F| T F F F F
F|F|F| F F F F F

Figure 10: Answer for Exercise 2.39(a)

(b) The statement ~ (P V Q) is equivalent to (~ P) A (~ @) since the last two columns in the
truth table below are the same.

P Q ~P~Q PVQ ~(PVQ) (~P)A(~Q)
T|T |F | F T F F
T|F|F | T T F F
FlT|T | F T F F
F|l|F|T | T F T T

Figure 11: Answer for Exercise 2.39(b)

2.40 (a) Both x # 0 and y # 0.
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(b) Either the integer a is odd or the integer b is odd.

2.41

2.42 Either 22 =2 and z # V2 or £ = /2 and 2% # 2.

Exercises for Section 2.10: Quantified Statements

2.43 Vz € S, P(x) : For every odd integer z, the integer 22 + 1 is even.

Jr € S, Q(x) : There exists an odd integer = such that x2 is even.

2.44 Let R(x) : 22 + x + 1 is even. and let S = {z € Z : z is odd}.
Vz € S, R(x) : For every odd integer z, the integer 22 + z + 1 is even.

3z € S, R(x) : There exists an odd integer x such that 2* + x + 1 is even.

2.45 (a) There exists a set A such that AN A # (.
(b) For every set A, we have A Z A.

2.46 (a) There exists a rational number r such that 1/r is not rational.

(b) For every rational number r, 72 # 2.

2.47 (a) False, since P(1) is false.
(b) True, for example, P(3) is true.
248 ()T ()T (¢)F ()T ()T (OHF (g0 T (H)F
249 (a) Ja,beZ,ab<0and a+b>0.
(b) Va,y € R, x # y implies that 22 + y2 > 0.
(c) For all integers a and b, either ab >0 or a+b < 0.
There exist real numbers z and y such that = # y and 22 + y? < 0.
(d) Va,beZ,ab>0o0ra+b<0.
I,y € R,z #yand 2?2 +7% <0.

250 (a
(b

) For all real numbers z,y, and 2, (x — 1)2 + (y — 2)2 + (2 — 2)2 > 0.
)

¢) Iz, y,z€R, (- 12+ (y—2)2 + (2 —2)2<0. (Fz,9,2 € R, ~ P(z,y,2).)
)
)

False, since P(1,2,2) is false.
(
(d
(e

2.51 Let S ={3,5,11} and P(s,t) : st — 2 is prime.

There exist real numbers z,y, and z such that (x —1)% + (y — 2)% + (2 — 2)% <0.
True, since (1 —1)2+ (2 —-2)2 + (2 -2)2=0.

18



2.52

2.53

2.54

2.55

2.56

2.57

2.58

2.59

2.60

(a) Vs,t € S, P(s,t).

(b) True since P(s,t) is true for all s,¢t € S.
(c) 3s,t €5, ~ P(s,t).

(d) There exist s,t € S such that st — 2 is not prime.
)

(e) False since the statement in (a) is true.

Exercises for Section 2.11: Characterizations of Statements

(a) Two lines in the plane are defined to be perpendicular if they intersect at right angles.

Two lines in the plane are perpendicular if and only if the product of their slopes is —1 or one

line is vertical and the other is horizontal.

(b) A rational number is a real number that can be expressed as a/b, where a,b € Z and b # 0.

A real number is rational if and only if it has a repeating decimal expansion.
An integer n is odd if and only if n? is odd.

Only (f) is a characterization; (a), (¢), and (e) are implications only; (b) is a definition; and (d) is

false.

a) A characterization.

(
(b

A characterization.

(
(d

)
)

¢) A characterization.
) A characterization. (Pythagorean theorem)
)

(e) Not a characterization. (Every positive number is the area of some rectangle.)

Additional Exercises for Chapter 2

See the truth table below.

Q=(~P) | PNQ=(~P))
F

EErE b
CELE N
3

e

BT
e les |

Statements R and P are both true.
PV(~Q)
@T BT F (F (T (f)F

(a) (1) A function f is differentiable only if f is continuous.

(2) That a function f is differentiable is sufficient for f to be continuous.
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2.61

2.62

2.63

2.64

2.65

2.66

2.67

2.68

(b) (1) The number x = —5 only if 2% = 25.
(2) That x = —5 is sufficient for 2% = 25.
(a) For S ={1,2,3,4},Vn € S, P(n) is true, In € S, ~ P(n) is false
(b) For S =1{1,2,3,4,5},Vn € S, P(n) is false, 3n € S, ~ P(n) is true.
(¢) The truth value of Vn € S, P(n) (or 3n € S,~ P(n)) depends on the domain S as well as the

open sentence P(n).

(a) can be verified by a truth table and similarly for (b).

P|l| Q| R|~Q | ~R|PANQ (PANQ)=R | PAN(~R) (PAN(~R)=>(~Q
T T | T F F T T F T
T F T T F F T F T
F T | T F F F T F T
F F T T F F T F T
T T F F T T F T F
T F F T T F T T T
F T F F T F T F T
F F F T T F T F T

If n is a prime and n is even, then n < 2.

If n > 2 and n is even, then n is not a prime.

If m is even and m + n is even, then n is even.

If n is odd and m + n is even, then m is odd.

If f'(z) = 32% — 2z and f(x) # 2® — 22 + 4, then f(0) # 4.
If f(0)=4 and f(x) # 23 — 22 + 4, then f'(z) # 322 — 2z.

Consider the open sentences

P(n) : "253” isodd; Q(n): (n—2)2>0; R(n): (n+1)""1is odd.

The statement P(n) is true for n = 2,3; Q(n) is true for n = 1,3; and R(n) is true for n = 1,2.
Thus the implications P(1) = Q(1), Q(2) = R(2), and R(3) = P(3) are true and their respective

converses are false.
No. Since Q(a) = P(a), R(b) = Q(b), and P(c) = R(c) are false, it follows that
P(a), Q(b), and R(c) are false and Q(a), R(b), and P(c) are true.

At least two of the three elements a, b, and ¢ are the same. If a = b, then Q(a) and Q(b) are both
true and false. This is impossible for a statement. If a = ¢, then P(c) and P(a) are both true and
false, again impossible. If b = ¢, then R(b) and R(c) are both true and false, which is impossible.
Observe that

(1) P(z) is true for x = 1,3,5 and false for x = 2,4, 6,

(2) Q(y) is true for y = 2,4, 6 and false for y = 1,3,5,7,

(3) P(x) = Q(y) is false if P(x) is true and Q(y) is false.

Thus |S] =3-4=12.
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Exercises for Chapter 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

Exercises for Section 3.1: Trivial and Vacuous Proofs

Proof. Since 22 —2z+2 = (x — 1)? +1 > 1, it follows that 22 — 2z + 2 # 0 for all x € R. Hence

the statement is true trivially. [

Proof. Let n € N. Then |[n — 1|+ |n+1] > 042 =2. Thus |n — 1| + [n + 1| < 1 is false for all

n € N and so the statement is true vacuously. [
Proof. Note that # =r+4 % If r > 1, then r—i—% > 1; while if 0 < r < 1, then % > 1 and so
4+ % > 1. Thus Ti—“ < 1 is false for all r € QT and so the statement is true vacuously. [

Proof. Since 22 —4zx+5= (22 —4x+4)+1= (z —2)?+1 >0, it follows that 2% — 4z + 3 > —2

and so (x — 1)(x — 3) > —2. Thus the statement is true trivially. ]
Proof. Since n? —2n+1 = (n—1)? >0, it follows that n? 41 > 2n and so n + % > 2. Thus the
statement is true vacuously. ]

Exercises for Section 3.2: Direct Proofs

Proof. Let z be an odd integer. Then x = 2a+1 for some integer a. Thus 9z+5 = 9(2a+1)+5 =
18a 4 14 = 2(9a + 7). Since 9a + 7 is an integer, 9z + 5 is even. ]

Proof. Let x be an even integer. Then x = 2a for some integer a. Thus
52 —3=5(2a) —3=10a —4+1=2(5a —2) + 1.
Since ba — 2 is an integer, bx — 3 is odd. [

Proof. Assume that a and ¢ are odd integers. Then a = 2z + 1 and ¢ = 2y + 1 for some integers
x and y. Thus ab+bc=bla+¢) =02z +1+2y+ 1) =2b(x +y +1). Since b(x +y + 1) is an

integer, ab + bc is even. [
Proof. Let 1 —n? > 0. Then n =0. Thus 3n —2 =3-0 — 2 = —2 is an even integer. ]
Observe that 22 = 4% for all x € Z.

Proof. Assume that (n +1)%(n +2)?/4 is even, where n € S. Then n = 2. For n =2, (n+ 2)*(n +

3)2/4 = 100, which is even. ]

Exercises for Section 3.3: Proof by Contrapositive

Proof. Assume that z is odd. Then x = 2a + 1 for some integer a. So 7z +5=T(2a+ 1) +5 =
14a + 12 = 2(7a + 6). Since 7a + 6 is an integer, 7z + 5 is even.
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3.13

3.14

3.15

3.16

3.17

3.18

First, we prove a lemma.

Lemma Let n € Z. If 15n is even, then n is even.
(Use a proof by contrapositive to verify this lemma.)
Then use this lemma to prove the result.

Proof of Result. Assume that 15n is even. By the lemma, n is even and so n = 2a for some

integer a. Hence 9n = 9(2a) = 2(9a). Since 9a is an integer, 9n is even. ]

[Note: This result could also be proved by assuming that 15n is even (and so 15n = 2a for some

integer a) and observing that 9n = 15n — 6n = 2a — 6n.]

Proof. Assume first that = is odd. Then x = 2a + 1 for some integer a. Thus
52 —11=5(2a4+1) — 11 = 10a — 6 = 2(5a — 3).

Since ba — 3 is an integer, bx — 11 is even.

For the converse, assume that x is even. Then x = 2b for some integer b. Now
5z —11=5(2b) —11=10b—-12+1=2(5b—6) + 1.

Since 5b — 6 is an integer, 5x — 11 is odd. [

Lemma Let x € Z. If 7x + 4 is even, then x is even. (Use a proof by contrapositive to verify this

lemma.)

Proof of Result. Assume that 7z + 4 is even. Then by the lemma, = is even and so = 2a for

some integer a. Hence
3x—11=3(2a) —11 =6a—12+1=2(3a—6) + 1.

Since 3a — 6 is an integer, 3x — 11 is odd. [

To verify the implication “If 3z + 1 is even, then 5z — 2 is odd.”, we could first prove the lemma: If
3x + 1 is even, then z is odd. (The converse of the implication must also be verified. The lemma
used to prove the converse depends on whether a direct proof or a proof by contrapositive of the

converse is used.) One possibility is to prove the following lemma:

Let © € Z. Then 3x + 1 is even if and only if z is odd.

The proof would begin by assuming that n?(n + 1)2/4 is odd, where n € S. Then n = 2 and so
n%(n—1)2/4 =1is odd.

To verify the implication “If n is even, then (n + 1)? — 1 is even.”, we use a direct proof. For the

converse, “If (n +1)2 — 1 is even, then n is even.”, we use a proof by contrapositive.

Exercises for Section 3.4: Proof by Cases
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3.19

3.20

3.21

3.22

3.23

3.24

Proof. Let n € Z. We consider two cases.

Case 1. n is even. Then n = 2a for some integer a. Thus
n? —3n+9=4a% - 3(2a) + 9 =2(2a®> —3a + 4) + 1.

Since 2a% — 3a + 4 is an integer, n? — 3n + 9 is odd.

Case 2. n is odd. Then n = 2b+ 1 for some integer b. Observe that

n?—3n+9 = (2b+1)2—-3(2b+1)+9
= 4% +4b+1—-6b—3+9=4b" —2b+7
= 2(20> —b+3) +1.
Since 2b% — b + 3 is an integer, n? — 3n + 9 is odd. [

Proof. Let n € Z. We consider two cases.

Case 1. n is even. Then n = 2a for some integer a. Thus

n® —n = 8a3 — 2a = 2(4a® — a).

3

Since 4a® — a is an integer, n® — n is even.

Case 2. n is odd. Then n = 2b+ 1 for some integer b. Observe that
nd—n (2b+1)% — (20 + 1)

= 8+ 120°+6b+1—2b—1
= 8b% 4 1207 + 4b = 2(4b® + 61> + 2b).

Since 4b% + 6b% + 2b is an integer, n® — n is even. [

Proof. Assume that x or y is even, say « is even. Then z = 2a for some integer a. Thus

zy = (2a)y = 2(ay). Since ay is an integer, zy is even. [

Assume that a,b € Z such that ab is odd. By Exercise 3.21, a and b are both odd and so a? and b?
are both odd by Theorem 3.12. Thus a? + b? is even.

One possibility is to begin by proving the implication “If x and y are of the same parity, then z —y
is even.” Use a direct proof and consider two cases, according to whether x and y are both even or
x and y are both odd.

For the converse of this implication, use a proof by contrapositive and consider two cases, where
say

Case 1. x is even and y is odd. and Case 2. = is odd and y is even.

Proof. Assume that a or b is odd, say a is odd. Then a = 2z + 1 for some integer . We consider

two cases.
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3.25

Case 1. b is even. Then b = 2y for some integer y. Thus ab = a(2y) = 2(ay). Since ay is an integer,

ab is even. Also,

a+b=Q2x+1)+2y=2(x+y)+ 1.
Since = + y is an integer, a + b is odd. Hence ab and a + b are of opposite parity.

Case 2. b is odd. Then b = 2y + 1 for some integer y. Thus
a+b=_2r+1)+Q2y+1)=2z+2y+2=2(x+y+1).
Since 4+ y + 1 is an integer, a + b is even. Furthermore,
ab= 2z +1)2y+1)=4day +22+2y+1=22xy+x +y) + 1.
Since 2zy + x + y is an integer, ab is odd. Hence ab and a 4 b are of opposite parity. [

(a) Use the following facts:
(1) Let x,y € Z. Then x + y is even if and only if x and y are of the same parity.

(2) Let € Z. Then 22 is even if and only if = even.

(b) Let x and y be integers. Then (z + y)? is odd if and only if z and y are of opposite parity.

(a) Because Sz N Ss # 0.
(b) Because at least one of a and b must be even.

(¢) We can consider the three cases:
Case 1. a and b are both even.
Case 2. a is even and b is odd.

Case 3. a is odd and b is even.

Exercises for Section 3.5: Proof Evaluations

3.27 (3) is proved.

3.28

3.29

3.30

Let 2 € Z. Then x is even if and only if 32% — 4z — 5 is odd. (This can also be restated as: Let
x € Z. Then z is odd if and only if 322 — 4z — 5 is even.)

The converse of the result has been proved. No proof has been given of the result itself.

This proposed proof contains major logical errors. A proof of this result requires a proof of an
implication and its converse. Nowhere in the proposed proof is it indicated which implication is

being considered and what is being assumed.

Additional Exercises for Chapter 3
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3.31

3.32

3.33

3.34

3.35

3.36

3.37

Proof. Assume that z is odd. Thus & = 2k + 1 for some integer k. Then
Tx—8=T72k+1)—-8=14k—1=14k—-2+1=2(Tk—-1) + 1.

Since 7k — 1 is an integer, 7x — 8 is odd. [

3

Prove the implication “If x is even, then z° is even.” using a direct proof and the converse using a

proof by contrapositive.

Lemma 1 Let x € Z. If 322 is even, then x is even.
Lemma 2 Let z € Z. If 522 is even, then « is even.

Both lemmas can be proved using a proof by contrapositive.

Use Lemma 1 to show that if 323 is even, then 522 is even; and use Lemma 2 to show that if 52

is even, then 323 is even.
One possible choice with a single lemma is:

Lemma Let z € Z. Then 323 is even if and only if x is even.

Proof. Assume that 112 — 5 is odd. Then 11x — 5 = 2a + 1, where a € Z. Thus

z = (1lz—=5)+(-10z+5)=(2a+1)—10x+5
= 2a—10x+6 =2(a — bz + 3).
Since a — 5x + 3 is an integer, x is even. ]

Use a proof by contrapositive. Assume that x and y are of the same parity. Thus z and y are both

even or both odd. Consider these two cases.

Proof. Assume that  and y are of opposite parity. We consider two cases.

Case 1. x is even and y is odd. So x = 2a and y = 2b + 1 for integers a and b. Therefore,
3z 4+ 5y =3(2a) +5(20+ 1) = 6a + 10b+ 5 = 2(3a + 50+ 2) + 1.

Since 3a + 5b + 2 is an integer, 3x + 5y is odd.

Case 2. x is odd and y is even. Thus x = 2a + 1 and y = 2b for integers a and b. Therefore,
3x+5y=3(2a+1)+5(2b) =6a+100+3=2(3a+5b+ 1)+ 1.
Since 3a + 5b + 1 is an integer, 3x + 5y is odd. [

Proof. Assume first that = is odd or y is even. We consider these two cases.

Case 1. x is odd. Then x = 2a + 1 for some integer a. Thus
(z+1)y* = (2a+2)y* = 2(a + 1)y*.

Since (a + 1)y? is an integer, (z + 1)y? is even.

Case 2. y is even. Then y = 2b for some integer b. Now
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3.38

3.39

3.40

3.41

3.42

3.43

3.44

(z + 1)y? = (z + 1)(2b)? = 226%(z + 1)].

Since 2b%(z + 1) is an integer, (z + 1)y? is even.
For the converse, assume that x is even and y is odd. Then z = 2a and y = 2b + 1, where
a,b € Z. Now observe that
8ab® + 8ab + 2a + 4b* + 4b + 1
= 2(4ab® + 4ab + a + 2b* + 2b) + 1.

(x 4+ 1)y? = (2a 4 1)(2b + 1)?

Since 4ab? + 4ab + a + 2b + 2b is an integer, (z + 1)y? is odd. [

Assume that z or y is odd, say = is odd. We then consider two cases, according to whether y is

even or y is odd. When y is even, = 4 y is odd; while when y is odd, zy is odd.

Let x € Z. We consider two cases.

Case 1. x is even. Then x = 2a for some integer a. Observe that 3z + 1 =3(2a)+ 1 =2(3a)+ 1 is
odd; while 5z + 2 = 5(2a) + 2 = 2(5a + 1) is even. Thus 3z + 1 and 5z + 2 are of opposite parity.

Case 2. x is odd. Then x = 2b+ 1 for some integer b. (An argument similar to that used in Case

1 shows that 3z 4+ 1 and 5x + 2 are of opposite parity.)

Proof. Assume that some pair, say a, b, of integers of S are of opposite parity. Hence we may

assume that a is even and b is odd. There are now four possibilities for ¢ and d.

Case 1. ¢ and d are even. Consider a € S. Since b+ c is odd and ¢+ d is even, neither condition (1)
nor (2) is satisfied.

Case 2. c is even and d is odd. Consider a € S. Since ¢ + d is odd and b + d is even, neither
condition (1) nor (2) is satisfied.

Case 3. ¢ is odd and d is even. Consider a € S. Since ¢+ d is odd and b + ¢ is even, neither
condition (1) nor (2) is satisfied.

Case 4. ¢ and d are odd. Consider b € S. Since a+ ¢ is odd and ¢+ d is even, neither condition (1)

nor (2) is satisfied. L]

Since = and y are of opposite parity, either z is even and y is odd or x is odd and y is even. This
second case was never considered and it was never stated that we could consider the first case only

without loss of generality.

Proof. Assume that a and b are even integers. Then a = 2k and b = 2/ for some integers k and /.
Then ax + by = (2k)x + (20)y = 2(kx + ly). Since kx + fy is an integer, ax + by is even. m

Proof. Since a and b are distinct, either a < b or b < a, say the former. Then (a+b)/2 > (a+a)/2 =

a. "
Proof. Assume that ab = 4. Then either a =b =2, a = b= —2, or (a,b) is one of (4,1), (-4, —-1),
(1,4), (=1,-4). fa=b=2o0ra=b= —2 thena—b =0 and so (a —b)> —9(a — b) =
0. If (a,b0) € {(4,1),(—4,-1),(1,4),(—=1,—4)}, then a —b = 3 or a — b = —3. In either case,
(a—b)>-9(a—0b)=0. L]
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3.45 Proof. Since (a — b)2 = a?® — 2ab+ V% > 0, it follows that a® + b% > 2ab and so 2a® + 2b% > 4ab.

Because a and b are two positive integers,
a?(b+1)+b%(a+1) > a®(14+1) + b*(1 + 1) = 2a® + 2b* > 4ab,
as desired. (]
3.46 (a) Proof. Assume that n is an odd integer. Then n = 2k + 1 for some integer k. So
n® = (2k +1)% = 8k + 12k% + 6k + 1 = 2(4k® 4 6k + 3k) + 1.

Since 4k3 4 6k2 4 3k is an integer, n® is odd. [

(b) Proof. Assume that n is an odd integer. By Result A, n? is an odd integer. By Result A

again, (n?)? = n% is an odd integer. Then n° = 2¢ + 1 for some integer ¢. Thus
5n? +13 =5(204 1) +13 = 100 + 18 = 2(5¢ + 9).
Since 5¢ + 9 is an integer, 5n° + 13 is even. [

3.47 Proof. Since T is a right triangle, it follows by the Pythagorean theorem that c? = a? +b%. Cubing

both sides, we have

& = ab+3a"? + 3" +0° = a® + 3a?b*(a® + b?) + b°
= a%+43a%b%c? + 5.

Solving for (abc)? gives us the desired result. ]
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Exercises for Chapter 4

Exercises for Section 4.1: Proofs Involving Divisibility of Integers

4.1 Proof. Assume that a | b. Then b = ac for some integer c. Then b? = (ac)? = a?c?. Since ¢? is

an integer, a? | b°. [

4.2 Proof. Assume that a | b and b | a. Then b = ax and a = by, where z,y € Z. Thus a = by =
(ax)y = a(zy), implying that xzy = 1. Sox =y =1or x =y = —1. Therefore, a =bora=—b. =

4.3 (a) Proof. Assume that 3 | m. Then m = 3q for some integer q. Hence m? = (3¢)? = 9¢°® =
3(3¢?). Since 3¢? is an integer, 3 | m2.
(b) Let m € Z. If 3+ m?, then 3 {m.
(c) Start with the following: Assume that 3 [/ m. Then m = 3¢+ 1 or m = 3¢q + 2, where ¢ € Z.

Consider these two cases.
(d) Let m € Z. If 3 | m2, then 3 | m.
(e) Let m € Z. Then 3 | m if and only if 3 | m?.
4.4 Assume that 312 and 3ty. Then x = 3p+ 1 or x = 3p + 2 for some integer p and y = 3¢+ 1 or
y = 3q + 2 for some integer q. We then consider the following four cases.

Casel. x =3p+1 and y = 3¢+ 1. Then

z? —qy? (Bp+1)2 = (3¢+1)> = (9p* +6p+1) — (9¢° + 6¢ + 1)
= 3(3p* +2p—3¢* —20).

Since 3p? + 2p — 3¢% — 2q is an integer, 3 | (2% — y?).
(Use similar arguments for the remaining cases.)
Case 2. x =3p+1 and y = 3q + 2.

Case 3. x =3p+2 and y = 3q+ 1.

Case 4. x =3p+2 and y = 3q + 2.

4.5 Proof. Assume that a | b or a | ¢, say the latter. Then ¢ = ak for some integer k. Thus bec =
b(ak) = a(bk). Since bk is an integer, a | be. ]

4.6 [Use a proof by contrapositive.] Assume that 3 { a. We show that 3 { 2a. Since 3t a, it follows
that a = 3¢ + 1 or a = 3q + 2 for some integer q. We consider these two cases.
Case 1. a =3q+ 1. Then 2a = 2(3¢ + 1) = 3(2¢) + 2. Since 2q is an integer, 3t 2a.
Case 2. a =3¢+ 2. (Use an argument similar to that in Case 1.)

4.7 For the implication “If 3 { n, then 3 | (2n? + 1).”, use a direct proof. Assume that 3 { n. Then
n =3q+ 1 or n = 3q + 2 for some integer q. Then consider these two cases.

For the converse “If 3 | (2n? + 1), then 3 fn.” use a proof by contrapositive.
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4.8

4.9

4.10

4.12

Proof. Assume first that 4 | (n? + 3). Then n? + 3 = 4z for some integer z. Hence n? = 4z — 3

and so
nt —3 = (4r — 3)? — 3 = 1622 — 242 + 6 = 2(82% — 12z + 3).

Since 822 — 12z + 3 is an integer, 2 | (n* — 3).

4

For the converse, assume that 2 | (n* — 3). Hence n* — 3 = 2a for some integer a. Thus

n* =2a+3 =2(2a+ 1) + 1. Since 2a + 1 € Z, it follows that n* is odd. By Theorem 3.12, n? is
odd; and by Theorem 3.12 again, n is odd. So n = 2b+ 1, where b € Z. Hence

n?+3=(20+1)2+3=4b>+4b+4=40> +b+1).
Since b? + b + 1 is an integer, 4 | (n? + 3). m
Proof. Let n € Z with n > 8. Then n = 3¢, where ¢ > 3, or n = 3¢+ 1, where ¢ > 3, or n = 3¢+ 2,
where ¢ > 2. We consider these three cases.

Case 1. n = 3q, where ¢ > 3. Then n = 3a + 5b, where a > 3 and b = 0.

Case 2. n = 3q+ 1, where ¢ > 3. Then n = 3(¢ — 3) + 10, where ¢ — 3 > 0. Thus n = 3a + 5b,
where a =q—3 >0 and b = 2.

Case 3. n = 3q+2, where ¢ > 2. Then n =3(¢— 1)+ 5, where ¢ —1 > 1. Thus n = 3a + 5b, where
a=qg—1>1and b=1. [

Exercises for Section 4.2: Proofs Involving Congruence of Integers

Proof. Assume that a =b (mod n). Then n | (a — b); so a — b = nzx for some integer x. Observe
that

a? —v?> = (a—b)(a+b) = (nz)(a+b) = n[z(a+ b)].
Since x(a + b) is an integer, n | (a® — b?) and so a® = b? (mod n). L]

Proof. Assume that ¢ = b (mod n) and a = ¢ (mod n). Then n | (a —b) and n | (a — ¢). Hence
a—b=nx and a — ¢ = ny, where x,y € Z. Thus b = a — nz and ¢ = a — ny. Therefore,
b—c=(a—nx)—(a—ny) =ny—nz=n(y—x). Since y — z is an integer, n | (b —¢) and so
b= c (mod n). L]
Assume that one of a and b is congruent to 0 modulo 3 and that the other is not congruent to 0

modulo 3. We show that a? + 2b% # 0 (mod 3). We consider two cases.
Case 1. a =0 (mod 3) and b # 0 (mod 3). Since a =0 (mod 3), it follows that a = 3p for some
integer p. Since b # 0 (mod 3), either b = 3¢+ 1 or b = 3¢ + 2 for some integer q. There are two
subcases.
Subcase 1.1. b= 3g+ 1. Then
a®>+2v° = (3p)? +2(3¢+1)* =9p* +2(9¢> + 6¢ + 1)
= 9p® +18¢% 4 12¢ + 2 = 3(3p* + 6¢* + 4q) + 2.
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Since 3p? + 6¢% + 4q is an integer, 3 1 (a® + 2b%) and so a? + 2b% # 0 (mod 3).
Subcase 1.2. b= 3q+ 2. (The proof is similar to that of Subcase 1.1.)

Case 2. a £ 0 (mod 3) and b =0 (mod 3). Since b = 0 (mod 3), it follows that b = 3¢, where
q € Z. Since a # 0 (mod 3), it follows that a = 3p+ 1 or a = 3p + 2 for some integer p. There are

two subcases.
Subcase 2.1. a=3p+ 1.
Subcase 2.2. a = 3p+ 2.

(The proof of each subcase is similar to that of Subcase 1.1.)

413 (a) Proof. Assume that a =1 (mod 5). Then 5| (a —1). So a —1 = 5k for some integer k. Thus
a =5k +1 and so

a® = (5k 4+ 1)* = 25a% + 10a + 1 = 5(5a* + 2a) + 1.
Thus
a? — 1 =5(5a% + 2a).
Since 5a? + 2a is an integer, 5 | (a® — 1) and so a®> =1 (mod 5). L]
(b) We can conclude that b2 = 1 (mod 5).

4.14 (a) Let n € Z. f n #0 (mod 3) and n # 1 (mod 3), then n? #n (mod 3).
Proof. Assume that n # 0 (mod 3) and n # 1 (mod 3). Then n = 2 (mod 3). Therefore,

n = 3a + 2 for some integer a. Thus

n® —n (3a+2)* — (3a+2) =9a* +12a +4 — 3a — 2
= 9a®+9a+ 2 = 3(3a* + 3a) + 2.
Since 3a? + 3a is an integer, n? —n =2 (mod 3) and so n? # n (mod 3). L]
(b) Let n € Z. Then n? #n (mod 3) if and only if n # 0 (mod 3) and n # 1 (mod 3).

4.15 Proof. Assume that a =5 (mod 6) and b = 3 (mod 4). Then 6 | (a —5) and 4 | (b — 3). Thus
a—5=6x and b — 3 = 4y, where z,y € Z. So a = 6x + 5 and b = 4y + 3. Observe that

4a + 6b = 4(6x + 5) + 6(4y + 3) = 24z + 20 4 24y + 18 = 24z + 24y + 38 = 8(3x + 3y + 4) + 6.
Since 3z + 3y + 4 is an integer, 8|(4a + 6b — 6) and so 4a + 6b = 6 (mod 8). n

4.16 (a) Proof. Assume that n = 0 (mod 7). Then 7 | n and so n = 7q for some integer ¢q. Since
n? = 49¢? = 7(7¢*) and 7¢? is an integer, n? = 0 (mod 7). n
(b)—(d) The proofs are similar to that of (a).
(e) Proof. Let n € Z. Then

n?—(7-n)? = n®— (49— l4n+n?) =14n — 49
= 7(2n-7).
Since 2n — 7 is an integer, 7|[n* — (7 — n)?] and so n? = (7 —n)? (mod 7). L]
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4.17

4.18

4.19

4.20

4.21

(f) Proof. Let n € Z. Then n is congruent to one of 0, 1, 2, 3, 4, 5, or 6 modulo 7. If n is
congruent to one of 0, 1, 2, or 3 modulo 7, then n? is congruent to one of 0, 1, 2, or 4 modulo

7 by (a)-(d). Three cases remain.

Case 1. n =4 (mod 7). By (e), n? =2 (mod 7)

Case 2. n =5 (mod 7). By (e), n? =4 (mod 7)

Case 3. n =6 (mod 7). By (e), n? =1 (mod 7). ]
Proof. Either a = 3¢, a = 3¢+ 1 or a = 3g + 2 for some integer q. We consider these three cases.
Case 1. a = 3q. Then

a® —a = (3¢)° — (3¢) = 27¢° — 3¢ = 3(9¢° — q).

Since 9¢° — ¢ is an integer, 3 | (a® — a) and so a® = a (mod 3).

Case 2. a =3q+ 1. Then

@ —a (3¢+1)°—B¢g+1)=27¢°+27¢* + 9+ 1 -3¢ — 1
= 2743 +27¢* + 6¢ = 3(9¢° + 9¢* + 2¢).

Since 9¢% + 9¢° + 2q is an integer, 3 | (a® — a) and so a® = a (mod 3).
Case 3. a = 3q + 2. Then

a®—a = (3¢+2)°—(3q+2)=(27¢> +54¢* + 36¢ +8) — 3¢ — 2
= 27¢% +54¢* +33¢ + 6 = 3(9¢> + 18¢* + 11q + 2).

Since 9¢° + 18¢% + 11¢ + 2 is an integer, 3 | (a® — a) and so a® = a (mod 3). n

Exercises for Section 4.3: Proofs Involving Real Numbers

Proof. Assume that 22 — 4z = y?> — 4y and o # y. Thus 22 —y? —4(z —y) = 0 and so (z —y)[(z +
y) — 4] = 0. Since = # y, it follows that (x +y) —4 =0 and so z + y = 4. [

Proof. Assume that a < 3m+1 and b < 2m+ 1. Since a and b are integers, a < 3m and b < 2m.

Therefore,
2a+3b<2(3m)+3(2m) = 12m < 12m + 1,

as desired. -

A proof by contrapositive can be used: Assume that < 0. Then 3z* +1 > 1 and 7 4+ 23 < 0.
Thus 3z +1>1>0> 27 + 23,

This exercise states that the arithmetic mean of two positive numbers is at least as large as their

geometric mean.
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(a) Proof. Since (a — b)? > 0, it follows that a? — 2ab + b? > 0. Adding 4ab to both sides, we
obtain a? + 2ab + b% > 4ab or (a + b)? > 4ab. Taking square roots of both sides, we have
a+b > 2vab and so Vab < (a+b)/2, as desired. ]

(b) Assume that vab = (a + b)/2 . Taking the steps in part (a) in reverse order, we obtain
(a —b)2 =0 and so a = b.
4.22 (a) Proof. Assume that 0 < r < 1. Since (2r — 1) > 0, it follows that
(2r —1)*=4r* —4r +1>0.

Thus 1 > 4r — 4r? = 4r(1 — 7). Since 0 < r < 1, it follows that 7(1 — r) > 0. Dividing both

sides of 1 > 4r(1 — r) by (1 — r), we obtain r(l—lfr) > 4. ]

(b) Since 0 < r < 1, r cannot be an integer. If r =0 or r = 1, then ﬁ is undefined.
4.23 Observe that if x = 0 or y = 0, then the result holds. Thus we may assume that  # 0 and y # 0.
There are three cases.
Case 1. x >0 and y > 0.
Case 2. x <0 and y < 0.

Case 3. One of x and y is positive and the other is negative, say x > 0 and y < 0.

4.24 Proof. Since
[z =@ +y)+ (=) < |z +yl+ |-yl =z +yl+ ]y,
it follows that |z +y| > |z| — |y|- ]
4.25 Proof. Since |z—z| = |(x—y)+ (y—2)|, it follows that |z —z| = [(zr—y)+(y—2)| < |z —y|+|y—z|. =

4.26 Proof. Let r € R such that |r — 1| < 1. Since |r — 1| < 1, it follows that 0 < r < 2. Because
(r —2)2 > 0, we have
r2—4r+4>0.
Thus 4 > 4r — 72 = (4 — 7). Since 0 < r < 2, it follows that r(4 — r) > 0. Dividing both sides by

r(4 —r), we obtain ﬁ >1 ]

Exercises for Section 4.4: Proofs Involving Sets

4.27 We first show that AUB C (A—B)U(B—-—A)U(ANDB).Let x € AUB. Thenz € Aor x € B.

Assume, without loss of generality, that x € A. We consider two cases.
Casel. x € B. Since x € Aand z € B, it follows that x € ANB. Thus x € (A—B)U(B—A)U(ANDB).

Case 2. x ¢ B. Since x € A and = ¢ B, it follows that z € A — B. Again, x € (A— B)U(B—A)U
(AN B).

Next, we verify that (A—B)U(B—-A)U(ANB) C AUB. Let y € (A—B)U(B—-A)U(ANB).
Theny € A— B,y € B— A, or y € AN B. In each case, either y € A or y € B. Therefore,
y € AU B.
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4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

Proof. First, we show that if AU B = A, then B C A. Assume that AU B = A. Let x € B. Then
x € AU B. Since AU B = A, it follows that x € A. Thus B C A.

Next we show that if B C A, then AU B = A. Assume that AU B # A. Since A C AU B, it
follows that AU B € A. Hence there exists some element x € AU B such that = ¢ A. Necessarily,
xz € Bandx ¢ A. Thus B € A. m

Proof. Assume that AN B = A. We show that A C B. Let x € A. Since A = AN B, it follows
that x € AN B and so x € B. Hence A C B.

For the converse, assume that A C B. We show that AN B = A. Since AN B C A, it suffices
to show that A C AN B. Let x € A. Since A C B, it follows that x € B. Thus z € A and z € B,
implying that x € AN B. Therefore, A C AN B. [

(a) Consider A = {1,2}, B ={2,3}, and C = {2,4}.
(b) Consider A ={1,2}, B = {1}, and C = {2}.
(c) Proof. Suppose that B # C. We show that either ANB # ANC or AUB # AUC. Since

B # C, it follows that B € C' or C € B, say the former. Thus there exists b € B such that
b ¢ C. We consider two cases, according to whether b € A or b ¢ A.

Case 1. b€ A. Since b € B and b € A, it follows that b € AN B. On the other hand, b ¢ C
andsob¢ ANC. Thus ANB # AnC.

Case 2. b ¢ A. Since b € B, it follows that b € AU B. Because b ¢ A and b ¢ C, we have
b¢ AuUC. Therefore, AUB # AUC.

Thus, either ANB #ANCor AUB# AUC. [

Proof. Assume that A=0 and B=(. Then AUB=0U{ = 0. n

Proof. Let n € B. Thenn € Z and n = 3 (mod 4). So n = 4¢q + 3 for some integer ¢q. Therefore,
n=2(2¢+1)+1. Since 2¢+1 € Z, it follows that 2 | (n—1) and son =1 (mod 2). Thusn € A. m

Proof. Assume that A = B. Then AUB = AN B = A. It remains to verify the converse. Assume
that A # B. Thus A € B or B Z A, say the former. Thus there exists a € A such that a ¢ B.
Since a ¢ B, it follows that a ¢ ANB. On the other hand, a € A implies that a € AU B. Therefore,
AUB# ANB. n

Exercises for Section 4.5: Fundamental Properties of Set Operations

Let € ANB. Then x € A and x € B. Thus z € B and = € A (by the commutative property
of the conjunction of two statements). So z € BN A, implying that AN B C BN A. (A similar
argument shows that BN A C AN B.)

Proof. First, we show that AN (BUC) C (ANB)U(ANC). Letz € AN(BUC). Thenz € A
and x € BUC. Since z € BUC, it follows that x € B or z € C, say x € B. Because ¢ € A and
x € B, it follows that x € AN B. Hence x € (AN B)U (ANC).
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4.36

4.37

4.38

4.39

4.40

4.41

Next, we show that (ANB)U(ANC) C AN(BUC). Lety € (ANB)U(ANC). Theny € ANB
or y € ANC, say the former. Since y € AN B, it follows that y € A and y € B and so y € A and
ye BUC. Thusy e AN(BUC). L]

Proof. We first show that ANB C AUB. Let v € ANB. Then x ¢ ANB. Thus z ¢ A or
r ¢ B, say the former. Since = ¢ A, it follows that z € A and so x € AU B.

Next, we show that AUB C ANDB. Let t € AUB. Sox € A or x € B. We may assume that
v €A Thus 2 ¢ A and so x ¢ AN B. Therefore, v € AN B. L]

Proof. We first show that (A—B)N(A—-C)CA—-(BUC). Letx € (A—B)N(A—C). Then
x€A—Bandxz e A—C. Since x € A — B, it follows that x € A and x ¢ B. Because z € A — C,
we have x € A and z ¢ C. Since z ¢ B and « ¢ C, we havex ¢ BUC. Thusz € A — (BUC).

Next, we show that A — (BUC) C (A-—B)N(A—-C). Lety€ A— (BUC). Thus y € A and
y ¢ BUC. Since y ¢ BUC, it follows that y ¢ Band y ¢ C. Thusy€ A—Bandy € A—C.
Therefore, y € (A — B)N (4 - C). L]
Proof. We first show that (A — B)U(A—-C)C A—(BNC). Let x € (A— B)U (A —C). Then
x€A—-BorxeA—C,say the former. Thus ¢ € Aand x ¢ B. Thus x ¢ BNC. Since z € A
and x ¢ BN C, it follows that v € A — (BN C).

Next we show that A— (BNC)C(A—B)U(A—-C). Let x € A— (BNC). Then x € A and
x ¢ BNC. Since x ¢ BNC, it follows that © ¢ B or x ¢ C, say x ¢ B. Because v € A and z ¢ B,
we havez € A— Bandsox € (A—B)U(A—-C). L]

Proof. By Theorem 4.21,

AU(BNC) = An(BNC)=An(BUD)
= AN(BUC)=(ANB)U(ANC)
= (ANB)U(A-C),
as desired. n

Exercises for Section 4.6: Proofs Involving Cartesian Products of Sets

We have already noted that if A = () or B = (), then A x B = ). For the converse, assume that
A # 0 and B # (. Then there exist a € A and b € B; so (a,b) € A x B.

Let A and B be sets. Then A x B = B x A if and only if A = B or one of A and B is empty.

Proof. First, we show that if A = B or one of A and B is empty, then A x B = B x A. If
A = B, then certainly A x B = B x A; while if one of A and B is empty, say A = (), then
AxB=0xB=0=Bx0=DBxA.

For the converse, assume that A and B are nonemptysets with A # B. Since A # B, at least
one of A and B is not a subset of the other, say A ¢ B. Then there is an element a € A such that
a ¢ B. Since B # (), there exists an element b € B. Then (a,b) € A x B but (a,b) ¢ B x A. Hence
Ax B#BxA. [
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4.42

4.43

4.44

4.45

4.46

4.47

4.48

Let A and B be sets. Then (A x B) N (B x A) = 0 if and only if A and B are disjoint.

Proof. First, we assume that A and B are not disjoint. Then there exists x € A N B. Hence
(z,z) € (AXx B)N (B x A) and so (A x B)N (B x A) # 0.

For the converse, assume that (Ax B)N(Bx A) # (. Then there exists (z,y) € (Ax B)N(Bx A).
Thus (x,y) € Ax B and (z,y) € BxA. Sox € Aandz € B. Thusx € ANBandso ANB # (. m

Proof. First, assume that A x C C B x C. We show that A C B. Let a € A. Since C # 0, there
exists ¢ € C' and so (a,c) € A x C. Since A x C C B x C, it follows that (a,c) € B x C and so
a € B.

For the converse, assume that A C B. We show that Ax C C Bx C. Let (a,c) € Ax C. Then
a € Aand ce C. Since A C B, it follows that a € B. Thus (a,c) € B x C, as desired. ]

(a) Let A=0, B={1},C ={2}, and D = {3}.
(b) If A and B are nonempty sets such that A x B C C x D, then A C C and B C D.

Proof. Let A and B be nonempty sets such that A x B C C x D. We only show that A C C
as the proof that B C D is similar. Let a € A. Since B # (), there exists b € B. Hence
(a,b) € Ax B. Because A x B C C x D, it follows that (a,b) € C x D. Thus a € C. n

Proof. We first show that A x (BNC) C (A x B)N (A x (). Let (z,y) € A x (BN C). Then
x€Aandy e BNC. Thusy € Band y € C. Thus (z,y) € Ax B and (x,y) € A x C. Therefore,
(z,y) € (Ax BYN (A x C).

It remains to show that (A x B)N (A x C) C Ax (BNC). Let (z,y) € (Ax B)N(AxC).
Then (z,y) € Ax B and (z,y) € AxC. Sox € A,y € B, and y € C. Hence y € BN C and so
(x,y) e Ax (BNCQC). L]

Proof. We first show that (A x B)N(C x D) C (ANC) x (BN D). Let (z,y) € (Ax B)N(C x D).
Then (z,y) € Ax B and (z,y) € CxD. Thusz € A,y Bandz e C,ye D. Thusz € ANC
and y € BN D and so (z,y) € (ANC) x (BN D).

It remains to show (ANC) x (BND) C (Ax B)N(C x D). Let (z,y) € (ANC) x (BN D).
Thenz € ANC andy € BND. Sox € Aand z € C; whiley € Bandy € D. Thus (z,y) € Ax B
and (x,y) € C x D, which implies that (z,y) € (A x B) N (C x D). m

Proof. Let (z,y) € (Ax B)U(C x D). Then (z,y) € Ax B or (z,y) € C x D. Assume, without
loss of generality, that (z,y) € A x B. Thus « € A and y € B. This implies that x € AU C and
y € BU D. Therefore, (z,y) € (AUC) x (BUD,). L]

Let U = {1,2} be the universal set and consider A = {1} and B = {2}. Thus the universal set
for A x Bis U x U. In this case, A x B = {(1,2)}, Ax B = {(1,1),(2,1),(2,2)}, A = {2}, and
B={1}. Thus A x B={(2,1)} # A x B.

Additional Exercises for Chapter 4
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4.49

4.50

4.51

4.52

4.53

First, we assume that 5 | n. Then n = 5k for some integer k. Thus n? = (5k)? = 5(5k?). Since 5k

is an integer, 5 | n?.

For the converse, we assume that 5fn. Then n=5¢+1, n =5¢+2,n=5¢+3,or n=5q¢+4

for some integer q. We consider four cases.

Case 1. n =5q+ 1. Then
n? = (5q¢+1)? = 25¢% + 10g + 1 = 5(5¢> + 2q) + 1.

Since 5¢% + 2q is an integer, 5 { n?. (The remaining three cases are proved in a manner similar to
Case 1.)

First, assume that 3 | @ or 3 | b, say 3 | a. Then a = 3c for some integer ¢. Thus ab = (3¢)b = 3(cb).
Since ¢b is an integer, 3 | ab.

For the converse, we assume that 31 a and 31b. Then either a = 3p+ 1 or a = 3p+ 2 for some

integer p and b = 3¢ + 1 or b = 3¢ + 2 for some integer q. There are four cases.

Case 1. a=3p+1 and b=3q+ 1. Then

ab

Bp+1)B¢g+1)=9pg+3p+3q+1
3Bpg+p+4q) +1.

Since 3pg + p+ ¢ is an integer, 3 1 ab. (The remaining cases are proved in a manner similar to Case

1)

Proof. Let n be an odd integer. Then n = 2k 4 1 for some integer k. Thus

n?+(n+6)2+6 = 2n*+12n+42=2(2k+1)? + 12(2k + 1) + 42
= 8Kk 4+ 32k +56 = 8(k* + 4k + 7).

Since k% + 4k + 7 is an integer, 8 | [n? + (n + 6)% + 6]. "

Proof. Let n be an odd integer. Then n = 2k 4 1 for some integer k. Thus

n*+4n? +11 = (2k+1)*+42k+1)*+ 11
= 16k* + 32k + 24k* + 8k + 1 + 16k + 16k + 4 + 11
= 16k + 32k3 + 40k? + 24k + 16 = 8(2k* + 43 + 5k% + 3k + 2).
Since 2k* + 4k3 + 5k2 + 3k + 2 is an integer, 8 | (n* + 4n? + 11). "

Proof. Assume that n =1 (mod 2) and m = 3 (mod 4). Then n = 2p+ 1 and m = 4q + 3, where
p,q € Z. Thus

n>4+m = (2p+1)2+(4g+3)=4p> +4p+1+4q+3
= 4P +4p+49+4=4(p" +p+q+1).

Since p? +p + g + 1 is an integer, 4 | (n? +m) and so n? +m =0 (mod 4). L]
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4.54

4.55

4.56

4.57

Two values of a are a = 3 and a = 4.
Result. For every integer n, 31 (n? +1).

Proof. Let n € Z. Then n = 3q, n = 3g+ 1, or n = 3q + 2 for some integer q. We consider three
cases.

Case 1. n = 3q. Then
n?+1=3¢)*+1=9¢>+1=3(3¢%) + 1.

Since 3¢? is an integer, 3 1 (n? + 1).
Case 2. n =3q+ 1. Then
n2+1=0Bqg+1)2+1=9¢%>+6q+2=3(3¢>+2q) + 2.

Since 3¢ + 2q is an integer, 3 1 (n? + 1).
Case 3. n =3q + 2. Then

n?+1=08¢+2)2+1=9¢>+12¢+5=3(3¢> +4q+1) + 2.
Since 3¢? + 4q + 1 is an integer, 3 1 (n? + 1). m
(The proof for a = 4 is similar to that for a = 3.)

Since Va2 = a if a > 0 and Va2 > a if a < 0, it follows that v a2 > a for every real number a.

Also, \/zy = /g if 2,y > 0. Thus ab < \/(ab)? = Va2h? = Va2Vb2.

Since (ad — bc)? > 0, it follows that a?d? — 2abed + b%c?> > 0. Thus a?d? + b%c? > 2abed. Adding

a?c? + b2d? to both sides, we obtain

a’d® + b2 + a%c?® + b2d% = (a® + b?)(c® + d?) > (ac + bd)?.

Thus /(a2 + b2)(c% + d2) > ac + bd.

Proof. Assume that z(z —5) = —4. Then 22 — 5z +4 = (v — 1)(z — 4) = 0. Therefore, z =1 or

x = 4. We consider these two cases.

Case 1. x =1. Then /522 —4=+/5—-4=1and z + % =141 = 2. Hence the implication
V522 — 4 = 1 implies that z 4+ 1 =2

is true when x = 1.

Case 2. x = 4. Since v/522 — 4 = /80 — 4 # 1, the implication
V522 — 4 =1 implies that v + 1 =2

is true when x = 4. n

37



4.58 Let x = 2 (mod 3) and y = 2 (mod 3). Then z = 3k + 2 and y = 3¢ + 2 for some integers k and

£. Note that it is possible that k # £, that is, it is possible that x # y. Thus it is wrong to assume
that x = 3k + 2 and y = 3k + 2 for some integer k.

4.59 Result Let x,y € Z. If r =1 (mod 5) and y = 2 (mod 5), then 22 + y? =0 (mod 5).

4.60

4.61

4.62

4.63

4.64

4.65

4.66

1) A direct proof.

2) Assume that n? is even.

3) 3n+11is odd.

(1)
(2)
(3)
(4) (a) Let a € Z. If a? is even, then a is even.

(

b) Same as (a).

d

)
)
(¢) This is from the definition of an even integer.
(d) Substitution and algebra.

)

(e) This is from the definition of an odd integer.

(a) Let A and B be sets. If AN B =), then A= (AU B) — B.

(b) Tt probably would have been better to begin the proof by saying: Assume that AN B = (.

A change in the order of the steps in the first paragraph could make for a clearer proof. (See
below.)

First, we show that A C (AUB)—B. Let x € A. Thenz € AUB. Since x € A and ANB = 0,
it follows that © ¢ B. Thusz € (AUB) — Band AC (AUB) — B.

The result is an implication, not a biconditional. The proof is complete after the first paragraph.

It is wrong to assume that x — 1 = 3¢ and y — 1 = 3¢ for some integer ¢ since = and y need not be

equal integers.

It is wrong to conclude that @ ¢ B simply because (z,y) ¢ B x C. It should be since (z,y) ¢ BxC
and y € C, we have = ¢ B.

Recall that |z — y| = |y — x| for every two real numbers z and y.

Proof. We may assume, without loss of generality, that a < b < ¢. Then
la—bl+la—cl+]b—c=0b—-a)+(c—a)+ (c—b) =2c—2a=2(c—a).
Since ¢ — a € Z, it follows that |a — b| + |a — ¢| + |b — ¢| is an even integer. ]

Proof. Since (a — b)? > 0, it follows that a? + b? > 2ab. Dividing by the positive number ab, we
obtain

+ 227

Sl S
Q|

as desired. n
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4.67 Proof. Cubing both sides of the trigonometric identity sin® x + cos? z = 1, we obtain
(sin® x +cos?2)® = sin®x + 3sin® xcos® x + 3sin® 2 cos? 2 + cos®
= sin®z + 3sin® z cos® z(sin® x + cos® x) + cos® x

= sinz + 3sin®zcos? z + cosb z = 1,

as desired. -

4.68 Proof. Since x < 0, it follows that z(z — y)? < 0. Thus 2® — 22%y + zy? < 0 and so 2% — 2%y <

2%y — xy?. [
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Exercises for Chapter 5

Exercises for Section 5.1: Counterexamples

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

Let a = b= —1. Then log(ab) = log1 = 0 but log(a) and log(b) are not defined. Thus a =b= —1

is a counterexample.

If n = 4, then 2" + 3" + n(n — 1)(n — 2) = 121 = 112, which is not prime. Thus n = 4 is a

counterexample.
If n = 3, then (2n% + 1) = 19. Since 3 1 19, it follows that n = 3 is a counterexample.
If n =2, then % = 3 is odd, but % =6 is even. Thus n = 2 is a counterexample.

If a =1and b= 2, then (a+b)% = 33 = 27, but a® + 2a%b+2ab+2ab> +b*> = 1 +4+4+8+8 = 25.

Thus a =1 and b = 2 form a counterexample.

If a =b=1, then ab =1 and (a + b)?> = 4 and so ab and (a + b)? are of opposite parity. On the

other hand, a?b?> = 1 and a+ab+b = 3 are of the same parity. Thus a = b = 1 is a counterexample.

Exercises for Section 5.2: Proof by Contradiction

Proof. Assume, to the contrary, that there exists a largest negative rational number r. Thus
r = a/b, where a,b € Z and b # 0. Consider r/2 = a/2b. Since a,2b € Z and 2b # 0, the number

r/2is rational. Because r < r/2 < 0, this contradicts r being the largest negative rational number. m

(Note: The fact that /2 is a rational number may be sufficiently clear that this does not have to
be verified.)

Assume, to the contrary, that there exists a smallest positive irrational number r. Then r/2 is a

positive irrational number and r/2 < r.

Proof. Assume, to the contrary, that 200 can be written as the sum of an odd integer a and two

even integers b and c¢. Then a =2z + 1, b = 2y, and ¢ = 2z, where z,y, 2z € Z. Thus
200=a+b+c=Q2x+1)+2y+22=2(x+y+2)+ 1
Since x + y + z € Z, it follows that 200 is odd, which is a contradiction. =

Proof. Let a and b be odd integers and assume, to the contrary, that 4 | (a2+b2). Then a?+b? = 4z

for some integer x. Since a and b are odd integers, a = 2y + 1 and b = 2z + 1, where y, 2 € Z. Thus

4 = a® 4 V? Qu+1)2+22+1)2 =4y +4y+14+422 +42+1

= 4y FAy+422+42+2

Sodr —4y? — 422 — 4y — 4z =4(x —y? — 22 —y — z) = 2. Since v — y? — 22 — y — z is an integer,

4 | 2, which is a contradiction. ]
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5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

Proof. Let a > 2 and b be integers and assume, to the contrary, that a | b and a | (b+ 1). So
b=axr and b+ 1 = ay, where x,y € Z. Thenb+1=ax+1=ay and so 1 = ay — ax = a(y — x).

Since y —  is an integer, a | 1, which is a contradiction since a > 2. [

Assume, to the contrary, that 1000 can be expressed as the sum of three integers a,b, and ¢, an

even number of which are even. There are two cases.

Case 1. None of a,b, and c is even. Then a =2x+1,b=2y+1, and ¢ = 22+ 1, where x,y, z € Z.
Thus
1000=(2z+ 1)+ y+ 1)+ 2z+1)=2(x+y+2z+1)+1.

Since x + y + z + 1 is an integer, 1000 is odd, which is a contradiction.

Case 2. Ezactly two of a,b, and c are even, say a and b are even and c is odd. (The argument is

similar to that in Case 1.)

Proof. Assume, to the contrary, that there exist an irrational number ¢ and a nonzero rational
number b such that ab is rational. Since b is a nonzero rational number, b = r/s, where r, s € Z and
r,s # 0. Then ab = p/q, where p,q € Z and ¢ # 0. Then a = p/(bq) = (sp)/(rq). Since sp,rq € Z

and rq # 0, it follows that a is a rational number, which is a contradiction. [

Proof. Assume, to the contrary, that there exist an irrational number ¢ and a nonzero rational
number b such that a/b is a rational number. Then a/b = p/q, where p,q € Z and p,q # 0. Since
b is a nonzero rational number, b = r/s, where r,s € Z and r, s # 0. Thus a = (bp)/q = (rp)/(sq).

Since rp, sq € Z and sq # 0, it follows that a is a rational number, which is a contradiction. [

Assume, to the contrary, that ar + s and ar — s are both rational. Then (ar + s) + (ar — s) = 2ar
is rational. Thus 2ar = p/q, where p,q € Z and p,q # 0. Then show that a = p/(2¢r) is rational,

producing a contradiction.

Lemma: Let a be an integer. Then 3 | a? if and only if 3 | a.

Proof of Result. Assume to the contrary, that v/3 is rational. Then /3 = p/q, where p,q € Z
and ¢ # 0. We may assume that p/q has been reduced to lowest terms. Thus 3 = p?/q¢? or
p? = 3¢%. Since 3 | p?, it follows by the lemma that 3 | p. Thus p = 3z for some integer . Thus
p? = (32)% = 922 = 3¢>. So 32% = ¢>. Since x? is an integer, 3 | ¢>. By the lemma, 3 | ¢ and so
g = 3y, where y € Z. Hence p = 3z and ¢ = 3y, which contradicts our assumption that p/q has

been reduced to lowest terms. n

Consider beginning as follows: Assume, to the contrary, that a = v/2 + v/3 is a rational number.
Then a — /2 = /3. Squaring both sides, we obtain a? — 2av/2 +2 = 3 and so v2 = (a? — 1)/(2a).
This will lead to v/2 being rational, producing a contradiction.

(a) One possible way to prove this is to use the fact that for integers a and b, the product ab is

even if and only if a is even or b is even.

Proof. Assume, to the contrary, that /6 is rational. Then v/6 = a/b for nonzero integers a

and b. We can further assume that a/b has been reduced to lowest terms. Thus 6 = a?/b?%

2

so a? = 6b% = 2(3b?). Because 3b? is an integer, a” is even. By Theorem 3.12, a is even. So
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5.19

5.20

5.21

5.22

5.23

a = 2c¢, where ¢ € Z. Thus (2¢)? = 6b%, and so 4c?> = 6b%. Therefore, 3b> = 2¢2. Because c? is
an integer, 3b2 is even. By Theorem 3.17, either 3 is even or b? is even. Since 3 is not even,
b2 is even and so b is even by Theorem 3.12. However, since a and b are both even, each has

2 as a divisor, contradicting the fact that a/b has been reduced to lowest terms. [
(b) We can use an argument similar to that employed in (a) to prove that v/2k is irrational for

every odd positive integer k.

Proof. Let t € Q. Thent=t+0-vV2=t4+0-+/3 € SNT. Hence QC SNT. We now show
that SNT C Q. Let « be an arbitrary element of S N7T. Then there exist p,q,r, s € Q such that
r=p+qV2and x =+ sv3. Thus p+ ¢v2 = r + sv/3. Hence p —r = s/3 — ¢v/2. Squaring both
sides, we obtain

(p—r)? = 352 — 25¢/6 + 24>.
If sq # 0, then

V6 = (p—7r)? —3s% —2¢°
—2sq

is a rational number. However, we saw in Exercise 5.18(a) that /6 is irrational. Thus sq = 0,
implying that s = 0 or ¢ = 0. In either case, z € Q. Thus SNT C Q and so SNT = Q. [

Proof. Assume, to the contrary, that there exist positive real numbers x and y such that /z +y =

vz + /y. Squaring both sides, we obtain x +y = = + 2\/z,/y + y and so 2\/z,/y = 2,/zy = 0.
This implies that zy = 0. Thus « = 0 or y = 0, which is a contradiction. (]

Proof. Assume to the contrary, that there exists a positive integer x such that 2z < z? < 3.
Dividing these inequalities by (the positive integer) x, we obtain 2 < x < 3. This is impossible

since there is no integer between 2 and 3. ]

Assume, to the contrary, that there exist positive integers x and y such that z? — y? = m = 2s.
Then (z + y)(z — y) = 2s, where s is an odd integer. We consider two cases, according to whether
x and y are of the same parity or of opposite parity. Note that if x and y are of the same parity,
then both x + y and x — y are even, while if z and y are of opposite parity, then both x 4+ y and

x — y are odd. Produce a contradiction in each case.

Assume, to the contrary, that there exist odd integers = and y such that 22 +y? = 22, where z € Z.
Then z = 2a+ 1 and y = 2b + 1, where a,b € Z. Thus

2?42 (20 + 1)+ (20 + 1) =4a® +da+ 1 +4b*> +4b+ 1
= 4(a®* +a+b?+0b)+2=22(a*+a+b*+b)+ 1] = 2s,

where s = 2(a?+a+b%+b)+1is an odd integer. If z is even, then z = 2¢ for some integer ¢ and so
z = 2(2¢?), where 2¢? is an even integer; while if z is odd, then 2?2 is odd. Produce a contradiction

in each case.
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5.24 Assume, to the contrary, that there exists an integer m such that 3 { (m? — 1) and 3 f m. Thus

5.25

5.26

m =3q+ 1 or m = 3q + 2 for some integer ¢q. Produce a contradiction in each case.

Exercises for Section 5.3: A Review of Three Proof Techniques

(a)

(a)

Proof. Let n be an odd integer. Then n = 2x + 1 for some integer x. Thus
m—5=72x+1)—-5=14x+2=2(Tz+1).
Since 7x + 1 is an integer, 7n — 5 is even. ]

Proof. Assume that 7n — 5 is odd. Then 7Tn — 5 = 22 + 1 for some integer x. Hence

n = (8n—5)—(Tn—5)=8n—-5)— (2z+1)
= 8n—-2x—6=2(4n—xz—3).
Since 4n — x — 3 is an integer, n is even. [

Proof. Assume, to the contrary, that there exists an odd integer n such that 7n — 5 is odd.

Thus n = 2z + 1 for some integer x. Thus
m—5=72x+1)—-5=14z+2=2(Tz+1).
Since 7x + 1 is an integer, 7n — 5 is even, producing a contradiction. [

Proof. Assume that z — % > 1. Since x > 0, it follows, by multiplying by z, that 22 —2 > z
and so 22 —x — 2 > 0. Hence (z — 2)(x + 1) > 0. Dividing by the positive number = + 1, we
have x —2 > 0 and so z > 2. n

Proof. Assume that 0 <2 <2. Thus2? —z—2= (z —2)(x +1) <0 and so 22 — 2 < z.
Dividing by the positive number x, we have x — % <1. [
Proof. Assume, to the contrary, that there exists a positive number x such that x — % >1
and £ < 2. Thus 22 — 2 — 2 = (z — 2)(x + 1) <0 and so 22 — 2 < z. Dividing by the positive

number x, we have x — % < 1, producing a contradiction. [

5.27 This result can be proved using either a proof by contrapositive or a proof by contradiction.

5.28

(a)

(b)

()

Proof. Let x,y € R such that x < y. Multiplying both sides by = and y, respectively, we
obtain 22 < zy and zy < y2. Therefore, 22 < zy < y? and so 2% < y2. [
Proof. Assume that 22 > y2. Thus 22 — y? > 0 and so (z + y)(z — y) > 0. Dividing by the

positive number x + y, we obtain x —y > 0 and = > y. n

Proof. Assume, to the contrary, that there exist positive numbers z and y such that z <y
and z2 > 2. Since x < y, it follows that z? < zy and zy < y%. Thus z? < y2, producing a

contradiction. n

Exercises for Section 5.4: Existence Proofs
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5.29

5.30

5.31

5.32

5.33

Proof. For the rational number a = 1 and the irrational number b = \/5, the number 1V2 = 1 is

rational. n

1
Proof. Consider the rational number 2 and the irrational number #5 If 22v2 is irrational, then

1
a=2and b= ﬁ have the desired properties. If, on the other hand, 22v2 is rational, then

V2
(2%) — 935 — o} =2
is irrational and so a = 93v3 and b = /2 have the desired properties. [

Proof. Consider the irrational numbers /3 and v/2. If \/5\/5 is rational, then a = V3and b=+2

have the desired properties. On the other hand, if \/ﬁﬂ is irrational, then

is rational. Thus a = \/5\/§ and b = v/2 have the desired properties. n

Proof. Assume, to the contrary, that there exist nonzero real numbers a and b such that va2 + b2 =
Va3 4 b3. Raising both sides to the 6th power, we obtain

a% 4+ 3a*b? + 3ab* + 1% = a® + 24303 + ¥5.

Thus
3a® — 2ab + 3b* = (a — b)* + 2a% + 2% = 0.

Since this can only occur when a = b = 0, we have a contradiction. [

Proof. Let f(z) = 23 + 2% — 1. Since f is a polynomial function, it is continuous on the set of
all real numbers and so f is continuous on the interval [2/3,1]. Because f(2/3) = —7/27 < 0 and
f(1) =1 > 0, it follows by the Intermediate Value Theorem of Calculus that there is a number ¢

between x = 2/3 and x = 1 such that f(¢) = 0. Hence c is a solution.

We now show that ¢ is the unique solution of f(z) = 0 between 2/3 and 1. Let ¢; and ¢z be
solutions of f(z) = 0 between 2/3 and 1. Then ¢} + ¢ —1 = 0 and ¢ +¢3 — 1 = 0. Hence

3 +c2—1=c}+c3— 1, implying that ¢ + ¢} = ¢3 + ¢3 and so

d—d+cd—c = (a—c)(d+an+d)+(a—c)la+ce)

(1 — 02)(65 +cie0 + cg +c14c2)=0.

Dividing by the positive number c% + cico + c% 4+ 1 4 co, we obtain ¢ —co =0and socp =c3. m
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5.34

5.35

5.36

5.37

Let W =S —T. Since T is a proper subset of S, it follows that ) # W C S. Then R(x) is true for
every x € W, that is, Vo € W, R(x) is true.
Exercises for Section 5.3: Disproving Existence Statements

We show that if a and b are odd integers, then 4 1 (3a + 7b%). Let a and b be odd integers. Then
a=2r+1and b =2y + 1 for integers x and y. Then

3a% + 7b?

320 + 1)+ 72y + 1) = 3(4a? + 4o + 1) + T4y + 4y + 1)
= 1222 +122 +3+ 282 + 28y + 7T =4(32* + 3z + Ty + Ty +2) + 2.

Since 2 is the remainder when 3a? + 7b% is divided by 4, it follows that 4 1 (3a® + 7b%).
We show that if  is a real number, then 2® + 2 + 1 # 222. Let 2 € R. Observe that
20+t — 222 +1 =20 + (22 — 1)2.

Since 28 > 0 and (2% — 1)2 > 0, it follows that % + (22 — 1)? can equal 0 if and only if 2° = 0 and
(z?2 —1)?2 = 0. However, 5 = 0 if and only if = 0; while (22 — 1)? = 0 if and only if z = 1 or

x = —1. Hence there is no real number z such that 2 + (2% — 1)2 = 0. Thus
2042t 222+ 1=25+ (22 - 1)2#£0

and so 2% + % + 1 # 222

We show that if n is an integer, then

nt4nd4n?4n = (P +n?)+ 03 +n) =00 +1)+nn®+1)
= nn+1)n*+1)

is even. Let n € Z. Then n is even or n is odd. We consider these two cases.

Case 1. n is even.. Then n = 2a for some integer a. Then
nt*+nd+n?2+n=nn+1)n%+1)=2a(n+1)(n?+1) =2[a(n+1)(n?+1)].

Since a(n + 1)(n? + 1) is an integer, n* +n3 +n? + n is even.

Case 2. m is odd.. Then n = 2b+ 1 for some integer b and so n +1=2b+2 = 2(b+1). Thus
nt+nd+n?+n=nn+1)n?>+1)=2nb+1)(n?+1)=2[nb+1)(n?+1)].

Since n(b + 1)(n? + 1) is an integer, n* + n3 + n% + n is even.

Additional Exercises for Chapter 5
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5.38

5.39

5.40

5.41

5.42

(a) Proof. Assume, to the contrary, that there exist an even integer a and an integer n > 1 such
that a?+1 = 2. Then a = 2z for some integer z. Thus a®>+1 = (22)%+1 = 42%+1 = 2(22?)+1.
Also, 2" = 2-2"~1. Since 22% and 2"~! are integers, a® + 1 is odd and 2" is even. This
contradicts our assumption that a® 4+ 1 = 2", [

(b) Assume, to the contrary, that there exist an integer a > 2 and an integer n > 1 such that
a’ +1=2" By (a), a is odd. Hence a = 2k + 1 for some integer k > 1. Thus

a®+1=(2k+1)> + 1 = 4k* + 4k + 2 = 2[(2k* + 2k) + 1].
Now consider these two cases n = 1 and n > 2 and produce a contradiction in each case.

If the second suitor and the third suitor had silver crowns, then the first suitor would have imme-
diately known that his crown was gold. Since the first suitor didn’t know what kind of crown he
had, the second and the third suitors could not both have had silver crowns. Consequently, there
are three possibilities:

(1) the second suitor had a gold crown and the third suitor had a silver crown;

(2) the second and the third suitors had gold crowns;

(3) the second suitor had a silver crown and the third suitor had a gold crown.

Now, if the second suitor had seen a silver crown on the third suitor, then the second suitor would
have known that his crown was gold; for had it been silver, then, as we saw, the first suitor would
have known his crown was gold. But the second suitor didn’t know what kind of crown he was
wearing either. This meant that (1) did not occur and that the third suitor had a gold crown. Since
neither the first suitor nor the second suitor could determine what kind of crown he had, only (2)

or (3) was possible and, in either case, the third suitor knew that his crown must be gold.

Proof. Assume, to the contrary, that there are positive real numbers = and y with z < y such

that /z > \/y. Thus y = \/y/¥y < Vz/y and Vz/y < /z/r = z. Thus y < x, which is a

contradiction. -

Proof. Assume, to the contrary, that there exist positive integers a and n such that a® 43 = 3", If
n =1, then a>+3 = 3 and so a? = 0, which is impossible. Son > 2. Then a? = 3"—3 = 3(3"~1-1).
Since 3”71 — 1 is an integer, 3 | a®>. By Exercise 4.3, 3 | a. Thus a = 3¢, where ¢ € Z and so
a? = (3¢)? = 9¢°. Hence

3=3"—a>=3"-9¢>=9(3""2 - ¢%).

Since 3772 — ¢? is an integer, 9 | 3, which is impossible. m

(a) Proof. Let m be an integer such that 1 < m < 2n. Let £ be the greatest nonnegative integer
such that 2 | m. Then m = 2°k for some positive integer k. Necessarily k is odd, for otherwise
this would contradicts the definition of /. n

(b) Proof. Let S be a subset of {1,2,...,2n} having cardinality n + 1. By (a), every element of
S can be expressed as 2¢k, where ¢ > 0 and k is an odd integer with 1 < k < 2n. Since there
are exactly n odd integers in the set {1,2,...,2n}, there must exist two elements a and b in
S such that a = 2'k and b = 27k for the same odd integer k. Since a # b, it follows that i # j,
say 0 <¢ < j. Then
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5.43

5.44

5.45

5.46

0.47

5.48

b=2lk =272k =2/~q.
Since 2777 is an integer, a | b. ]
Result Let a,b,c € Z. If a® + b?> = ¢, then at least one of a, b, and c is even.
Result Let a,b € Z. If a =2 (mod 4) and b = 1 (mod 4), then 4 1 (a? + 2b).

When z,y, and z were introduced in the proof, it was never mentioned that an even number of
these were odd. Case 1 is not described well. It would be better if Case 1 were written as: Exactly

two of x, y, and z are odd. Assume, without loss of generality, that = and y are odd and z is even.

The proposed proof only establishes the following result: If y is a rational number, then z = v/2 —y
is irrational. This is not the desired result. (Note: It is required to show that z = z — y for every

irrational number z (and rational number y), not simply one irrational number z.)

Proof. Assume, to the contrary, that the sum of the irrational numbers v/2, v/3, and v/5 is rational.
Then v2 + /3 + v/5 = a for some nonzero rational number a. Hence v/2 + v/3 = a — /5. Squaring

both sides, we obtain
24+2V6+3=0a%—-2aV5+5

and so 2v/6 = a2 — 2av/5. Thus
a? — 2\/6
Vo=

Again squaring both sides, we have

at — 4426 + 24

5 =
4a?
and so 1_ 9002 4 24
a* — 20a
Voo a2
4a?
Since a is a nonzero rational number, it follows that % = /6 is rational. This is a
contradiction. -

Proof. Assume, to the contrary, that some integer a; (1 < ¢ < r) divides n. Then n = a;s for some

integer s. Then n = a;s = ajas---a, + 2. Hence
ai(s —araz -+ a;_1ai41 - -ap) = 2.

Since s — ajaz -+ @;—1a;+1 - - @, is an integer, it follows that a; | 2. Because a; > 3, this is a

contradiction. n
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Exercises for Chapter 6

Exercises for Section 6.1: The Principle of Mathematical Induction

6.1

6.2

6.3

6.4

6.5

The sets in (b) and (d) are well-ordered.

Proof. Let S be a nonempty subset of B. We show that S has a least element. Since S is a
subset of B and B is a subset of A, it follows that S is a subset of A. Since A is well-ordered, S

has a least element. Therefore, B is well-ordered. [

Proof. Let S be a nonempty set of negative integers. Let T = {n : —n € S}. Hence T is a
nonempty set of positive integers. By the Well-Ordering Principle, T has a least element m. Hence
m < n for all n € T. Therefore, —m € S and —m > —n for all —n € S. Thus —m is the largest

element of S. n

(1) Proof. We proceed by induction. Since 1 = 12, the statement is true for n = 1. Assume that
14345+ --+(2k—1) = k? for some positive integer k. We show that 1+3+5+---+(2k+1) =
(k+1)%. Observe that 1 +3+5+ -+ (2k+1)=[14+3+5+ -+ 2k —1)]+ 2k + 1) =
k? + (2k +1) = (k + 1)2. By the Principle of Mathematical Induction,

14345+ 4 (2n—1)=n?
for every positive integer n. =

(2) Proof. Let1+3+5+---+(2n—1)=5. Thus 2n—1)+(2n—3)+---+3+1=S5. Adding,
weobtain [1+(2n—1)]+[3+(2n—3)]+---+[2n—-1)+1]=2n+2n+---+2n =25 and
son+n+---+n=5 Hence S=n-n=n>=1+3+5+---+(2n—1). L]

Proof. We use induction. Since 1 = 2 - 12 — 1, the formula holds for n = 1. Assume that the

formula holds for some integer k > 1, that is,
14+5+9+ -+ (4k —3) = 2k* — k.

We show that
14+54+9+--+dk+1) -3 =2k+1)2 = (k+1).

Observe that

145494+ [4(k+1) -3

L+5+94---+(4k—-3)]+4(k+1)—-3
(2k* — k) + (4k + 1) = 2k* + 3k + 1
20k +1)2 = (k+1).

The result then follows by the Principle of Mathematical Induction. [

6.6 Let

S = 14447+--+Bn-2)
= (Bn—2)4+@Bn-5) 4 +1
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Then
28 =[14+Bn—-2)]+[4+@Bn-=5)]+ ---+[Bn—-2)+1] =n(3n—1)
and so 5 )
1+4+7+---+(3n—2):%.

Proof. We use induction. Since 1 = 1(%_1), the formula holds for n = 1. Assume that

k(3k — 1)

T+4+7+--+(Bk—-2)= 5

where k is an arbitrary positive integer. We show that

A4 T4t @hr1) = FHDBEFD =D (k+1)Bk+2)

2 2
Observe that
1444744+ Bk+1) = Q1+44+7+---+Bk—-2)]+Bk+1)
k(3k —1 k(3k —1)+2(3k + 1

2 2

3k24+5k+2  (k+1)(3k+2)
5 = :
By the Principle of Mathematical Induction,

n(3n —1)

L4+ 7+ 4 (3n—2) = ——

for every positive integer n.

6.7 One possibility: 14+ 7+ 13+ -+ + (6n — 5) = 3n? — 2n.

6.8 (a) Let C be an n x n x n cube composed of n® 1 x 1 x 1 cubes. Then the number of different

cubes that C contains is 13 + 23 + 33 + ... 4+ n3.

(b) Proof. We verify this formula by mathematical induction. Since 1* = M = 1, the
2 2
formula holds for n = 1. Assume that 13 +23 4+ 334+ ... + k% = % for a positive integer

k. We show that 9 9
3 (k+1)%(k+2)

P22 43+ 4 (k+1) T

Observe that

1P4+2° 433+ (k+1)° (P+22 43+ 4+ &) + (k+1)°

= M+(}€+1)

5 _ k*(k+1)% 4+ 4(k + 1)3

4 4

(k+1)2(k2+4k+4)  (k+1)%(k+2)?

4 4
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By the Principle of Mathematical Induction,

n?(n+1)2
4

for every positive integer n. =

1P428 4354 40 =

6.9 Proof. We proceed by induction. For n = 1, we have 1-3 = 3 = w

Assume that 1-3+2-443-5+ - 4 k(k + 2) = BEEDERED “hore k € N. We then show that

, which is true.

(k+1)(k+2)[2(k + 1) + 7]
6

1-3+2-443-54+---+(k+1)(k+3) =

(k+1)(k+2)(2k+9)
- .
Observe that

1-3+2-443-54+---+(k+1)(k+3)
= [1:34+2-443-54+---+k(k+2)]+(k+1)(k+3)

 EE+D)EE+T)
= T )k+3)

k(k+1)2k+T7)4+6(k+1)(k+3)
6

(k+1)(2k%2 + 7Tk +6k +18)  (k+1)(2k? 4 13k + 18)

6 6

(k+1)(kE+2)(2k+9)
6
By the Principle of Mathematical Induction,

nn+1)2n+7)
6

for every positive integer n. [

13424435+ +n(n+2)=

6.10 Proof. We proceed by induction. For n = 1, we have a = %, which is true. Assume that

a(l 1—rkth

.
atar+---+arkl = 1%:), where k € N. We show that a+ar+- - -+ arf = & -
that

. Observe

a+ar+---+ar (a+ar+---+ar" 1) + ark

a(l—r") &
B 1—7r rart = 1—7r * 1—7r

a—ar® 4+ ar® —arktt (1 — k)

1—1r 1—1r
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6.11

6.12

6.13

a(l—r™) £ itive int
=1=— for every positive integer

n. ]

By the Principle of Mathematical Induction, a+ar+---+ar™ ' =

1

375 the formula holds for n = 1. Assume that

Proof. We proceed by induction. Since 3—%4 =

1 k
k+2)(k+3) 3k+9’

Ly by
3.4 4.5 (

where k is a positive integer. We show that

I S 1  k+1 k+1
3-4 4.5 (k+3)(k+4) 3k+1)+9 3(k+4)

Observe that

1 1 1
34T T T ke
13-4 4.5 (k+2)(k+3)]  (k+3)(k+4)
_ k. 1  k(k+4)+3
 3k+9  (E+3)(k+4)  3(k+3)(k+4)

k% +4k+3 (k+1)(k+3)

3(k+3)(k+4) 3(k+3)(k+4)

kE+1
3(k+4)

By the Principle of Mathematical Induction, 3—2 + ﬁ +otm +2)1( for every positive

_ n
n+3) — 3n+49
integer n. [

Exercises for Section 6.2: A More General Principle of Mathematical
Induction

Proof. We need only show that every nonempty subset of S has a least element. So let T" be a
nonempty subset of S. If T is a subset of N, then, by the Well-Ordering Principle, T has a least
element. Hence we may assume that T is not a subset of N. Thus T'— N is a finite nonempty set
and so contains a least element ¢t. Since t < 0, it follows that ¢t < x for all x € T'; so t is a least

element of T'. n

Proof. Since 1024 = 2'9 > 10® = 1000, the inequality holds when n = 10. Assume that 2% > k3,
where k > 10 is an arbitrary integer. We show that 2571 > (k + 1)3. Observe that

okl — 9.9k S 9k3 = k3 4 k3 > k% + 10k% = k° + 3K% + TK?
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6.14

6.15

6.16

6.17

> kP 4+ 3k% 4+ Tk = k° + 3k% + 3k + 4k
> K 4+3k*+3k+1=(k+1)>3%

By the Principle of Mathematical Induction, 2" > n3 for every integer n > 10. [

Proof. We use induction. Since 4! = 24 > 16 = 2%, the inequality holds for n = 4. Suppose that
k! > 2% for an arbitrary integer k > 4. We show that (k + 1)! > 2¥+1. Observe that

E+1)=(k+DE > k+1)-28> 4 +1)28 =5.2F > 2. 2F = okF1

Therefore, (k + 1)! > 25+ By the Principle of Mathematical Induction, n! > 2" for every integer
n > 4. n

Proof. We proceed by induction. Since 3' > 12, the inequality holds for n = 1. Assume
that 3% > k%, where k is a positive integer. We show that 3**1 > (k + 1)2. If k = 1, then
31 =32 =9 >4 = (1 +1)% Thus we may assume k > 2. Observe that

3L = 338 S 3k = kP 2k = kP 2k k> k2 2k 2
= K +4dk =k +2k+2k> k> +2k+4 >k +2k+ 1= (k+1)%

By the Principle of Mathematical Induction, 3" > n? for every positive integer n. (]

Proof. We proceed by induction. Since 1 < 2 — %, the inequality holds for n = 1. Assume that
1—1—%—1—%—% . ._|_kL2 < 2—% for some positive integer k. We show that 1—1—%—1—%—% . wi—ﬁ < 2—#.
Observe that

T I Y NI I DI
49 E+1 49 k2 (k+1)2
-1 1 —(k+1)2+k
< 24— 4 =24~ "
S At T e T TR 02
2 2
_ o, Rak4l o B4R, 1
k(k +1)2 k(k +1)2 k+1

By the Principle of Mathematical Induction, 1+ i + % 4+ 4 # <2-—

n. ]

1 oL .
o for every positive integer

Proof. We proceed by induction. Since (1+x)! = 1+ 1z, the inequality holds when n = 1. Assume
that (1 +z)¥ > 1+ kx, where k is an arbitrary positive integer. We show that
A+ > 14 (k+ 1)

Observe that
A+z)"* =1 +2)(1+2)"> 1 +2)(1 + k)

since 1 +z > 0. Thus
I+ 2)" ' >0 +2)(1+ke) =1+ (k+ Do+ ke? > 1+ (k+ 1)z
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6.18

6.19

6.20

6.21

since kx? > 0. By the Principle of Mathematical Induction, (1 + x)® > 1 + nz for every positive

integer n. [

Proof. We proceed by induction. Since 4 | (5° — 1), the statement is true for n = 0. Assume that
4| (5% — 1), where k is a nonnegative integer. We show that 4 | (5**! —1). Since 4 | (5* — 1), it
follows that 5% = 4a + 1 for some integer a. Observe that

5L 1 =5.5F ~1=5(4a+1)—1=20a+4 =4(5a+1).

Since (5a + 1) € Z, it follows that 4 | (5**! — 1). By the Principle of Mathematical Induction,

4| (5™ — 1) for every nonnegative integer n. L]

Proof. We proceed by induction. Since 81 | (10—10), the statement is true for n = 0. Assume that
81 | (10**+! — 9k — 10), where k is a nonnegative integer. We show that 81 | (10¥+2 —9(k + 1) — 10).
Since 81 | (10*+! — 9k — 10), it follows that 10**! — 9k — 10 = 81z, where 2 € Z. Thus 10*+! =
9k + 10 + 81x. Therefore,

10°2 —9(k+1)—10 = 10-10%! -9k —19
10(9% + 10 4 81x) — 9k — 19
= 81k + 81+ 810x = 81(k+ 1+ 10z).

Since (k+1+10z) € Z, it follows that 81 | (10**2 —9(k+1) —10). By the Principle of Mathematical

Induction, 81 | (10"*! — 9n — 10) for every nonnegative integer n. ]
Proof. We employ mathematical induction. For n = 0, we have 7 | 0, which is true. Assume that
7 (32k _ 2k)

for some integer k£ > 0. We wish to show that

7 <32(k+1) _ 2(k+1)) .

Since 7 | (32k — 2’“), it follows that 32* — 2% = 7¢ for some integer a. Thus 3% = 2¥ + 7a. Now

observe that
32(k+1) _ 2(k+1) — 32 . 32k _ 2 . 2k — 9 . 32k _ 2 . 22k
= 92" +7a)—2-2"=7-2"+63a
= 7(2F +9a).

Since 2% + 9a is an integer, 7 | (32(k+1) —2(k+1D) The result then follows by the Principle of

Mathematical Induction. n

Lemma. Let a € Z. If 3 | 2a, where a € Z, then 3 | a.

Proof of Result. We employ mathematical induction. By the lemma, the result holds for n = 1.
Assume for some positive integer k that if 3 | 2Fa, then 3 | a. We show that if 3 | 2¥*1a, then 3 | a.

Assume that 3 | 2¥71a. Then 2¥*1a = 3z for some integer . Observe that
2k g = 2(2%a) = 3.
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Since 3 | 2(2%a), it follows by the lemma that 3 | 2*a. By the induction hypothesis, 3 | a.

By the Principle of Mathematical Induction, it follows that for every positive integer n, if 3 | 2"a,
then 3 | a. L]

6.22 Proof. We proceed by induction. By De Morgan’s law, if A and B are any two sets, then

ANB=AUB.

Hence the statement is true for n = 2. Assume, for any k sets Ay, Ao, ..., A, where k > 2, that

AINA,N--NA, =4, Ul U---UAL.

Now consider any k + 1 sets, say B, Ba, ..., Bg+1. We show that

BlﬂBgﬂ---ﬂBk_H =§1U§2U--~U§k+1.

Let B=B1{NByN---N Bg. Observe that

BlﬂBgﬂ"'ﬂBk_H = (BlﬂBgﬂ-“ﬂBk)ﬂB]H_l:BﬂB]H_l
§U§k+1 = (§1 UEQU-"UEk)U§k+1
BiUByU---UBpy;.

The result then follows by the Principle of Mathematical Induction. [

6.23 (a) Proof. We proceed by induction. Certainly, the statement is true for m = 1. Assume
that for some positive integer k and any 2k integers ai,as,...,ar and by, bs,. .., by for which
a; = b; (mod n) for 1 < i < k, we have a1 +aa + -+ +ax = by +ba+ -+ + by (mod n).
Now let ¢1,¢a, ..., ckr1 and dy,ds, ..., dg+1 be 2(k+ 1) integers such that ¢; = d; (mod n) for
1<i<k+1 Letc=ci1+co+---+cx andd = dy+ds+- - -+ di. By the induction hypothesis,
¢ =d (mod n). By Result 4.10, ¢+ cx41 = d + dg4+1 (mod n). Thus ¢ + a2+ -+ + g1 =
di +ds + -+ di+1 (mod n). The result then follows by the Principle of Mathematical

Induction. n

(b) The proof of (b) is similar to the one in (a).

6.24 Proof. We use induction. We know that if a and b are two real numbers such that ab = 0, then

a =0 or b=0. Thus the statement is true for n = 2. Assume that:

If a1,as2,...,a; are any k > 2 real numbers whose product is 0, then a; = 0 for some
integer ¢ with 1 <17 < k.

We wish to show the statement is true in the case of k + 1 numbers, that is:

If b1, ba, ..., bk11 are k + 1 real numbers such that bibs - - - b1 = 0, then b; = 0 for some
integer i (1 <i<k+1).
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6.25

6.26

6.27

Let b1, ba, ..., bk+1 be k+ 1 real numbers such that biba - - - bp+1 = 0. We show that b; = 0 for some
integer ¢ (1 <i <k+1). Let b =b1by---bg. Then

biba -+ brt1 = (b1ba -+ b)brt1 = bbp1 = 0.

Therefore, either b = 0 or bx11 = 0. If b1 = 0, then we have the desired conclusion. On the
other hand, if b = b1by - - by, = 0, then, since b is the product of k real numbers, it follows by the
inductive hypothesis that b; = 0 for some integer 7 (1 < i < k). In any case, b; = 0 for some integer
i (1 <i<k+1). By the Principle of Mathematical Induction, the result is true. n

(a) Proof. We use induction to prove that every set with n real numbers, where n € N, has a
largest element. Certainly, the only element of a set with one element is the largest element
of this set. Thus the statement is true for n = 1. Assume that every set with k real numbers,
where k£ € N, has a largest element. We show that every set with k£ 4 1 real numbers has a
largest element. Let S = {a1,az,...,a+1} be a set with k 4 1 real numbers. Then the subset
T = {a1,az2,...,a;} of S has k real numbers. By the induction hypothesis, T has a largest
element, say a. If a > agy1, then a is the largest element of S; otherwise, ax41 is the largest
element of S. In either case, S has a largest element.

By the Principle of Mathematical Induction, every finite nonempty set of real numbers has a

largest element. [

(b) Proof. Let S be a finite nonempty set of real numbers. Define S’ = {x: —z € S}. Since S’
is also a finite nonempty set of real numbers, it follows by (a) that S’ has a largest element
y. Thus y > x for all € §’. Therefore, —y € S and —y < —x for all —x € S. So —y is a

smallest element of S. n

Exercises for Section 6.3: Proof by Minimum Counterexample

Proof. Assume, to the contrary, that there is a positive integer n such that 6 7n (n2 — 1). Then
there is a smallest positive integer n such that 6 t 7n (n2 — 1). Let m be this integer. Since 6 | 0
and 6 | 42, it follows that 6 | 7n (n? —1) when n = 1 and n = 2. So m > 3 and we can write
m = k + 2, where 1 < k < m. Consequently, 6 | 7k (k;2 — 1) and so 7k (k;2 — 1) = 6x for some
integer x. Observe that
Tm(m?*—1) = ™m®—Tm="T(Kk+2)°—-T(k+2)="7(Kk +6k>+12k+8) — Tk — 14
= (Tk® — Tk) + 42k* + 84k + 42 = 62 + 42k* + 84k + 42
= 6(x+Tk* 4+ 14k + 7).

Since x + Tk? 4 14k 4+ 7 € Z, it follows that 6 | 7Tm (m2 — 1)7 producing a contradiction. (]

Proof. Assume, to the contrary, that there is a positive integer n such that 3 (22" — 1). Then
there is a smallest positive integer n such that 3 (22" —1). Let m be this integer. Since 3 | (22 —1),
it follows that 3 | (22" — 1) when n = 1 and so m > 2. Thus m = k + 1, where 1 < k < m. So

3| (22%F —1). Hence 22¢ — 1 = 3z for some integer = and so 22* = 3z + 1. Now

22m 1 =920+ 1 —4.92% 1 —4Bx+1)—1=3(4z+1).
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6.28

6.29

6.30

6.31

Since 4z + 1 € Z, it follows that 3 | (22™ — 1), producing a contradiction. ]

Assume, to the contrary, that there is some positive integer n such that 124 (n* —n?). Then there
is a smallest positive integer n such that 121 (n* —n?). Let m be this integer. It can be shown that
if 1 <n <6, then 12 | (n* — n?). Therefore m > 7. So we can write m = k + 6, where 1 < k < m.
Consider (k +6)* — (k +6)2.

Proof. Certainly 5 | (n5 — n) for n = 0. We now show that 5 | (n5 — n) if n is a positive integer.
Assume, to the contrary, that there is some positive integer n such that 5 4 (n5 — n) Then there
is a smallest positive integer n such that 51 (n® —n). Let m be this integer. Since 5 | (1° — 1),
it follows that m > 2. So we can write m = k + 1, where 1 < k < m. Thus 5 | (k5 — k) and so

k% — k = 5x for some integer . Then

m°—m = (k+1°—(k+1) =k +5k* +10k> + 10> + 5k +1 -k —1
= (K® — k) +5k* + 10k + 10k* + 5k = 5x + 5k* + 10k® + 10k* + 5k
= 5(z+k*+ 2K +2K* + k).
Since x + k* + 2k3 + 2k% + k € Z, it follows that 5 | (m5 — m), which is a contradiction.

Suppose next that n < 0. Then n = —p, where p € N and so 5 | (p5 — p). Thus p® — p = 5y for

some integer y. Since
n® —n = (=p)°® = (=p) = —(p° —p) = —(59) = 5(—y)
and —y € Z, it follows that 5 | (n® —n). ]

Proof. Assume, to the contrary, that there is some nonnegative integer n such that 3 1 (2" + 2"“).
Then there is a smallest nonnegative integer n such that 3 { (2” + 2"“). Let m be this integer.
Since 3 | 3 when n = 0, it follows that m > 1. Let m = k41, where 0 < k < m. Thus 3 | (2F +-2F+1)

and so 2F + 2F+1 = 32 for some integer x. Observe that
oM 4 gmHl — ohFl 4 ok+2 _ 9(ok 4 oktly — 9(3z) = 3(2x).
Since 2z € Z, it follows that 3 | (2™ + 2™*1), which is a contradiction. L]

Proof. Assume, to the contrary, that there is a positive integer n for which there is no subset S,, of
S such that >, g i =n. Let m be the smallest such integer. If we let S; = {1}, then >, i =1.
So m > 2. Thus m can be expressed as m = k + 1, where 1 < k < m. Consequently, there exists
a subset Sy of S such that Ziesk i=k.If 1 ¢ Sk, then Spt1 = Sk U {1} has the desired property.
Otherwise, there is a smallest positive integer ¢ such that 2! ¢ Sj,. Thus 2°,2% ..., 2!71 € ;. Since
20 421 ... 42071 =2t _ 1 it follows that if we let

Sk = (SpU{2'}) — {2°,21,... 21,

then Eiesk+1 i =k 4+ 1 = m, producing a contradiction. [

Exercises for Section 6.4: The Strong Principle of Mathematical Induction
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6.32

6.33

6.34

6.35

Conjecture A sequence {a,} is defined recursively by a; = 1 and a,, = 2a,,—1 for n > 2. Then

an =21 for alln > 1.

Proof. We proceed by mathematical induction. Since a; = 2!7! = 29 = 1, it follows that
an, = 2" 1 when n = 1. Assume that ax = 21 for some positive integer k. We show that
Gpt1 = 2% Since k > 1, it follows that k + 1 > 2. Therefore,

Qpy1 = 2ay, = 2- 2871 = 9k,
The result follows by the Principle of Mathematical Induction. [
Conjecture A sequence {a,} is defined recursively by a1 = 1, a2 = 2, and a,, = an—1 + 2a,_2 for

n > 3. Then a, = 2"~ for every positive integer n.

Proof. We proceed by the Strong Principle of Mathematical Induction. Since a; = 1, the con-
jecture is true for n = 1. Assume that a; = 2'~! for every integer i with 1 < i < k, where k € N.
We show that apy1 = 2. Since a1411 = as = 2 = 21, it follows that ay,; = 2* for k = 1. Hence we

may assume that k > 2. Thus

g1 = G+ 2051 = ok=1 4 9. 9k=2 _ ok—1 | 9k—1
= 2.2 =2k
The result then follows by the Strong Principle of Mathematical Induction. -

Conjecture A sequence {a,} is defined recursively by a1 = 1,a2 = 4,a3 =9, and
An = Ap—1 — An—2 + an_3 +2(2n — 3)

for n > 4. Then a,, = n? for all n > 1.

Proof. We proceed by the Strong Principle of Mathematical Induction. Since a; = 12 = 1, it
follows that a,, = n? when n = 1. Assume that a; = i, where 1 < i < k for some positive integer
k. We show that ajy1 = (k+1)2. Since ag = a111 = (1 +1)2 =4 and a3 = azy1 = (2+1)2 =9, it
follows that a1 = (k+ 1)? for k = 1,2. Hence we may assume that k& > 3. Since k + 1 > 4,

ak+1 = Qk — ap—1 + ak—2 +2[2(k+1) — 3]
= K —(k—1)2+(k—2)?+ 4k —2)
= k*—(k* —2k+1)+ (k* — 4k +4) + (4k — 2)
= K 4+2k+1=(k+1)>%

The result then follows by the Strong Principle of Mathematical Induction. [

(a) The sequence {F,} is defined recursively by Fy =1, F5 =1, and F,, = F,,_1 + F,,_5 for n > 3.

(b) Proof. We proceed by the Strong Principle of Mathematical Induction. Since F; = 1 is odd
and 3 11, it follows that 2 | Fy if and only if 3 | 1 and the statement is true for n = 1. Assume
that 2 | F; if and only if 3 | ¢ for every integer ¢ with 1 < ¢ < k and k € N. We show that
2| Fyqq if and only if 3 | (k+1). Since Fy = Fi41 = 1 and 3 { 2, the statement is true for
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k = 1. Hence we may assume that &k > 2. We now consider three cases, according to whether
k+1=3q,k+1=3qg+1, or k+ 1= 3q—+ 2 for some integer q.

Case 1. k+1=3q. Thus 31k and 3t (k —1). By the inductive hypothesis, Fj, and Fj,_; are
odd. Since Fj41 = F), + Fj;—1, it follows that Fj,1 is even.

Case 2. k+1=3g¢+ 1. Thus 3| k and 31 (k — 1). By the inductive hypothesis, F}; is even
and Fj_1 is odd. Since Fy11 = Fy + Fi—1, it follows that Fj4; is odd.

Case 3. k+1=3q+2. Thus 31k and 3 | (k—1). By the inductive hypothesis, F} is odd and
Fy,_; is even. Since Fjy1 = Fj, + Fj—1, it follows that Fj,1 is odd.

By the Strong Principle of Mathematical Induction, 2 | F,, if and only if 3 | n for every
positive integer n. n
174184 --- 425 =64 4 125.

Conjecture For every nonnegative integer n,
n*+1)+n*+2)+--+n+1)2=n%+ (n+1)>

Proof. We proceed by induction. Since 1 = 0%+ 12, the statement is true for n = 0. Assume
that (k2 +1)+ (K2 +2)+ -+ (k+1)2 = k3 + (k+1)3, where k is a nonnegative integer. We
show that [(k+1)2+ 1]+ [(k+1)2+ 2]+ -+ (k+2)? = (k + 1)3 + (k + 2)3. Observe that

[(k+1)2+ 1]+ [(k+ 1) + 2] + - + (k +2)?
[(k+ 124+ 1]+ [(k+12+20+ -+ [(k+1)*+ 2k +2)] + [(k + 1) + (2k + 3)]
= 2k+3)(k+1)*+[1+2+ -+ (2k+3)].

By Result 6.4, 1 +2+ + -+ + (2k + 3) = (2k + 3)(2k + 4)/2. Thus

[(k+ 12+ 1)+ [(k+1D)*+2]+ -+ (k+2)?
= (2k+3)(k+1)2+ 2k +3)(k+2) = (2k+ 3)(k* + 3k + 3)
= 2k3 4+ 9k? + 15k +9 = (k® + 3k* + 3k + 1) + (k® + 6k + 12k + 8)
= (k+1)%+ (k+2)%

By the Principle of Mathematical Induction,
(> +1)+ > +2)+-+n+1)>=n+(n+1)>°

for every positive integer n. =

6.37 Proof. We use the Strong Principle of Mathematical Induction. Since 12 = 3-447-0, the statement

is true when n = 12. Assume for an integer k£ > 12 that for every integer ¢ with 12 <+ < k, there
exist nonnegative integers a and b such that ¢ = 3a + 7b. We show that there exist nonnegative
integers x and y such that k+1 = 3z+7y. Since 13 =3-2+7-1 and 14 = 3-047-2, we may assume
that k > 14. Since k — 2 > 12, there exist nonnegative integers ¢ and d such that kK — 2 = 3¢ + 7d.
Hence k + 1 =3(c+ 1) + 7d. By the Strong Principle of Mathematical Induction, for each integer

n > 12, there are nonnegative integers a and b such that n = 3a + 7b. ]
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Additional Exercises for Chapter 6

6.38 (a) Let s, =12 +22+32+... +n? and s, =22 +4% +--- + (2n)2. By Result 6.5, ,

_n(n+1)2n+1)
Sp = G

Then

~

s o= 224424+ (202 =22(12+ 22+ 3% -+ n?)

B _oonn+1)2n+1)  2n(n+1)(2n+1)
= 4s, =4 6 = 3 .

(b) Let s/ =12+ 3% +--- 4 (2n — 1)%2. Observe that sa, = s/, + s”. By (a) and Result 9.8,

s = g9 —o = 2n(2n + 1)[2(2n) + 1] _ 2n(n+1)(2n +1)

" 6 3

n(2n+1)(2n —1)
3

(c¢) Let
s =12-22 432 42 ... 4 (—1)"TIn2

If n = 2k is even, then s}, = si — s; while if n = 2k 41 is odd, then s, = s}, | — s}.. By (a)
and (b),

(- Bt

(d) Proof. We verify this formula in (b) by induction. Since

sy =

Py M2l 1-1)
—1= . ,

the formula holds for n = 1. Assume that

2 kh+1)(2k—1)

PP4+32 4+ (2k—1) 5 ,

where k is an arbitrary positive integer. We show that

k+1)(2k +3)(2k + 1
12+32+---+(2k+1)2=( + 1)( ;3)( 1)

Observe that
P32+ 4+ (2k+1)2 = 12432+ + (2k— 1)+ (2k+ 1)

k(2K 1;(% U, op g 1)
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k(2k 4+ 1)(2k — 1) + 3(2k + 1)2
3

(2k + 1)[k(2k — 1) + 3(2k + 1)
3

(2k + 1)(2k? + 5k + 3)
3

(k+1)(2k +3)(2k + 1)
. .

By the Principle of Mathematical Induction,

2 _ n(2n—1)2n+1)

P43% 4+ +(2n-1) 3

for every positive integer n.
The proof for the formula in (c) is similar.
6.39 Proof. We use induction. Since 1-2 = W, the formula holds for n = 1. Assume that

k(k + 1)(k +2)

1-242-343 4+ +k(k+1) = ;

for a positive integer k. We show that

124234344+ (k+1)(k+2) = (k+1>(k;“2)(k+3).

Observe that

1-242-34+3-44---+(k+1)(E+2)
1-242-3+3-4+---+k(k+1)]+(k+1)(k+2)

k(e D(k+2)
= (k1) +2)

k(k +1)(k + 2) + 3(k + 1)(k + 2)
3

(k+1)(k+2)(k+3)
3 .

By the Principle of Mathematical Induction,

nn+1)(n+2)

1:242-343 44 +n(n+1)= ;

for every positive integer n.
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6.40

6.41

6.42

6.43

6.44

Proof. We use induction. The inequality 4" > n? is true if n = 1. Assume for a positive integer k
that 4* > k3. We show that 4**! > (k 4+ 1)2. Since 42 > 23, the inequality holds for & = 1. So we
may assume that & > 2. Observe that

4L =4 gk S 4k = B3 3K = K3+ (3k)K?

k3 + 6k% = k* + 3k + (3k)k > k* + 3k + 6k
k3 +3k* + 3k + 3k > k* + 3k + 3k + 1= (k + 1)%.

v

By the Principle of Mathematical Induction, 4 > n? for every positive integer n. ]

Proof. We employ mathematical induction. When n = 1, 521 — 1 = 24. Since 24 | 24, the
statement is true when n = 1. Assume that 24 | (52’“ — 1), where k is a positive integer. We now
show that 24 | (52**2 —1). Since 24 | (5% — 1), it follows that 52* — 1 = 24z for some integer z.
Hence 5% = 242 + 1. Now observe that

52F2 1 = 52.5%% _1=295(24x+1)—1
24 - (25x) + 24 = 24(25x + 1).

Since 25x + 1 is an integer, 24 | (52k+2 — 1). The result follows by the Principle of Mathematical

Induction. n

Proof. We proceed by induction. Since 2 € P, the result holds for the integer 2. Assume, for an
arbitrary integer k > 2, that every integer ¢ with 2 <14 < k either belongs to P or can be expressed
as a product of elements of P. We show that either Kk + 1 € P or kK + 1 can be expressed as a
product of elements of P. If £ +1 € P, then the desired conclusion follows. Hence we may assume
that k+ 1 ¢ P. Since k+ 1 € S, it follows that k + 1 = ab, where a,b € S. Since 2 < a < k and
2 < b < k, it follows by the induction hypothesis that each of a and b either belongs to P or can be
expressed as a product of elements of P. In either case, k + 1 = ab is a product of elements of P.
By the Strong Principle of Mathematical Induction, every element of S either belongs to P or can

be expressed as a product of elements of P. [

Proof. We use the Strong Principle of Mathematical Induction. Since 28 =54 4 8 - 1, the result
follows for n = 28. Assume for an integer k > 28 that for every integer ¢ with 28 < i < k, there exist
nonnegative integers x and y such that ¢ = 52+ 8y. Since 29=5-1+8-3 and 30=5-6+8-0, we
may assume that k > 32. Hence for each i with 28 < i < k, where k > 32, there exist nonnegative
integers « and y such that ¢ = 5z 4 8y. In particular, there exist nonnegative integers a and b such
that k —4 = 5a + 8b. Hence k 4+ 1 = 5(a + 1) + 8b. The result follows by the Strong Principle of

Mathematical Induction. n
For every integer n > 16, there are positive integers « and y such that n = 3z 4+ 5y. [Note: There
do not exist positive integers « and y such that 15 = 3z + 5y.]

Proof. We use induction. Since 16 = 3 -2 4+ 5 - 2, the result follows for n = 16. Assume for an
integer k > 16 that there exist positive integers x and y such that k& = 3z + 5y. We show that there
exist positive integers a and b such that k+1=3a+5b. If y > 2, then k+1=3(x +2) +5(y — 1)
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6.45

6.46

6.47

6.48

6.49

6.50

6.51

has the desired properties. On the other hand, if y =1, then z > 4 and k+1 = 3(x —3) + 5(y + 2)
has the desired properties. The result follows by the Principle of Mathematical Induction. [

For every integer n > 12, there are integers =,y > 2 such that n = 2x + 3y.

Proof. We use induction. Since 12 = 2 -3 + 3 - 2, the result follows for n = 12. Assume for an
integer £ > 12 that there exist integers x,y > 2 such that k = 2z 4+ 3y. We show that there exist
integers a,b > 2 such that k+1 = 2a+3b. If y > 3, then k+1 = 2(z+2) + 3(y — 1) has the desired
properties. If y = 2, then > 3 and k 4+ 1 = 2(x — 1) + 3 - 3 has the desired properties. The result
then follows by the Principle of Mathematical Induction. [

(a) Define a1 =2 and a,, = ap—1 + (n+ 1) for n > 2.
(b) For every positive integer n, a,, = (n? + 3n)/2.
Proof. We proceed by induction. Since a; = 2 = (12 + 3 - 1)/2, the formula holds for

n = 1. Assume that ap = (k? + 3k)/2 for some positive integer k. We show that axy1 =
[(k+1)% + 3(k +1)]/2. Observe that

k2+3k+(k+2): k2+5k+4: (k+1)2+3(k+1)

apy1 =ap + (k+2) = 5 5

By the Principle of Mathematical Induction, a,, = (n? + 3n)/2 for every positive integer n. m

Proof. We proceed by the Principle of Finite Induction. Let S1 = {1}. Since > ;¢ i = 1, the
result follows for ¢ = 1. Assume for an integer k£ with 1 < k < 300, that there exists a subset S C S
such that }_,c g @ = k. We show that there exists a subset Skq1 C S such that 37, g i =k+1.
Since 1+ 2+ -+ 4 24 = 300, there exists a smallest element m € {1,2,...,24} such that m ¢ Sj.
If m =1, then let Sky1 = S U{1}. If m > 2, then let Sky1 = S U{m} — {m — 1}. In either case,
Ziesk+1 i = k 4+ 1. The result follows by the Principle of Finite Induction. (]

The following result is being proved using the Strong Form of Induction.
Result A sequence {a,} is defined recursively by a; = 8, ag = 11, and

an = 5an—1 - 4an—2 -9

for n > 3. Then a,, =3n+ 5 for all n > 1.
Result For every positive integer n, 8 | (32" — 1). Proof by minimum counterexample.

The error is in the way the “proof” is written. The first equation is what we actually need to prove.
By writing this equation, it appears that we already knew that the equation is true. Since the last
line is (k + 1)2 = (k + 1)2, it appears that the writer is trying to show that (k + 1)? = (k + 1)2,
which, of course, is obvious. An acceptable proof can be constructed by proceeding down the left

side of the equations.

Proof. We proceed by induction. Since the sum of the interior angles of each triangle is 180° =
(3 — 2) - 180°, the result holds for n = 3. Assume that the sum of the interior angles of every
k-gon is (k — 2) - 180° for an arbitrary integer k > 3. We show that the sum of the interior angles
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of every (k + 1)-gon is (k — 1) - 180°. Let Pxy1 be a (k + 1)-gon whose k + 1 vertices are vy,
va, ..., U1 and whose edges are vive, Vo3, ..., UkUkt+1, Uk+1v1. Now let P be the k-gon such
that whose vertices are vy, vo,...,v; and whose edges are v1va, V203, ..., Vp_1Vk, VU1 and let Ps
be the 3-gon whose vertices are vy, vk11, v1 and whose edges are vgpvgt1, Uk4+1v1, V1Vk. Observe
that the sum of the interior angles of Pj; is the sum of the interior angles of P, and the interior
angles of P3. By the induction hypothesis, the sum of the interior angles of Py is (k — 2) - 180° and
the sum of the interior angles of Ps is 180°. Therefore, the sum of the interior angles of Py is
(k—2)-180° + 180° = (k — 1) - 180°. [
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Exercises for Chapter 7

Exercises for Section 7.2: Revisiting Quantified Statements

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

(a) Let S be the set of all odd integers and let P(n) : 3n + 1 is even.
Vn € S, P(n).

(b) Proof. Let n € S. Then n = 2k+1 for some integer k. Thus 3n+1=3(2k+1)+1=06k+4=
2(3k + 2). Since 3k + 2 is an integer, 3n + 1 is even. L]

(a) Let S be the set of all positive even integers and let P(n) : 3n + 2”2 is odd.
dn e S, P(n).
(b) Proof. Forn=2¢ S, 3n+2""2 =7 is odd. L]
(a) Let P(n) : n"~ ! is even.
Vn € N, P(n).
(b) Note that P(1) is false and so the statement in (a) is false.
(a) Let P(n) : 3n? —5n + 1 is an even integer.
In € Z, P(n).
(b) We show the following: For all n € Z, 3n? — 5n + 1 is odd.

This can be proved by a direct proof with two cases, namely n even and n odd.
(a) Let P(m,n): n <m < 2n.
Vn € N—{1},3Im € Z, P(m,n).
(b) Proof. Let n > 2 be an integer and let m = n + 1. Since n > 2, it follows that n <n+1 =
m<n+2<n+n=2n. n
(a) Let P(m,n): m(n—3) < 1.
dn € Z,Ym € Z, P(m,n).
(b) Proof. Let n =3. Then m(n—3)=m-0=0< 1. =
(a) Let P(m,n): (n—2)(m—2) > 0.
VYn € Z, Im € Z, P(m,n).
(b) In € Z,VYm € Z, ~ P(m,n).
(¢c) Let n=2. Then (n —2)(m —2)=0-(m —2) =0 for all m € N.
(a) Let P(m,n): —mm < 0.
In € N, Ym € Z, P(m,n).
(b) Vn € N, Im € Z, ~ P(m,n).

(¢) Let n be any positive integer. For m = 0, we have —nm = —n -0 = 0.
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7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

(a) Let P(a,b,x): |bx| < a and Q(a,b) : |b] < a.

Va € N, 3b € Z, (Q(a,b) A (Vx € R, P(a,b,x))).
(b) Proof. Let a € N and let b = 0. Then |bx| = 0 < a for every real number x. ]
(a) Let P(a,b,z): a<z<bandb—a=1.

Vx € R, Ja,b € Z, P(a,b, z).

(b) Proof. Let = € R. If x is an integer, then let a = z and b = z + 1. Thus a < z < b and
b —a = 1. Thus we may assume that x is not an integer. Then there exists an integer a such
that a <x <a+1. Let b=a+ 1. L]

(a) Let P(z,y,n): 22+ 4% > n.

In € Z,Vx,y € R, P(x,y,n).
(b) Proof. Let n = 0. Then for every two real numbers x and y, 22 +y* > 0 = n. ]

(a) Let S be the set of even integers and T the set of odd integers, and let P(a,b,x): a < ¢ < b or
b<c<a.

VYa e S,VbeT,3x €Q, Pla,b, ).
(b) Proof. For a € Sand b€ T, let ¢ = (a+b)/2. If a < b, then a < ¢ < b; while if b < a, then
b<c<a. (]
(a) Let P(a,b,n): a < 1 <b.
Jda,b € Z,Vn € N, P(a,b,n).
(b) Proof. Let a =0 and b= 2. Then for everyn € N,a=0< 1 <2=0b. ]
(a) Let S be the set of odd integers and P(a,b,c): a+b+c=1.
Ja,b,c € S, P(a,b,c).
(b) Proof. Let a =3 and b=c=—1. Thena+b+c=1. ]
(a) Let S be the set of odd integers and P(a, b, ¢): abc is odd.
Ya,b,c € S, P(a,b,c).
(b) Let a, b, and ¢ be odd integers. Then a = 2x+1,b=2y+1, and ¢ = 22+ 1, where z,y, z € Z.
Then show that abc = (22 + 1)(2y + 1)(2z + 1) is odd.
(a) 3L e R,Vee RT, 3d e RT, Vz € R, P(z,d) = Q(z, L,e).

(b) Proof. Let L = 0 and let e be any positive real number. Let d = e¢/3. Let € R such that
|z] < e/3. Then |3z — L| = |3z| = 3|z| < 3(¢/3) =e. n

Exercises for Section 7.3: Testing Statements

The statement is true. Proof. Since each of the following statements

P(1) = Q(1): If 7 is prime, then 5 is prime.
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7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25

7.26

7.27

7.28

P(2) = Q(2): If 2 is prime, then 7 is prime.
P(3) = Q(3): If 28 is prime, then 9 is prime.
P(4) = Q(4): If 8 is prime, then 11 is prime.
is true, Vn € S, P(n) = Q(n) is true. ]

(a) The statement is true.

Proof. Assume that k2 + 3k + 1 is even. Then k% + 3k + 1 = 2x for some integer x. Observe

that
(k4+1)2+3k+1)+1 = kK +2k+1+3k+3+1
= (K +3k+1)+2k+4
= 2w +2k+4=2x+k+2).
Since x + k + 2 is an integer, (k+ 1)2 +3(k + 1) + 1 is even. ]

(b) The statement is false since P(1) is false.

This statement is false. Let x = 1. Then 4x +7 = 11 is odd and x = 1 is odd. Thus z =1 1is a

counterexample.

This statement is false. Let n = 0 and let £ be any nonnegative integer. Since k > 0 = n, the

integer n = 0 is a counterexample.

This statement is true. Proof. Let x be an even integer. Then x = 2n for some integer n. Observe
that © = (2n 4+ 1)+ (—1). Since n is an integer, 2n + 1 is odd. Since —1 is odd as well, both 2n 41

and —1 are odd. n

This statement is false. Let x =99 and y = z = 1. Then = + y + z = 101, while no two of z,y, and
z are of opposite parity. Thus, x =99,y = 1, z = 1 is a counterexample.

This statement is false. Let A = {1,2,3} and B = {2,3}. Then AUB = {1,2,3} and (AUB)—B =
{1} # A. Consequently, A = {1,2,3} and B = {2, 3} constitute a counterexample.

The statement is true. Proof. Assume that A # (). Since A # (), there is an element a € A. Let
B ={a}. Then AN B # 0. n

The statement is true. Proof. Consider the integer 35. Then 3 +5 = 8 is even and 3 -5 = 15 is
odd. [

The statement is false. Let A = {1}, which is nonempty, and let B be an arbitrary set. Since
1€ AU B, it follows that AU B # 0.

The statement is false. Let + = 3 and y = —1. Then |z +y| = [3+ (—1)] = |2|] = 2 and
] +lyl = 3|+ -1 =3+1 =4 Thus |[x +y| # |z|+ |y Soz =3 andy = —1isa
counterexample.

The statement is true.

Proof. Let A be a proper subset of S andlet B=S—A. Then B # (), AUB=S5,and ANB=0.m
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7.29

7.30

7.31

7.32

7.33

7.34

7.35

7.36

7.37

7.38

7.39

7.40

7.41

7.42

7.43

7.44

7.45

7.46

7.47

7.48

7.49

7.50

The statement is false. We show that there is no real number x such that 22 < z < z3.

Suppose that there is a real number z such that 22 < z < 3. Since z2 > 0, it follows that = > 0.
Dividing 22 < < 2% by 2, we have < 1 < 22. Thus 0 < = < 1 and z? > 1, which is impossible. m

The statement is true. Observe that 0-c¢ = 0 for every integer c.
The statement is true.  For a = 0, any two real numbers b and ¢ # 0 satisfy the equality.

The statement is true. Let f(z) = 23 + 22 — 1. Observe that f(0) = —1 and f(1) = 1. Now apply

the Intermediate Value Theorem of Calculus.
The statement is false. Note that 2% + 22 +1>1 > 0 for every x € R.
The statement is false. Let 2 = 1 and y = —2. Then 22 < 32 but = > y.

The statement is false. Neither ;if’{

nor —~— is defined when x =1 or x = —1.

The statement is true. Proof. Assume that A — B # (). Then there exists t € A— B. Thusz € A
and x ¢ B. Since = ¢ B, it follows that © ¢ B — A. Therefore, A — B # B — A. L]

The statement is false. Let © = 6 and y = 4. Then z = 2.
The statement is true. Proof. Let b € QT. Then a = b/\/§ is irrational and 0 < a < b. [ ]

The statement is true. Proof. Assume that A — B = () for every set B. Let B = (). Then
A-B=A-0=A=0. ]

The statement is true. Proof. Let a be an odd integer. Then a = a + 1 + (—1) is a sum of three

odd integers. [

The statement is true. Proof. Let A be a nonempty set. Let B=A. Then A— B=B— A =10.
So|A—-B|=|B—-A|=0. L]

The statement is false. For A = 0, B = {1}, and C = {1,2}, we have AN B = ANC = {, but
B # C. Thus A, B, and C form a counterexample.

The statement is false. Observe that 4 =1+ 3.

The statement is true. Consider r = (a +b)/2.

The statement is true. Consider ¢ =1 and d = 2b + 1.

The statement is true. Consider B = (. Since AU B # (), this requires that A # 0.
The statement is true. For each even integer n, n = n + 0.

The statement is false. Note that 22 +z + 1 = (a: + %)2 + % > % > 0 for every = € R.
The statement is false. Consider A = {1}, B = {2}, and C = D = {1, 2}.

The statement is true. For a nonzero rational number r, observe that r = (r/2) - ==

B
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7.51

7.52

7.53

7.54

7.55

7.56

7.57

7.58

7.59

7.60

7.61

7.62

7.63

7.64

7.65

7.66

7.67

7.68

7.69

The statement is true.

The statement is true.
odd.

The statement is true.

The statement is false.

The statement is false.

The statement is false.

The statement is false.

The statement is false.

The statement is true.

are of the same parity.

The statement is true.

The statement is false.

The statement is true.

The statement is false.

The statement is true.

Let a =2 and b = 1.

Let a be an odd integer. Then a + 0 = a, where b = 0 is even and ¢ = a is

Consider the set B =S — A.

Let A# () and B=10. Then AU B # 0.

Let A= {1} and B = {2}. Then {1,2} € P(AUB) but {1,2} ¢ P(A)UP(B).
Thesets S = {1,2,3} and T = {{1, 2}, {1, 3}, {2, 3}} form a counterexample.
Consider A = {1}, B ={1,2}, and C = {1}.

The numbers a = b =0 and ¢ = 1 form a counterexample.

Observe that at least two of a, b, and ¢ are of the same parity, say a and b

Then a + b is even.

Let b=c—a.

Consider ¢ = 2 and ¢ = 1.
Let a =2, b= 16, and c = 4.
Consider n = 1.

Proof. Let n € N. If n # 0, then n = n + 0 has the desired properties. If

n=0,thenn=0=1+(-1). ]

The statement is true.

The statement is false.

The statement is true.

Let x = 51 and y = 50. Then 22 = (51)% = (50 + 1)? = (50)2 +2-50 + 1.
Forn =11, n? —n+ 11 = 112,

Proof. Let p be an odd prime. Then p = 2k + 1 for some k € N. For

a=k+landb=k,a®> -0 =(k+1)2—k>= (k> +2k+1)—k? =2k +1=p. L]

Additional Exercises for Chapter 7

(a) Consider z = 1.

(b) For every natural

number x with = # 1, there exists a natural number y such that x < y < 2.

Proof. Let x € N such that x # 1. Thenz > 2. Let y=z+ 1. Thenz <z +1<z+z =

20 < 2.

(a) The positive integer n = 1 is not the sum of any two distinct positive odd integers. Further-

more, a positive odd integer is not the sum of any two distinct positive odd integers.

(b) Every positive even integer n > 4 is the sum of two distinct positive odd integers.

Proof. Let n > 4 be an even integer. Then n = (n — 1) + 1. ]
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7.70

7.71

7.72

7.73

7.74

(a)
(b)

(b)

()

The statement is true. Consider ¢ = 1 and b = 2.

Let a and b be two positive integers. If a > 2 and b > 2, then a + b < ab.
Proof. We may assume without loss generality that 2 < a < b. Then a+b < b+b<2b< ab. =

The statement is false. Let a = b = 1. Then v/a + b = v/2 but Va+ Vb =2.

The statement is false. Let a and b be positive real numbers such that va + b = /a + V/b.
Squaring both sides, we have a + b = a 4+ 2y/avb + b. Thus 2y/av/b = 0. Therefore, \/avb =
Vab=0and soa=0orb=0.

Result. Let a,b € Rt U{0}. Then va+ b= +/a+ Vb if and only if a = 0 or b = 0.

Proof. Assume, first, that a = 0 or b = 0, say a = 0. Then va+b = vb = 0+ Vb =
Va + vb. For the converse, assume that a and b are nonnegative real numbers such that
Va+b=/a+ vb. Squaring both sides, we obtain a + b = a + 2v/ab + b and so Vab = 0.
Thus ab = 0, implying that a = 0 or b = 0. (]

Proof. Assume that 3 | a. Then a = 3z, where © € Z. Thus 2a = 2(3z) = 3(2z). Since 2z
is an integer, 3 | (2a). L]
Let a € Z. Then 3 | 2a if and only if 3 | a.

Let a € Z. If 2 | 3a, then 2 | a. This statement is true.

Proof. Assume that 21 a. Then a = 2k + 1, where k € Z. Then 3a = 3(2k+1) =6k +3 =
2(3k + 1) + 1. Since 3k + 1 is an integer, 2 { 3a. ]
Result. Let S ={1,2,4} and a € Z. If 3 | ka, where k € S, then 3 | a.

Proof. If k = 1, then the statement is true trivially. By Exercise 4.6, the statement is true
for k = 2. Let k = 4. We show that if 3 | 4a, then 3 | a. Assume that 3 | 4a. By the result for
k = 2, it follows that 3 | 2a. Again, by the result for k = 2, we have 3 | a. m

Note that if 3 | ka and 31 k, then 3 | a.

Proof. Assume, to the contrary, that V2 ++/5 is rational. Then v24++/5 = a/b, where a and

b are nonzero integers. Thus /5 = T - V2. Squaring both sides, we have 5 = Z—j - 27“\/5 + 2.

Hence V2 = %. Since a? — 3b% and 2ab are integers and 2ab # 0, it follows that /2 is

rational, producing a contradiction. [

The number 2 + /7 is irrational. If we assume /2 + /7 is rational, then /7 = - V2,

where a and b are nonzero integers.

For each positive integer a, the number /2 + V/a is irrational.

Result If n € Z, then 3 | (n® —n).
Let n € Z. Thusn = 3q,n = 3q+1, or n = 3¢+ 2, where ¢ € Z and consider these three cases.

If n € Z, then 2 | (n? —n).

Let n € Z. Then n is even or n is odd. Consider these two cases.
If n € Z, then 2 | (n* —n?).

Let n € Z. Then n is even or n is odd. Consider these two cases.
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7.75 (a) The statement is true.
(b) The statement is true. Let x = y = 1.

c¢) The statement is true.

(
G

The statement is false.

e) The statement is true. Let z = y = 3.

)
)
)
)
(e)
(f) For all m,y € A, 6 | (22 + 3y?).
This statement is false. Consider x =y = 1.
7.76 The proof is correct but it might have been useful to explain why —n #n + 2 and —n # n — 2.

7.77 (a) The statement is true. Let a =b=2, c=1, and d = 3.
(b) The statement is true. Let a =2,b=3,c=6,and d= 7.
(c) There exist five positive integers a, b, c, d, and e such that a? + b* + c? + d* = 2.
Proof. Let a=b=c=d=1and e = 2. [

(d) For every integer n > 4, there exist n + 1 distinct positive integers a1, az, ..., an, a such that

a%—!—a%—!—---—i—a%:aQ.

7.78 (a) 3=12+12412
11=32+12+1?2
19=232+324+12
27=32+32+32
35 =52 432 +12
43 = 5% 432 + 32
51 =52+52+12
59 =52 + 52432
67 ="T7>+32+32
75 =52 + 524+ 52

0: 83=9%2+12412

§ § 3 3 838 3 35 8 38 8 3
Il
— © 00 1 O U A W N = O

(b) The statement is true.

Proof. Assume, to the contrary, that there exists a nonnegative integer m and positive integers
a, b, and ¢, not all odd, such that

a?+b>+c2=8m+3.

Since 8m +3 = 2(4m + 1) + 1 is an odd integer and not all of the integers a, b, and ¢ are odd,
it follows that exactly one of a, b, and c¢ is odd, say ¢. Thus a = 2z, b = 2y, and ¢ = 2z + 1,

where z,y, z € Z, and so

8m+3 = a®+b>+c2=(20)2+ (2y)? + (22 +1)?
= 42 + 42+ 422+ 42+ 1.
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Therefore,
2 =42 +4y® + 422 + 42— 8m = 4(2? + P + 22+ 2 — 2m).

Since 22 + y? + 22 + z — 2m is an integer, 4 | 2, producing a contradiction.
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Exercises for Chapter 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

Exercises for Section 8.1: Relations

dom R = {a,b} and ran R = {s, t}.
Let A ={a,b,c} and B = {{a},{a,b}}. Then R = {(a,{a}), (a,{a,b}), (b,{a,b})}.

Since A x A = {(0,0),(0,1),(1,0),(1,1)} and |A x A| = 4, the number of subsets of A x A and
hence the number of relations on A is 2¢ = 16. Four of these 16 relations are (), A x A4, {(0,0)}, and

{(0,0),(0,1),(1,0)}.
R = {(a,a),(a,b),(a,c), (b,b), (b, c),(c,a),(c,c)}.

Exercises for Section 8.2: Properties of Relations

The relation R is reflexive and transitive. Since (a,d) € R and (d,a) ¢ R, it follows that R is not

symmetric.

The relation R is not reflexive since (b,b) ¢ R, for example, and R is not symmetric since, for
example, (a,b) € R while (b,a) ¢ R. The only ordered pairs (x,y) and (y, z) that belong to R are
where (z,y) = (a,a). The possible choices for (y, z) in R are (a,a), (a,b), and (a,c). In every case,

(z,2) = (y,2) € R and so R is transitive.
The relation R is transitive but neither reflexive nor symmetric.

Consider R = {(a,b), (b, c)}. The relation R is not reflexive since (a,a) ¢ R, is not symmetric since
(a,b) € R but (b,a) ¢ R, and is not transitive since (a,b), (b,c) € R and (a,c) ¢ R.

The relation R is reflexive and symmetric. Observe that 3 R 1 and 1 R 0 but 3 R 0. Thus R is not

transitive.

Let R be a relation that is reflexive, symmetric, and transitive and contains the ordered pairs
(a,b),(b,c), and (c,d). Since R is reflexive, R contains (a,a), (b,b), (¢,¢), and (d,d). Since
(a,b),(b,c) € R and R is transitive, (a,c¢) € R. Since (a,b) € R and R is symmetric, (b,a) € R.

Now continue to obtain R = A x A. So the answer is 1.

The relation R is symmetric and transitive but not reflexive.
(a) Ry ={(1,1),(2,2),(3,3),(4,4),(1,2),(2,1),(2,3),(3,2)}.
(b) R2 ={(1,1),(2,2),(3,3),(4,4),(1,2),(2,3),(1,3)}

(¢) Rz ={(1,1)}

(d) Ra={(1,1),(2,2),(3,3), (4,4),(1,2),(2,3)}.
(e) Rs ={(1,2),(2,1)}

(f) Rs ={(1,2),(2,3),(1,3)}
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8.13 The relation R is reflexive and symmetric. Observe that —1 R 0 and 0 R 2 but —1 R 2. Thus R is

not transitive.

Exercises for Section 8.3: Equivalence Relations

8.14 R ={(a,a), (b,b), ..., (9,9), (a;¢), (a,d), (a,9), (b, [), (c,a), (¢,d), (¢,9), (d,a), (d,c), (d,g), (f,b),
(9,a), (g,¢), (g,d)}.

The three distinct equivalence classes are {a, ¢, d, g}, {b, f}, {e}.

8.15 Proof. Since a® = a3 for each a € Z, it follows that ¢ R a and R is reflexive. Let a,b € Z such
that @ R b. Then a® = b3 and so b3 = a. Thus b R a and R is symmetric. Let a, b, c € Z such that

a Rband b R c. Thus a® =% and b3 = ¢3. Hence a¢® = ¢® and so a R ¢ and R is transitive. [ ]

Let a,b € Z. Note that a® = b3 if and only if a = b. Thus [a] = {a} for every a € Z.

8.16 (a) Proof. Let a € Z. Then a + a = 2a is an even integer and so @ R a. Thus R is reflexive.
Assume next that a R b, where a,b € Z. Then a + b is even. Since b+ a = a + b, it follows

that b 4 a is even. Therefore, b R a and R is symmetric.

Finally, assume that a R b and b R ¢, where a,b,c € Z. Hence a+ b and b+ c are both even,
and so a + b = 2z and b+ ¢ = 2y for some integers x and y. Adding these two equations, we

obtain
(a+0b)+ (b+c¢) =2z + 2y,
which implies that
a+c=2x+2y—2b=2(x+y—0b).
Since 4+ y — b is an integer, a + ¢ is even. Therefore, a R ¢ and R is transitive. [

The distinct equivalence classes are

0] = {zr€Z: 2 R0}={x€Z: x+0iseven}
= {z€Z: ziseven} ={...,-4,-2,0,2,4,...}
1] = {z€Z: xR1}={x€Z: x+1iseven}

{xeZ: zisodd} ={...,-5,-3,-1,1,3,5,.. .}

(b) The relation R is symmetric but neither reflexive nor transitive.
8.17 There are three distinct equivalence classes, namely [1] = {1, 5}, [2] = {2, 3,6}, and [4] = {4}.

818 R={(1,1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5), (2, 2), (2, 6), (6, 2), (6, 6), (3,
3)}.

8.19 Proof. Assume that a R b, ¢ R d, and a R d. Since a R b and R is symmetric, b R a. Similarly,
d R c. Because b R a, a R d, and R is transitive, b R d. Finally, since b R d and d R ¢, it follows
that b R ¢, as desired. n
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8.20 Proof. First assume that R is an equivalence relation on A. Thus R is reflexive. It remains only

8.21

8.22

8.23

8.24

to show that R is circular. Assume that x R y and y R z. Since R is transitive, x R z. Since R is

symmetric, z R . Thus R is circular.

For the converse, assume that R is a reflexive, circular relation on A. Since R is reflexive, it
remains only to show that R is symmetric and transitive. Let z,y € A such that R y. Since R is
reflexive, y R y. Because (1) x Ry and y R y and (2) R is circular, it follows that y R « and so R
is symmetric. Let x,y,2z € A such that x R y and y R z. Since R is circular, z R . Now because

R is symmetric, we have x R z. Thus R is transitive. Therefore, R is an equivalence relation on
A. [

Exercises for Section 8.4: Properties of Equivalence Classes

Let R = {(v,v), (w,w), (z,2), (¥,9), (2,2), (v, w), (w,v), (z,y), (y,x)}. Then [v] = {v,w}, [z] =
{z,y}, and [z] = {z} are three distinct equivalence classes.

Proof. Let a € N. Then a? + a? = 2(a?) is an even integer and so a R a. Thus R is reflexive.
Assume that a R b, where a,b € N. Then a? + b? is even. Since b? + a? = a? + b2, it follows that

b2 + a? is even. Therefore, b R a and R is symmetric.

Finally, assume that a R b and b R ¢, where a,b, c € N. Hence a? +b? and b? + ¢? are both even,
and so a? + b? = 2z and b + c? = 2y for some integers x and y. Adding these two equations, we
obtain

(a® + ) + (b + ) = 2z + 2y,

which implies that
a® 4 c? =2z 4 2y — 20% = 2(x +y — b?).
Since x + y — b? is an integer, a® + ¢? is even. Therefore, a R ¢ and R is transitive. ]
There are two distinct equivalence classes:
[M={zeN: 22 +1iseven} ={z € N: 2?2 isodd} = {z € N: z is odd}
2]={zeN: 22 +4iseven} ={x € N: 2% iseven} = {z € N: z is even}

Observe that 2 R 6 and 6 R 3, but 2 R 3. Thus R is not transitive, and so R is not an equivalence

relation.

(a) Proof. First, we show that R is reflexive. Let € S. Then x + 2z = 3z. Since 3 | (z + 2z),
it follows that « R = and R is reflexive. Next, we show that R is symmetric. Let = R y, where
z,y € S. Then z + 2y = 3a, where a € Z, and so x = 3a — 2y. Thus y+ 2z = y+2(3a — 2y) =
6a — 3y = 3(2a — y). Since 2a — y is an integer, 3 | (y + 2z). Thus y R  and R is symmetric.

Finally, we show that R is transitive. Let x R y and y R z, where z,y,z € S. Then
2z + 2y = 3a and y + 2z = 3b, where a,b € Z. Thus (z + 2y) + (y + 22) = 3a + 3b and so
x+22=3a+3b—3y=3(a+b—y). Since a+b— y is an integer, 3 | (z + 22). ]

(b) There are three distinct equivalence classes: [0] = {0,—6}, [1] = {1,-2,4,7}, and [-7] =
{-7,5}.
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8.25

8.26

8.27

Proof. Let z € Z. Since 3z — Tz = —4x = 2(—2z) and —2z is an integer, 3z — 7z is even. Thus

r R x and R is reflexive.

Next, we show that R is symmetric. Let x R y, where x,y € Z. Thus 3z — Ty is even and so

3z — Ty = 2a for some integer a. Observe that
3y —Tx = (3xz — Ty) — 10z + 10y = 2a — 10z + 10y = 2(a — 5x + 5y).
Since a — 5z + 5y is an integer, 3y — 7z is even. So y R x and R is symmetric.

Finally, we show that R is transitive. Assume that R y and y R z, where x,y,z € Z. Then
3r — 7y and 3y — 7z are even. So 3x — Ty = 2a and 3y — 7z = 2b, where a,b € Z. Adding these two
equations, we obtain

Bz —Ty)+ By —T2)=3x—4y — Tz =2a+2b

and so 3z — 7z = 2a + 2b + 4y = 2(a + b + 2y). Since a + b + 2y is an integer, 3z — 7z is even.

Therefore, x R z and R is transitive. [

There are two distinct equivalence classes, namely, [0] = {0, £2,44, ...} and [1] = {£1,+3,+5,...}.

(a) Proof. Suppose that R; and Ry are two equivalence relations defined on a set S. Let R =
Ry N Ry. First, we show that R is reflexive. Let a € S. Since R; and R, are equivalence
relations on S, it follows that (a,a) € Ry and (a,a) € Re. Thus (a,a) € R and so R is reflexive.

Assume that a R b, where a,b € S. Then (a,b) € R = Ry N Ry. Thus (a,b) € Ry and
(a,b) € Ry. Since Ry and Ry are symmetric, (b,a) € Ry and (b,a) € Ry. Thus (b,a) € R and
so b R a. Hence R is symmetric.

Now assume that ¢ R b and b R ¢, where a,b,c € S. Then (1) (a,b) € Ry and (a,b) € R
and (2) (b,¢) € Ry and (b, c) € Ry. Since Ry and Ry are transitive, (a,c) € Ry and (a,c) € Rs.

Thus (a,c) € R and so a R c. Therefore, R is transitive. ]

(b) Let a € Z. In Ry, [a] = {x € Z : Ry a}. In particular, if z € [a], then (x,a) € R; and so
(z,a) € Ry and (z,a) € R3. Therefore, © = a (mod 2) and x = a (mod 3). Hence x = a + 2k
and x = a + 3¢ for some integers k and ¢. Hence 2k = 3¢ and so ¢ is even. Thus £ = 2m for
some integer m, implying that © = a + 3¢ = a + 3(2m) = a + 6m and so z — a = 6m. Hence
x=a (mod 6). Thus [a] ={x € Z: 2 =a (mod 6)}.

0] ={...,—12,-6,0,6,12,...},
1] ={...,—11,-5,1,7,13,.. },
2] = {...,—10,-4,2,8,14,.. .},
B]={..,—9,-3,3,9,15,.. .},
[4] = {...,—8,-2,4,10,16,.. .},
Bl={..,-7,-1,511,17,.. }.

For the set S = {1,2,3}, let

Ry = {(17 l)a (17 2)a (27 l)a (27 2)a (37 3)} and Ry = {(la 1)7 (2a 2)7 (2a 3)7 (3a 2)7 (3a 3)}
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8.28

8.29

8.30

8.31

8.32

8.33

Then Ry and Ry are equivalence relations on S, but
R=RiURy, ={(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3)}

is not an equivalence relation on S. For example, (1,2),(2,3) € R but (1,3) ¢ R, so R is not

transitive.

Exercises for Section 8.5: Congruence Modulo n
(a) True.  (b) False. (c) True. (d) False.

Proof. Let a € Z. Since 3a + 5a = 8a, it follows that 8 | (3a + 5a) and so 3a + 5a = 0 (mod 8).

Hence a R a and R is reflexive.

Next, we show that R is symmetric. Assume that a R b, where a,b € Z. Then 3a + 5b =
0 (mod 8), that is, 3a + 5b = 8k for some integer k. Observe that (3a + 5b) + (3b + 5a) = 8a + 8b.
Thus

3b+ 5a = 8a+ 8b — (3a + 5b) = 8a + 8b — 8k = 8(a+ b — k).

Since a + b — k is an integer, 8 | (3b + 5a) and so 3b+ 5a = 0 (mod 8). Hence b R a and R is

symmetric.

Finally, we show that R is transitive. Assume that ¢ R b and b R ¢, where a,b,c € Z. Thus
3a+ 50 =0 (mod 8) and 3b+ 5¢ =0 (mod 8). So 3a + 5b = 8z and 3b + 5¢ = 8y, where z,y € Z.
Observe that

(3a + 5b) + (3b+ 5¢) = 3a + 8b+ 5e = 8x + 8y.

Thus 3a + 5¢ = 8z + 8y — 8 = 8(x +y — b). Since z + y — b is an integer, 8 | (3a + 5¢) and
3a+ 5¢ =0 (mod 8). Therefore, a R ¢ and R is transitive. (]

Since 1 R 1, the relation R is not reflexive and so R is not an equivalence relation.

There are two distinct equivalence classes, namely, [0] = {0, £2, +4, ...} and [1] = {£1, £3, £5,

0={z€Z : 2R0}={xe€Z : 23=0 (mod 4)} = ,—4,-2,0,2,4,...},

M={z€Z : sR1}={2€Z : 2>=1(mod 4)} ={...,-7,-3,1,5,9,...},

Bl={zr€Z : 2R3}={x€Z : 2>=3 (mod 4)} = ,—5,-1,3,7,11,.. .}.

Proof. Let a € Z. Since 5a — 2a = 3a, it follows that 3 | (5a — 2a) and so 5a = 2a (mod 3). Hence

a R a and R is reflexive.

Next, we show that R is symmetric. Assume that a R b, where a,b € Z. Then 5a = 2b (mod 3),
that is, ba — 2b = 3k for some integer k. Observe that (5a — 2b) + (50 — 2a) = 3a + 3b. Thus

50 —2a =3a+3b— (ba—2b) =3a+3b—3k=3(a+b—k).
Since a+b—k is an integer, 3 | (5b—2a) and so 50 = 2a (mod 3). Hence b R a and R is symmetric.
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8.34

8.35

Finally, we show that R is transitive. Assume that ¢ R b and b R ¢, where a,b,c € Z. Thus
5a = 2b (mod 3) and 5b = 2¢ (mod 3). So 5a — 2b = 3x and 5b — 2¢ = 3y, where z,y € Z. Observe
that

(5a — 2b) + (5b — 2¢) = (ba — 2¢) 4+ 3b = 3z + 3y.
Thus 5a — 2¢ = 3z + 3y — 3b = 3(x +y — b). Since x +y — b is an integer, 3 | (5a — 2¢) and
5a = 2¢ (mod 3). Therefore, a R ¢ and R is transitive. L]
There are three distinct equivalence classes, namely,
[0] = {0, £3, £6, ...},
n={...,-5-2,1,4,...}, and
2] ={...,—4,-1,2,5, ...},

Proof. Let a € Z. Since 2a + 2a = 4a, it follows that 4 | (2a + 2a) and so 2a + 2a = 0 (mod 4).

Hence a R a and R is reflexive.

Next, we show that R is symmetric. Assume that a R b, where a,b € Z. Then 2a + 2b =
0 (mod 4). Since 2b+ 2a = 2a + 2b, it follows that 20 + 2a = 0 (mod 4) and so b R a and R is

symmetric.

Finally, we show that R is transitive. Assume that ¢ R b and b R ¢, where a,b,c € Z. Thus
2a+2b =0 (mod 4) and 2b+ 2¢ =0 (mod 4). So 2a + 2b = 4z and 2b + 2¢ = 4y, where z,y € Z.
Observe that

(2a 4 2b) + (2b + 2¢) = 2a + 4b + 2¢ = 4x + 4y.
Thus 2a + 2¢ = 4o + 4y — 4b = 4(z + y — b). Since x + y — b is an integer, 4 | (2a + 2¢) and
2a 4+ 2¢ =0 (mod 4). Therefore, a R ¢ and R is transitive. ]
The distinct equivalence classes are [0] = {0, £2,£4,...} and [1] = {£1,£3,£5,...}.

Proof. First, we show that R is reflexive. Let a € Z. Since 2a+3a = 5a, it follows that 5 | (2a+3a)

and so a R a. Hence R is reflexive.

Next, we show that R is symmetric. Assume that a R b, where a,b € Z. Then 2a + 3b =
0 (mod 5). Hence 2a + 3b = 5k for some integer k. Observe that (2a + 3b) + (2b + 3a) = 5a + 5b.
Thus
2b+ 3a = 5a+ 5b — (2a + 3b) = 5a + 5b — 5k =5(a + b — k).
Since a + b — k is an integer, 5 | (2b + 3a) and so 20+ 3a = 0 (mod 5). Hence b R a and R is
symmetric.

Finally, we show that R is transitive. Assume that a R b and b R ¢, where a,b,c € Z. Thus
2a+3b =0 (mod 5) and 2b+ 3¢ =0 (mod 5). So 2a + 3b = 5z and 2b + 3¢ = 5y, where z,y € Z.
Observe that

(2a + 3b) + (2b + 3c) = 2a + 5b + 3¢ = 5z + 5y.

Thus 2a + 3¢ = bz + 5y — 5b = 5(x +y — b). Since z +y — b is an integer, 5 | (2a + 3¢) and
2a+ 3¢ =0 (mod 5). Therefore, a R ¢ and R is transitive. (]

The distinct equivalence classes are [0], [1], [2], [3], and [4]. In fact, the set of distinct equivalence

classes is Zs.
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8.36 Proof. Let a € Z. Since 5 | (a? — a?), it follows that a? = a? (mod 5). Hence a R a and
R is reflexive. Next, we show that R is symmetric. Assume that a R b, where a,b € Z. Then
a? = b2 (mod 5). Hence a? — b? = 5k for some integer k. Thus b* — a? = 5(—k). Since —k is an

integer, 5 | (b* — a?) and so b? = a? (mod 5). Hence b R a and R is symmetric.

Finally, we show that R is transitive. Assume that ¢ R b and b R ¢, where a,b,c € Z. Thus
a? = b% (mod 5) and bv? = % (mod 5). So a? — b? = 5z and b? — ¢ = 5y, where z,y € Z. Adding

these two equations, we obtain
22 _ _
a® — ¢ =b5x+ 5y =5(x + y).

Since x + y is an integer, 5 | (a? — ¢?) and a? = ¢? (mod 5). Therefore, a R ¢ and R is transitive. m

There are three distinct equivalence classes, namely, [0] = {6n: n € Z}, [1] ={bn+1,5n+4: n €
Z}, and 2] = {5n+2,5n+3: n € Z}.

Exercises for Section 8.6: The Integers Modulo n

8.37 The addition and multiplication tables in Z, are shown below.

+ [ o] (1] 2] [3] o] 1] 2] [3]
[ | [o] [1] [2] [3] [0] | [0] [o] [o] [0]
(| 1] [2] [8] [0] (1| o] [1] [2] [3]
2] | 2] [8] [0] [1] 2] | [0] [2] [0] [2]
(B] | (8] [0 [1] [2] B | [0 (8] [2] [1]
8.38 (a) [2]+[6] =[8] =[0]
(b) [2]-[6] = [12] = [4]
(c) [-13]+[138] = [125] = [5].
(d) [-13]-[138] = [3][2] = [6]
8.39 (a) [7]+[5] =[12] = [1].
(b) [7]-[5] = [35] = [2].
(c) [-82]+ [207] = [6] + [9] = [4].
(d) [-82]-[207] = [6] - [9] = [10].

8.40 (a) No. Consider [a] = [2] and [b] = [4]. Then [a] # [0] and [b] # [0], but [a] - [b] = [8] = [0].
(b) If Zg is replaced by Zg or Z, then the answer is no; while if Zg is replaced by Zi1, then the
answer is yes.
(c) Let a,b € Zy, where n > 2 is prime. If [a] - [b] = [0], then [a] = [0] or [b] = [0].
8.41 Proof. Let [a], [, ][c],[d] € Zy, where [a] = [b] and [¢] = [d]. We prove that [ac] = [bd]. Since
[a] = [b], it follows that a R b, where R is the relation defined in Theorem 8.6. Similarly, ¢ R d.
Therefore, a = b (mod n) and ¢ = d (mod n). Thus, n | (a —b) and n | (¢ — d). Hence, there exist

integers x and y so that
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8.42

8.43

8.44

8.45

8.46

a—b=nz and c—d=ny.
Thus a = nz + b and ¢ = ny + d and so ac = (nz + b)(ny + d) = nzny + nxd + bny + bd. Hence
ac — bd = nxny + nxd + bny = n(nzy + xd + by).
This implies that n | (ac—bd). Thus, ac = bd (mod n). From this, we conclude that ac R bd, which

implies that [ac] = [bd]. L]

Additional Exercises for Chapter 8

(a) True. Consider a =0 or a = 3 for example.
(b) False. Consider a =b=1.

(¢) True. For a given a, let b =0.

Proof. Since k+ ¢ =0 (mod 3), it follows that 3 | (k + ¢) and so k + ¢ = 3z for some integer x.
Assume that a = b (mod 3). Thus a = b + 3y for some integer y. Observe that

ka+0b = k(b+3y)+b=Fkb+3ky+ (b
b(k + ¢) + 3ky = b(3x) + 3ky = 3(bx + ky).

Since bx + ky is an integer, 3 | (ka + £b) and so ka + £b =0 (mod 3). n
Result. Let k and ¢ be integers such that k+ ¢ =0 (mod n), where n € Z and n > 2. If ¢ and b
are integers such that a = b (mod n), then ka + ¢b =0 (mod n).

Proof. Since k + ¢ = 0 (mod n), it follows that n | (k + ¢) and so k + ¢ = nx for some integer x.
Assume that a = b (mod n). Then a = b+ ny for some integer y. Observe that

ka+0b = k(b+ny)+4Lb=>b(k+ L)+ nky
= bnz + nky = n(bx + ky).
Since bz + ky is an integer, n | (ka + ¢b) and so ka + ¢b =0 (mod n). L]

(a) (i) symmetric
(ii) symmetric and transitive

(iii) symmetric and transitive

(v) symmetric and transitive

)
)
)
(iv) symmetric and transitive
)
(vi) symmetric
)

(vii) reflexive and symmetric

(b) x—y>0orx—y<0orxz#y.
(3) occurs. There may not be an element y € A such that « R y.
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8.47 Tt is wrong to assume that a R a since this is what needed to be proved.

8.48 Proof. Let a € Z. Since |a — 2| = |a — 2|, it follows that a R a and so R is reflexive. Next suppose
that @ R b. Then |a — 2| = |b — 2|. Since |b — 2| = |a — 2|, it follows that b R a and so R is
symmetric. Finally, suppose that a R b and b R ¢. Then |a —2| = |b—2| and |b — 2| = |¢ — 2|. Thus

|a —2| = |c—2| and so a R c. Hence R is transitive. n
In this case, [2] = {2}. More generally, for a € Z, [a] = {a,4 — a}.

8.49 Proof. Let a € R. Since a—a =0 € Z, it follows that a R a and so R is reflexive. Let a,b € R such
that a Rb. Thusa—b€ Z andso —(a —b) =b—a € Z. Thus b R a and so R is symmetric. Let
a,b,c € Rsuchthata Rbandb Rc. Thena—be€ Zandb—c € Z. Thusa—c = (a—b)+(b—c) € Z.

Therefore, a R ¢ and R is transitive. [
/2] ={k+1/2: k€ Z}, [V2| ={k+V2: k€ Z}
8.50 (a) [4° = [4][4][4] = [4] in Z5  (b) [7]° = [7] in Zyo

8.51 (a) Proof. Let X € P(A). Since X N B = X N B, it follows that X R X and so R is reflexive. Let
X,Y € P(A) such that X RY. Hence XNB=YNB. HenceYNB=XNBandsoY R X.
Thus R is symmetric. Let X,Y,Z € P(A) suchthat X RY andY R Z. Thus XNB=YNB
andYNB=ZNB. So XNB=ZNBand X R Z. Therefore, R is transitive. ]

(b) [X]={X,{3,4}}.

8.52 (a) The statement is true. Proof. Let a € A. Since R; N Ry is reflexive, (a,a) € Ry N Ry. Thus
(a,a) € Ry and (a,a) € Ry. Hence both Ry and Ry are reflexive. n

(b) The statement is false. Let A = {1,2,3} and suppose that
Ry ={(1,2),(2,1),(2,3)} and Ry = {(1,2),(2,1),(3,2)}.
Thus neither Ry nor Ry is symmetric; however, Ry N Ry = {(1,2),(2,1)} is symmetric.
(c) The statement is false. Let A = {1,2,3} and suppose that
Ry ={(1,2),(2,3),(1,3),(2,1)} and Rz = {(1,2),(2,3),(1,3),(3,1)}.

Neither Ry nor R is transitive; however, Ry N Re = {(1,2),(2,3), (1, 3)} is transitive.

8.53 Proof. Let a € A. Since a R a, it follows that a R™! a and so R~! is reflexive. Next, we show
that R™! is symmetric. Assume that a R~ b, where a,b € A. Then b R a. Since R is symmetric,
a Rbandsob R~ a. Thus R™! is symmetric.

Finally, we show that R~! is transitive. Assume that a R~! b and b R~! ¢, where a,b,c € A.

Thus b R a and ¢ R b. Since R is transitive, ¢ R a. Thus @ R™! ¢ and so R™! is transitive. ]
8.54 The statement is false. Let A = {1,2,3}. Then

Ry ={(1,1),(2,2),(3,3),(1,2),(2,1)} and Ry = {(1,1),(2,2),(3,3),(2,3),(3,2)}
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8.55

are equivalence relations on A. Since

R= RlRQ = {(17 1); (27 2)) (37 3)) (17 3)}

is not symmetric, R is not an equivalence relation on A.

(a)

The statement is true.

Proof. Let a € Z. Then a = 3q, a =3¢+ 1, or a = 3q + 2 for some integer q. We consider

these three cases.

Case 1. a = 3¢q. Then
a® —a = (3¢)° — (3¢) = 27¢° — 3¢ = 3(9¢° — q).

Since 9¢° — ¢ € Z, it follows that 3 | (a® — a).
Case 2. a =3q+ 1. Then

a>—a = (B¢g+1)°—Bq+1)=27¢+27¢> +9¢+1 -3¢ —1
= 3(9¢° +9¢* + 29).

Since 9¢° + 9¢° + 2q € Z, it follows that 3 | (a® — a).
Case 3. a = 3q+ 2. Then

a®—a = (3¢+2)°— (3¢+2)=27¢> +54¢> +36¢ + 8 — 3¢ — 2
= 27¢% 4+ 54¢* + 33¢+ 6 = 3(9¢° + 18¢* + 11q + 2).

Since 9¢% + 18¢2 + 11q + 2 € Z, it follows that 3 | (a® — a).
Thus a R a for every integer a and so R is reflexive. [

The statement is true.

Proof. Let a,b,c € Z such that a R b and b R c¢. Then 3 | (a®> — b) and 3 | (b> — ¢). Hence
there are integers x and y such that a® — b = 3z and b®> — ¢ = 3y. Since R is reflexive, b R b
and so 3 | (b3 —b). Hence b® — b = 3z for some integer z. Adding a® —b = 3z and b® — ¢ = 3y,

we obtain
(a®>=b)+ (b —c)=(a® —c) + (® —b) =a® — c+ 32 =3z + 3y.

Hence a® —c =3z +3y — 32z = 3(z +y — 2). Since v +y — z € Z, it follows that 3 | (a® — ¢).

Thus a R ¢ and R is transitive. n

8.56 The relation R is an equivalence relation on Z.

Proof. Let a € Z. Since a = a (mod 2) and a = a (mod 3), it follows that R is reflexive.

Let

a R b, where a,b € Z. Then a = b (mod 2) and ¢ = b (mod 3). So b = a (mod 2) and

b=a (mod 3). Then b R a and so R is symmetric.

Let
b =

a =

a Rband b R ¢, where a,b,c € Z. Thus (1) a = b (mod 2) and @ = b (mod 3) and (2)
¢ (mod 2) and b = ¢ (mod 3). Since a = b (mod 2) and b = ¢ (mod 2), it follows that

¢ (mod 2). Similarly, @ = ¢ (mod 3). Thus a R ¢ and so R is transitive. ]
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8.57 The relation R is not an equivalence relation on Z. For example, 0 R 2 and 2 R 5, but 0 R 5.

8.58 The statement is true.

Proof. Let R be a symmetric, sequential relation on some set A. Let a € A. Consider the sequence
a,a,a. Since R is sequential, a R a and so R is reflexive. We now show that R is transitive. Let
a,b,c € A where (a,b), (b,c) € R. We show that a R ¢. Consider the sequence a,c,a. Since R is
sequential, either a R cor ¢ R a. If a R ¢, then (a,c¢) € R, as desired. If ¢ R a, then a R ¢ since R

is symmetric and so (a,c) € R. Thus R is transitive. n

8.59 (a) Proof. Let (a,b) € S. Since ab = ba, it follows that (a,b) R (a,b) and so R is reflexive. Let
(a,b),(c,d) € S such that (a,b) R (¢,d). Then ad = bc. Thus ¢b = da, which implies that
(¢,d) R (a,b) and so R is symmetric.
Let (a,b),(c,d), (e, f) € S such that (a,b) R (¢,d) and (¢,d) R (e, f). Hence ad = bc and
cf = de. We show that (a,b) R (e, f). Since ad = be and ¢f = de, it follows that (ad)e = (bc)e
and a(cf) = a(de). Hence bce = acf. Since ¢ # 0, it follows that be = af, which implies that

(a,b) R (e, f) and so R is transitive. Therefore, R is an equivalence relation. ]

(b) The equivalence class [(1,2)] is the set of all points in the plane that lie on the line with
equation y = 2z excluding (0,0) and [(3,0)] is the set of all points in the plane that lie on the
x-axis excluding (0, 0).

8.60 (a) Let (a,b),(c,d), (e, f) € R x R. We observe the following:

(1) laf +[b] = |af + [b];
(2) if [a] + bl = |¢] + |d], then |e] + |d| = |a] + |b];
(3) if |a| + [b] = |e| + |d] and |¢| + |d| = |e| + [f], then [a] + [b] = |e| + | |-

(b) [(1,2)] = {(z,y) : |z| + |y| = 3} = [(3,0)]. These are two equivalence classes consist of the set

of all points in the plane that lie on the diamond-shaped figure shown in Figure 12.

Y

Figure 12: The equivalence classes in Exercise 8.60(b)
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Exercises for Chapter 9

Exercises for Section 9.1: The Definition of Function

9.1 dom f = {a,b,c,d} and ran f = {y, z}.

9.2 R={(1,a),(1,b),(2,b)}. The relation R is not a function from A to B because (1) dom f # A and

(2) there are two ordered pairs whose first coordinate is the same element of A (namely 1).

9.3 Since R is an equivalence relation, R is reflexive. So (a,a) € R for every a € A. Since R is also a
function from A to A, we must have R = {(a,a) : a € A} and so R is the identity function on A.
9.4 (a) The relation R; is a function from A; to R.

(b) The relation Ry is not a function from A; to R. For example, both (9,1) and (9, —5) belong
to RQ.

(¢) The relation R is not a function from Az to R. For example, both (0,2) and (0, —2) belong
to Rg.

9.5 Let A ={a € A: (a,b) € R for some b € B}. Furthermore, for each element a’ € A’, select exactly
one element b’ € {b € B: (a/,b) € R}. Then f = {(a’,V') : o’ € A’} is a function from A’ to B.

9.6 (a) domfi =R,ranf; ={z€R:z>1}.
(b) dom fo = R — {0}, ran fo = R — {1}.
(c) domfs={reR: a:>1/3} ran f3 = {x € R:z > 0}.
(d)
(e) dom f5 = R — {3}, ran f5 = R — {1}.

dom f4 = R, ran f4 =

Exercises for Section 9.2: The Set of All Functions From A to B

9.7 BA = {f17f2a .- 'vf8}’ where f; = {(1,%), (2,%), (3,%)}, fo= {(1,%), (2,%), (3’3/)}7 fz= {(1,%), (2’3/)7 (3,%)},
fa=4{1,y),(2,2),(3,2)}. By interchanging = and y in f1, fo, f3, f4, we obtain fs, fs, f7, fs.

9.8 9= {(1,2),(2,9),(3,2), (4,2)} and h = {(2,9), (4, 2), (2, )}

9.9 For A ={a,b,c} and B = {07 1}, there are 8 different functions from A to B, namely

fr ={(a,0),(5,0),(c,0)}, = {(a,0), (b,0), (¢, 1)},
fs ={(a,0), (b, 1), (¢,0)}, = {(a,0), (b, 1), (¢, 1)},
fs ={(a,1),(6,0), (¢, 0)}, ={(a,1),(0,0), (¢, )},
fr=A{(a,1),(b,1), (¢, 0)}, ={(a,1), (0, 1), (¢, 1)}

9.10 (a) Let A=1{1,2,3} and B = {a, b}.
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9.11

9.12

9.13

9.14

9.15

9.16

9.17

9.18

9.19

(b) [= {(1,1)),(2,&),(3,&)}.

Exercises for Section 9.3: One-to-one and Onto Functions

Let f = {(w,r), (z,7), (y,7),(2,8)}. Since f(w) = f(z) = r and ¢ is not an image of any element of

A, it follows that f is neither one-to-one nor onto.

Let A ={1,2} and B = {3,4,5}. Then f = {(1,3),(2,4)} and g = {(3,1), (4,2), (5,2)} have the

desired properties.
The function f is injective, but not surjective. There is no n € Z such that f(n) = 2.

(a) The function f is injective.
Proof. Assume that f(a) = f(b), where a,b € Z. Then a —3 = b — 3. Adding 3 to both

sides,we obtain a = b. =

(b) The function f is surjective.

Proof. Letn€Z. Thenn+3€Zand f(n+3)=(n+3)—-3=n. L]
The function f is injective but not surjective. There is no n € Z such that f(n) = 5.
The statement is true. The function f: A — P(A) defined by f(a) = {a} has the desired property.

(a) Since f(0) = f(—4), it follows that f is not one-to-one.
(b) Note that f(x) = (z+2)2+5 > 5, so f is not onto. For example, there is no z € R such that
fw) =4

Consider the function f : R — R defined by f(z) = 2® —2 = (z + 1)xz(x — 1). Since f(0) = f(1), it
follows that f is not one-to-one. One way to show that f is onto is to use the Intermediate Value

Theorem.

Method#1. Let r € R. Since

lim, oo(2® — 2) = 00 and lim,_, (2% — ) = —o0,

there exist real numbers a and b such that f(a) < r < f(b). Since f is continuous on the closed

interval [a, b], there exists ¢ such that a < ¢ < b and f(c) = r.

Method#2. Let r € R. If r =0, then f(0) =0 = r. Suppose that » > 0. Then r+ 1 > 1 and
r+2>1;s0 f(r+1)=r(r+1)(r+2) > r. Since f(0) < r < f(r+1), it follows by the Intermediate
Value Theorem that there exists ¢ € (0,7 + 1) such that f(c) =r. If r <0, then s = —r > 0 and,
as we just saw, there exists ¢ € (0,s + 1) such that f(c) =s. Then f(—c¢)=—-s=r.

(a) Define f(n) =n for all n € N.

(b) Define f(n) = 2n for all n € N.

(c) Define f(1) =1 and f(n) = n — 1 for each integer n > 2.
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9.20

9.21

9.22

9.23

(d) Define f(n) =1 for all n € N.

Exercises for Section 9.4: Bijective Functions
Proof. First, we show that f is one-to-one. Assume that f(a) = f(b), where a,b € R. Then
Ta—2 ="7b—2. Adding 2 to both sides and dividing by 7, we obtain a = b, and so f is one-to-one.

Next, we show that f is onto. Let r € R. We show that there exists € R such that f(z) = r.
Choose x = (r +2)/7. Then x € R and

Thus f is onto. [
Proof. We first show that f is one-to-one. Assume that f(a) = f(b), where a,b € R — {2}. Then

5 1 5b
a4 + = ﬁ Multiplying both sides by (a—2)(b—2), we obtain (5a+1)(b—2) = (5b+1)(a—2).
Slmphfymg, we have 5ab — 10a + b — 2 = 5ab — 10b + a — 2. Subtracting 5ab — 2 from both sides,

we have —10a + b = —10b 4 a. Thus 11a = 11b and so a = b. Therefore, f is one-to-one.

To show that f is onto, let r € R — {5}. We show that there exists + € R — {2} such that

2 1
7"—1—5 . Then x € R — {2} and

f(z) =r. Choose x =

2r41
)= (2D _5( +)+1 C5@2r+ )+ (r=5) 1lr
VEIGTE) T T Sy T e —2(0i-5) 11
implying that f is onto. Therefore f is bijective. (]

(a) Proof. Let [a],[b] € Z5 such that [a] = [b]. We show that f([a]) = f([b]), that is, [2a + 3] =
[2b + 3]. Since [a] = [b], it follows that a = b (mod 5) and so a — b = 5x for some integer .
Observe that

(2a 4 3) — (2b+ 3) = 2(a — b) = 2(5z) = 5(2z).
Since 2z is an integer, 5 | [(2a + 3) — (20 + 3)]. Therefore, 2a + 3 = 2b + 3 (mod 5) and so
[2a + 3] = [2b+ 3]. "
(b) Since f([0]) = [3], f([1]) = [0], £([2]) = [2], F([3]) = [4], and f([4]) = [1], it follows that f is

one-to-one and onto and so f is bijective.

(a) Consider S = {2,5,6}. Observe that for each y € B, there exists € S such that x is related
to y. This says that y(R) < 3. On the other hand, let S C A such that for every element y
of B, there is an element x € S’ such that x is related to y. Observe that S’ must contain 6,
at least one of 2 and 3, and at least one of 4, 5, and 7. Thus |S’| > 3. Therefore, v(R) = 3.
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(b) If R is an equivalence relation defined on a finite nonempty set A, then «(R) is the number of

distinct equivalence classes of R.

(c) If £ is a bijective function from A to B, then v(f) = |A|.
9.24 Define fi(z) = 22 for € A and fa(z) = /z for z € A. (f3(z) = 1 —  is another example.)
9.25 Proof. We first show that f is one-to-one. Let a,b € A such that f(a) = f(b). Now
a = iala)=(fof)la)=f(f(a)) = f(f(D))
= (fof)(b)=1ia(b) =0
Thus £ is one-to-one.

Next, we show that f is onto. Let ¢ € A. Suppose that f(c) =d € A. Observe that

f(d) = f(f(e) = (f o f)lc) = ialc) = c.

Thus f is onto. u

Exercises for Section 9.5: Composition of Functions
9.26 go f ={(1,y),(2,2),(3,2), (4,x)}.
9.27 (go f)(1) = g(f(1)) = g(4) =17 and (f o g)(1) = f(g(1)) = f(2) = 13.

9.28 (a) (i) Direct Proof. Assume that g o f is one-to-one. We show that f is one-to-one. Let

f(z) = f(y), where z,y € A. Since g(f(x)) = g(f(y)), it follows that (go f)(z) = (gof)(y).
Since g o f is one-to-one, z = y. [

(ii) Proof by Contrapositive. Assume that f is not one-to-one. Hence there exist distinct
elements a,b € A such that f(a) = f(b). Since

(g0 f)la) = g(f(a)) = g(f(b)) = (g0 f)(b),

it follows that g o f is not one-to-one. [

(iii) Proof by Contradiction. Assume, to the contrary, that there exist functions f : A — B
and g : B — C such that g o f is one-to-one and f is not one-to-one. Since f is not one-
to-one, there exist distinct elements a,b € A such that f(a) = f(b). However then,

(g0 f)(a) = g(f(a)) = g(f(b)) = (g0 f)(b),

contradicting our assumption that g o f is one-to-one. [

(b) Let A={1,2,3}, B ={w,x,y,2},and C = {a,b,c}. Define f : A — Bby f = {(1,w), (2,z), (3,y)}
and g : B — C by g = {(w,a), (z,b), (y,¢),(z,¢)}. Then go f ={(1,a),(2,b),(3,c)} is one-to-

one, but ¢ is not one-to-one.
9.29 (a) The statement is true. This is Corollary 9.8.

86



(b) The statement is false. Let A = {1,2}, B = {a,b}, and C = {x,y}; and let f : A — B and
g: B — Chbedefined by f = {(1,0), (2,0)} and g = {(a,2), (by)}. Then gof = {(1,), (2,2)}.
Thus ¢ is onto but g o f is not.

(c¢) The statement is false. Consider the functions f and g in (b).

(d) The statement is true. Proof. Let A = {1,2}, B = {a,b,c}, and C = {z,y}; and let
f+A— Bandg: B — C be defined by f = {(1,a),(2,0)} and g = {(a,2), (b,y), (c,y)}-
Then go f = {(1,2),(2,y)} is onto but f is not onto. ]

(e) The statement is false. We show that for functions f: A — B and g : B — C, if f is not
one-to-one, then go f : A — C is not one-to-one.

Since f is not one-to-one, there exist a,b € A such that a # b and f(a) = f(b). Thus
(90 £)(a) = 9(F(@)) = 9(f(B)) = (g0 )(b) and 0 g o f is not one-to-one.

9.30 Proof. Let a € A. Then (foia)(a) = f(ia(a)) = f(a) and (ig o f)(a) = ip(f(a)) = f(a). Thus

foia=fandigof=f. [
9.31 (a) Proof. Let (z,y) € A x A. Then z = 4a and y = 4b, where a,b € Z. Since f(x,y) = xy =
(4a)(4b) = 2(8ab) and 8ab € Z, it follows that f(z,y) € B’ and so go f is defined. ]

(b) (g0 f)(4k,46) = g(f(4k, 46)) = g(16kl) = Sk.

Exercises for Section 9.6: Inverse Functions

9.32 Let f = {(a,a), (b,a),(c,b)}. Then f is a function from A to A. But f~! = {(a,a), (a,b), (b,c)} is

not a function.

9.33 Proof. First, we show that f is one-to-one. Assume that f(a) = f(b), where a,b € R. Then
4a — 3 = 4b — 3. Adding 3 to both sides and dividing by 4, we obtain a = b. Next we show that f
is onto. Let 7 € R. Then (r + 3)/4 € R. Therefore, f (I42) =4 (22) -3 = . L]

Note that f=1(z) = (z + 3)/4 for z € R.
9.34 Proof. First, we show that f is one-to-one. Assume that f(a) = f(b), where a,b € R — {3}.

b
Then 5a3 = b5—3 Multiplying both sides by (a — 3)(b — 3), we obtain 5a(b — 3) = 5b(a — 3).
a0 — _
Simplifying, we have 5ab — 15a = 5ab — 15b. Adding —5ab to both sides and dividing by —15, we

obtain a = b. Thus f is one-to-one.

To show that f is onto, let r € R — {5}. We show that there exists z € R — {3} such that

3 3
f(x) =r. Consider x = TTTE) (Since . _7“5 # 3, it follows that € R — {3}.) Then
3 5 () 15 15
r r—5 r r
fa) = f(r—5) CSn 3 3r-3(r-5) 15"
implying that f is onto. Therefore f is bijective. [
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Since (fo f7!) (z) = for all z € R — {5}, it follows that

_ ity of M)
(fof 1)(x)_f(f (x))_f—l(a:)—B_x

Thus 5f~(x) = z(f~(x) —3) and 5f ! (z) = 2f ' (x) — 3z. Collecting the terms involving f~!(z)
on the same side of the equation and then factoring f~!(x), we have zf~!(z) — 5f~1(x) = 3z; so
f~Yz)(x — 5) = 3x. Solving for f~1(x), we obtain

9.35 (a) Proof. Let f(a) = f(b), where a,b € R. Then 2a + 3 = 2b+ 3. Adding —3 to both side and
dividing by 2, we have a = b and so f is one-to-one. Let r € R. Letting x = (r — 3)/2, we

have

f(x):2(r;3)+3:(r—3)+3=r

and so f is onto. [
(b) The proof is similar to that in (a).
(¢) (gof)(x) =—6z—4.
(@) F'() = %52 and g~} (z) = 35=.
(e) (gof) ) =(fTog !)(z) = —(z+4)/6.
9.36 (a) The proof is similar to that in Exercise .
(b) f=f""
(c) fofof=F.
9.37 (a) The statement is false. Let A = {1,2}, B = {«,y}, and C = {r, s}. Define f = {(1,z), (2,2)},
9 =A{(z,r),(y,r)}, and h = {(x,7), (y,5)}. Then go f ={(1,r),(2,r)} = ho f but g #h.
(b) The statement is false. Let A = {1}, B = {=,y}, and C = {r,s}. Define f = {(1,2)},
g={(z,7),(y,r)}, and h = {(z,r), (y,s)}. Then f is one-to-one, go f = {(1,7)} = ho f but
g #h.

Exercises for Section 9.7: Permutations

(1 2 3 45 4 (1 2 3 45
9.38aoﬁ—<4 13 5 2)and5 —<5 3 1 4 2).

1 23456 123456
-1 _ -1 _
939 (a) a _<416352>andﬂ _<542613)'
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9.40

9.41

9.42

9.43

9.44

9.45

9.46

9.47

123456 123 45 6
(b)aoﬂ:(5 436 2 1>and5°a:(3 42 5 1 6)'
Additional Exercises for Chapter 9

(a) Since f(0) = f(—3) =4, it follows that f is not injective.

(b) Let a,b € R such that f(a) = f(b). Thus a® + 3a +4 = b?> 4+ 3b+ 4. So a® + 3a = b*> + 3b and
a? —v>+3a—3b= (a+b)(a—>b)+3a—>b)=(a—0b)(a+b+3)=0. Therefore, a = b or
a+b=-3.

(c) Observe that f(z) = 2% + 3z +4 = (z +3/2)? +7/4 > 7/4. Thus there is no € R such that

f(x) =0 and so f is not surjective.
(d) S={seR:s<T7/4}.
(e) This is the complement of the range of f.

Proof. If a = 0, then f(z) = 22 +b. Since f(1) = f(=1) = 1+ b, it follows that f is not
one-to-one. If a # 0, then —a # 0. Since f(0) = f(—a) = b, it follows that f is not one-to-one. m

Proof. Assume that f(z1) = f(x2), where 1,20 € R. Then az; + b = aza + b. Subtracting b

from both sides and dividing by a, we obtain x; = 5. [

The proof that f is one-to-one is correct. The proposed proof that f is onto is not written properly,
beginning with the second sentence. The symbols r and = are not identified and it is stated that
f(z) = r, when this is what we need to show for a given r € R — {3}. Sentences 2-5 result in
solving for = in terms of r, which is not a part of the proof; however, these sentences supply the
necessary information to provide a proof. The information provided in the display is critical in a
proper proof.

(a) a,c,d,b,e.

(b) For example, let g = {(a,a), (b,a), (c,a),(d,a),(e,a)}. Then it is not possible to list elements

of A asin (a).
The function f : P(S) — P(P(S)) defined by f(A) = {A} for each A € P(S) is injective.

a) one-to-one and onto.

(
(b

one-to-one and onto.

)
)
(c) one-to-one but not onto.
(d) one-to-one and onto.

)

(e) one-to-one but not onto.

(a) Since every element x € U satisfies x € U, it follows that gy (z) =1 for all z € U.

(b) Since z ¢ 0 for every x € U, it follows that gy(z) = 0 for all = € U.
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9.48

9.49

(¢c) Letz eld =R. Ifx >0, then x € A and (gaoga)(x) = gal(ga(x)) = ga(1) = 1; while if z < 0,

then z ¢ A and ga(x) = 0. Since 0 € A, it follows that (gaoga)(x) = ga(ga(x)) = ga(0) = 1.
Hence (g4 0ga)(x) =1 for z € R.

(d) Proof. Let z € U. We consider three cases.

Case 1. x € A and x € B. Therefore, z € C. Hence go(x) =1 and ga(z) - gp(z) =1-1=
Thus go(z) = (94)(z) - (98)(x)-

Case 2. x belongs to exactly one of A and B, say v € A and v ¢ B. Thus « ¢ C. Hence
gc(z) = 0. Since ga(z) = 1 and gg(x) = 0, it follows that ga(z) - gp(z) =1-0 = 0 and so

ge(x) = (9a)(x) - (98)(x)-

Case 3. x ¢ A and x ¢ B. Thus © ¢ C. Therefore, go(z) = ga(x) = gp(z) = 0 and so
go(x) = (ga)(x) - (98)(x).

Therefore, gc = (ga) - (9B)- -

(e) Proof. Let z € U. If z € A, then ga(z) = 1 and gx(z) = 0; while if z € A, then gx(z) =1

and ga(z) = 0. Thus in both cases, g4(z) =1 — ga(z) m

(a) Proof. Let f(a) = f(b), where a,b € A. Since g : B — A is a function, (go f)(a) = (go f)(b).

Because g o f =iy, it follows that ¢4(a) = i4(b) and so a = b and f is one-to-one.

To show that g is onto, let a € A. Suppose that f(a) = x € B. Then g(z) = g(f(a)) =
(go f)(a) =ia(a) = a and so g is onto.

(b) Consider A = {172}a B = {x,y,z}, [ = {(1,x),(2,y)}, g = {(xv]-)a(y72)a(za2)}' Then

gof={(1,1),(2,2)} =ia, but f is not onto.

(c) See the example in (b).

(d) Proof. Assume that f is onto. Suppose that g(z) = ¢g(y), where x,y € B. Since f is onto,

there exist a,b € A such that f(a) = z and f(b) = y. Since g(z) = g¢(y), it follows that

9(f(a)) = g(f(b)) and so (g o f)(a) = (g0 f)(b). Since go f =i, we have a = b. Thus
z = f(a) = f(b) =y, implying that g is one-to-one. m

(e) Proof. Assume that g is one-to-one. Let b € B. Suppose that g(b) = © € A. Then f(z) =

f(g(b)) and so g(f(x)) = g(f(g(b))). Observe that
9(f(2)) = g(f(g(b))) = (g0 f)(g(b)) = g(b)-

Since g is one-to-one, f(x) = b and so f is onto. ]

(f) Suppose that f: A — B and g : B — A such that go f =i4. Then f is onto if and only if ¢

is one-to-one.

(a) Observe that




Thus
(fofof)x)=f((fofl@)=1-—F=1-(1-2)=x

1—z

and so fofof=ig4a.
(b) 1= fof=1ik.

9.50 Let A ={1,2,3}. Define f: A — A by f = {(1,2),(2,3),(3,1)}.

9.51 In this case, gf = {(1,1),(2,4)}. Thus gf is a function from A to C. The reason that gf is a
function from A to C' is because for each element z € A and for each element y € B to which z is
related, y is related to the same element z € C.

9.52 (a) The relation f is not a function from R to R since (1,1) € f and (1,—1) € f, for example.

(b) In this case, gf = {(z,2?) : x € R}, that is, gf(x) = 22 for all z € R.
(¢) The reason that gf is a function from R to R is for each x € R and for each y € R to which
x is related, y is related to 22, that is, to the same element z € R.

9.53 Let f ={(1,2), (2,1)} and g ={(1,4), (2,3), (3,1), (3,6), (4,2), (4,5)}. Then gf = {(1,3),(2,4)}.

9.54 (a) Proof. First, we show that R is reflexive. Let f € F. Since f(z) = f(x) +0 for all z € R, it
follows that f R f and R is reflexive. Next, we show that R is symmetric. Let f R g, where
fig € F. Then there exists a constant C such that f(z) = g(z) + C for all x € R. Thus
g(z) = f(z) + (—C) for all z € R. Since —C is a constant, g R f and R is symmetric.

Finally, we show that R is transitive. Let f R g and g R h, where f,g,h € F. Then there
exist constants C; and Cy such that f(x) = g(z) + C1 and g(z) = h(zx) + C; for all x € R.
Then f(z) = h(z) + (Cy + Cq) for all z € R. Since C; + C5 is a constant, f R h and R is

transitive. -
(b) For each f € F, let f’ denote the derivative of f. Then [f] = {g€ F: ¢' = f'}.
9.55 (a) Consider the function f: S — {0,1,2,...,6} defined by
fla) =0, f(b) =1, f(c) =4, f(d) =6.

Then g({a,b}) = [f(a) — f(O)| = 1, g({c.d}) = 2, g({b,c}) = 3, y({a,c}) = 4, g({b.d}) =5,
9({a,d}) = 6.

(b) Proof. Assume, to the contrary, that there exists an injective function f : S — {0,1,2,...,10}
such that g : T — {1,2,...,10} is bijective. Let

A={a€S: f(a)iseven} and B={be S: f(b) is odd}.

Now |S| = |[AU B| = |A| + |B| = 5. For {z,y} € T, g({z,y}) is odd if and only if one of x
and y belongs to A and the other belongs to B. Therefore, |A|-|B| = 5, but this is impossible
since |A| + |B| = 5. L]

(c) Define f:S — {0,1,2,...,12} defined by
fla) =0, f(b) =1, f(c) =3, f(d) =7, f(e) = 12.
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Then g has the desired properties.

Does there exist an injective function f : S — {0,1,2,...,|T| + 1} such that the function
g:T—{1,2,...,|T| + 1} defined by g({7,75}) = |f(@) — f(4)| is injective? The answer is no.

The function F' is not one-to-one since, for example, F'(1) = F'(5) = 1.

The function F' is not onto since, for example, there is no odd positive integer n such that
F(n) = 3. Suppose that there is an odd positive integer n such that F(n) = 3. Then
3n+ 1 = 2™ .3 for some nonnegative integer m and so 2™ -3 — 3n = 3(2™ — n) = 1. Since

2™ —n € Z, it follows that 3 | 1, which is a contradiction.

The function F' is not one-to-one since, for example, F'(2) = F(4) = 0.
The function F' is onto.

First, we prove two lemmas.

Lemma 1. If m is an even nonnegative integer, then 2™ =1 (mod 3).

Proof. We proceed by induction on m. If m = 0, then 2 = 2° = 1 and 2™ = 1 (mod 3).
Assume for some nonnegative even integer m that 2™ = 1 (mod 3). Thus 2™ = 3z + 1 for
some integer z. Then 2"+2 =4.2™ = 4(3z + 1) = 3(4x + 1) + 1. Since 4z + 1 € Z, we have
2m+2 =1 (mod 3). "

Lemma 2. If m is an odd positive integer, then 5-2™ =1 (mod 3).

Proof. Let m be an odd positive integer. Then m — 1 is a nonnegative even integer. By

Lemma 1, 2"~ ! = 32 + 1 for some integer 2. Thus
5-2m = 10-2™" ' =103z +1)
= 30z + 10 =3(10z + 3) + 1.
. Thus 5-2™ =1 (mod 3). L]

Proof. Let m be a nonnegative integer. First, consider m = 0. Let n be a positive even integer.
Then n = 2a, where a € N. Since 3n+1=3(2a) +1=2(3a) + 1 is odd, F(n) =0 =m.

Let m be a positive even integer. Then 2™ =1 (mod 3) by Lemma 1. So 2™ = 3z + 1 for
some x € Z. Then F(x) =m.

Next, let m be a positive odd integer. Then 5-2™ =1 (mod 3) by Lemma 2. So 5-2™ = 3z+1
for some x € Z. Then F(x) = m. L]

9.58 Proof. We proceed by induction. The derivative of f(z) = Inx is f'(z) = fM(z) = 1/2. For

n=1,

(D)™ -1 _ (=10 _ 1

xm x x

and so the result holds for n = 1. Assume that the kth derivative of f(x) is

FR) () = %}Ek_l)' = (=) (k- 1)k,

X
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where k is a positive integer. We show that

— 1)k 2
70 ) =
Observe that
e @) = L) = L[ (- 1]

= (DM = (k) EHY

_ (—1)k+2E!
(=) 2k(k = 1)ta= ) =

The result then follows by the Principle of Mathematical Induction. [

9.59 Proof. We use induction. Since
f@)=e®—ze®=e(1—-2x)=(-1D'e %@ -1),
the formula holds for n = 1. Assume that
fP (@) = (~1)re (@~ k)
for some positive integer k. We show that
£ @) = (<D e = (k + 1)
Observe that

fEngy = 4 (19 @) = (1) e = e (@ - B)]

= (Dre L= (- k)= (-1)"*e e — (k+1)].
The result then follows by the Principle of Mathematical Induction. [

9.60 (a) Proof. We first show that f(A; U As) C f(A41) U f(A2). Let b € f(A; U Az). Then there
exists a € A; U Ay such that f(a) =b. Since a € Ay U As, it follows that a € Ay or a € A,
say the former. Thus b = f(a) € f(A41). Since f(A;) is a subset of f(A1) U f(As), we have
be f(A1)U f(A2) and so f(A1U Az) C f(A1) U f(A2).

Next, we show that f(A1) U f(A2) C f(A1 U As). Let b€ f(A1) U f(Az). Then b € f(Ar)
or b € f(As), say the former. Thus there exists a € A; such that f(a) = b. Since a € Ay, it
follows that a € A1 U Ay and so b= f(a) € f(A1 U A2). Hence f(A1)U f(A2) C f(A1 U Az).
Therefore, f(A1)U f(A2) = f(A1 U Ag). L]

(b) Proof. Let b € f(A; N Az). Then there exists a € A; N Ay such that f(a) = b. Since
a € A1 N Ay, it follows that a € Ay and a € As. Thus b= f(a) € f(A1) and b= f(a) € f(A2),
implying that b € f(A1) N f(Asz). Therefore, f(A; N As) C f(A1) N f(As2). L]
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(c) Proof. By (b), we see that f(A; N A2) C f(A1) N f(As2). Thus it remains to show that
FflA) N f(A2) C f(A1NAy). Let be f(A1)N f(A2). Then b € f(A1) and b € f(Az). Thus
there exist a; € A; and as € Ay such that b = f(a1) and b = f(az2). Since f is one-to-one and
f(a1) = f(a2), it follows that a3 = as. Thus a1 = a2 € A1 N Ag, implying that b € f(A; N As).

Therefore, f(A1) N f(As) C f(A1 N Ag) and so f(A1 N A2) = f(A1) N f(A2). L]
961 g(Z)={x=4k+1:ke€Z}, g(E)={x=8k+1:keZ}.

9.62 (a) Proof. Let [a] = [b], where [a], [b] € Z16. Thus a = b (mod 16) and so a — b = 16k for some
integer k. Thus 3a — 3b = 3(16k) = 48k = 24(2k). Since 2k € Z, it follows that 24 | (3a — 3b)
and so 3a = 3b (mod 24). Thus h([a]) = [3a] = [3b] = h([b]) in Za4 and so h is well-defined. m

(b) h(A) = {[0], 3], [9], [12], [18], [21]}, n(B) = {[0]}-
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Exercises for Chapter 10

Exercises for Section 10.1: Denumerable Sets

10.1

10.2

10.3

10.4

10.5

Proof. Since A and B are denumerable, the sets A and B can be expressed as
A= {al, az,as, .. } and B = {bl, bg, bg, . }

The function f: N — A U B defined by

1 2 3 4 5 6
T

ar by ax by az b3

is bijective. Therefore, A U B is denumerable. n

Let A = {a1,a2,a3,...} and B = {by, b2, b3,...}. Then C = {c1,ca,cs,...}, where ¢; = —b; for each
i € N. Since A and C' are disjoint denumerable sets, A U C' is denumerable by Exercise 10.1. Also,

AUC ={ay,c1,a2,c2,0a3,¢3,...} and so AU C' is denumerable.

() 1+ 3, (4+v2)/2, (9433

(b) Proof. Assume that f(a) = f(b), where a,b € N. Then “2+—a‘/§ = bz*'T‘/i Multiplying by ab,
we obtain a?b + v/2b = ab® 4+ v/2a. Thus a?b — ab® + /2b — /2a = ab(a — b) — v2(a — b) =
(a —b)(ab —v/2) = 0. Thus a = b or ab = v/2. Since ab € N and /2 is irrational, ab # /2.
Therefore, a = b and f is one-to-one. [

(c) Proof. Letx € S. Then x = (n? ++/2)/n for some n € N. Then f(n) = x. L]
(d) Yes, since N is denumerable and f : N — S is a bijection by (b) and (c).

Proof. We first show that f is one-to-one. Let f(a) = f(b), where a,b € N. Then

L+ (=1)%2a—1) 14 (=1)%2b-1)

4 4

Simplifying the equation, we obtain (—1)%~%(2a—1) = 2b— 1. We claim that (—1)*~% = 1. Suppose
that (—1)2~% = —1. Then —(2a — 1) = 2b — 1, implying that a + b = 1, which is impossible since
a,b € N. Thus, as claimed, (—1)*"® = 1. Then 2a — 1 = 2b — 1 and so a = b.

Next, we show that f is onto. Let € Z. We show that there exists n € N such that f(n) = x.
For x = 0, choose n = 1; for > 0, choose n = 2z > 0; while for z < 0, choose n = =2z + 1 > 0.

In each case, f(n) = x. ]

Since A is denumerable, A = {a1,as,...}. Observe that

A x B={(a1,x),(a1,y), (az, ), (az,y),...}.

95



10.6

10.7

10.8

10.9

10.10

10.11

10.12

10.13

10.14

Either |A| = |B| and A is denumerable or |A] is finite. Therefore, the set A is countable.

Note that S is an infinite subset of the set N x IN. The result follows by Theorem 10.3 and
Result 10.5.

Note that S is an infinite subset of the set N x IN. The result follows by Theorem 10.3 and
Result 10.5.

Construct a table (as shown below), where the set {4, j} with ¢ < j occurs in row j, column 4.

1 2 3 4

{1, 2}
{1,3} {23}
{1,4} {24} {3,4}

W N =

Define f : G — Z x Z by f(a+ bi) = (a,b). Then f is bijective and so |G| = |Z x Z|. Since Z x Z

is denumerable, G is denumerable.

Since the sets Ap, Ag, As, ... are denumerable sets, we can write A; = {a;1,a;2,4a;3,...} for each

i € N. Construct a table where a;; is in row 4, column j.

Since A is denumerable and B is an infinite subset of A, it follows that B is denumerable by
Theorem 10.3.

Since Z — {2} is an infinite subset of the denumerable set Z, it follows by Theorem 10.3 that Z — {2}
is denumerable and so |Z| = |Z — {2}].

(a) Proof. Assume that f(a) = f(b), where a,b € R — {1}. Then

2a 2b
a—1 b-—1"

Crossmultiplying, we obtain 2a(b — 1) = 2b(a — 1) and so 2ab — 2a = 2ab — 2b. Subtracting
2ab from both sides and dividing by —2, we obtain ¢ = b. Thus f is one-to-one.

Next, we show that f is onto. Let » € R — {2}. Then r/(r —2) € R — {1}. Since

f(riz) - (,362_1 :r—<2rr—2> -

f is onto. [

(b) Since the function f: R — {1} — R — {2} in (a) is bijective, |R — {1}| = |[R — {2}

Exercises for Section 103: Uncountable Sets
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10.15 Proof. Denote the set of irrational numbers by I. Assume, to the contrary, that I is denumerable.
Since Q and I are disjoint denumerable sets, QUI is denumerable by Exercise 10.1. Since QUI = R,

it follows that R is denumerable, which is a contradiction. n

10.16 Since the set C of complex numbers contains R as a subset and R is uncountable, it follows by
Theorem 10.9 that C is uncountable.

10.17 Proof. Consider the function f : (0,2) — R defined by

1—2z

f(ff)zm

for all x € (0,2). First, we show that f is one-to-one. Let f(a) = f(b), where a,b € (0,2). Then

1—a 1-b

a2 —2a b2 —2b

Multiplying both sides by (a? — 2a)(b® — 2b) and simplifying, we obtain
(a—0b)(a+b—ab—2)=0.

We claim that a = b. Assume, to the contrary, that a # b. We may assume that a > b. Then
a+b—ab—2=0. Sincea+b—ab—2=(a—1)(1—b)—1=0, it follows that (a —1)(1 —b) = 1.
Thus a # 1. If a < 1, then b < a < 1 and so (a — 1)(1 —b) < 0, which is impossible. Thus a > 1
and b < 1. Sincel <a<2and0<b<1,itfollowsthat 0 <a—1<1land 0<1—b< 1. However

then, (a — 1)(1 — b) < 1, producing a contradiction. Thus a = b, as claimed, and f is one-to-one.

Next we show that f is onto. Let » € R. Since f(1) = 0, we may assume that r # 0. For r # 0,
let g = 2=l vdr+l ;f”m (obtained from the quadratic formula). Then0 < z < 1ifr <O0and 1 <z <2
if r > 0. Tt follows that f(x) =r and so f is onto. ]

10.18 (a) Proof. Assume that f(a) = f(b), where a,b € (0,1). Then 2a = 2b and so a = b. Hence f is
one-to-one. For each r € (0,2), z =r/2 € (0,1) and f(x) =r. Therefore, f is onto. Thus f is
a bijective function from (0, 1) to (0, 2). L]

(b) It follows by (a).
(c) Define the function g : (0,1) — (a,b) by g(z) = (b — a)x + a. Then g is bijective and so (0, 1)

and (a, b) have the same cardinality.

Exercises for Section 10.4: Comparing Cardinalities of Sets
10.19 (a) False. For example, |P(R)| > |R|.
(b) False. |QJ| # |R/|.
(¢c) True. Proof. Since A is denumerable and A C B, the set B is infinite. Since B is an

infinite subset of the denumerable set C, it follows that B is denumerable. [
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10.20

10.21

10.22

10.23

10.24

10.25

10.26

10.27

(d) True. Consider the function f : N — S defined by f(n) = v/2/n. The function f is bijective.
e) True. (See (d).)

)
(e)
(f) False. Consider R.

(g) False. The function f: N — R defined by f(n) = n is injective but |N| # |R].

False. The set A = {1} is countable but |A| < |INJ.

The cardinalities of these sets are the same. Consider f : [0,1] — [1,3] defined by f(z) = 2z + 1
for all z € [0,1].

(a) B={ze€A:z¢ A} ={a,c}.

(b) The set B is not A, for any « € A and so ¢ is not onto and therefore is not bijective.

Let b € B. Then the function f: A — A x B defined by f(a) = (a,b) for each a € A is one-to-one.
Thus |A] < |A x B|.

Exercises for Section 10.5: The Schroder-Bernstein Theorem

Proof. Since A C B, the identity function i4 from A to B defined by i4(x) = x is injective and so
|A| < |B|. On the other hand, since |A| = |C]|, there is a bijection f : C' — A. Then the restriction
fB of f to B is an injective function from B to A and so |B| < |A|. The result then follows by the

Schréder-Bernstein Theorem. n

Proof. Since (0,1) C [0, 1], the identity function ¢ : (0,1) — [0, 1] defined by i(z) = = is an injective
function. The function f :[0,1] — (0, 1) defined by f(z) = %x + i is also injective. It then follows
by the Schréder-Bernstein Theorem that |(0,1)| = |[0, 1]]. L]

Since Q — {¢} is an infinite subset of the denumerable set Q, it follows that Q — {¢} is denumerable
and so |Q — {g}| = |Q[ = Ro.

Since R — {r} C R, the identity function on R — {r} defined by f(z) = z for each x € R — {r}
is injective. Next, consider the function g : R — R — {r} defined by

() = x ife<r
IEI =N z+1 ifx>r

Then ¢ is injective. By the Schroder-Bernstein Theorem, |[R — {r}| = |R| =c.

(a) Proof. We use induction on n. Since f(k) = 4k = 4'k for all k € Z, the result holds for
n = 1. Assume that f™(k) = 4™k for all k € Z, where m is a positive integer. We show that
fmtl(k) = 4m*1k. Observe that

Fr k) = f(f"(R)) = f(A™k) = 4(4™k) = 4"k
The result then follows by the Principle of Mathematical Induction. [
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10.28

(b)

(a)

B'={f"(x): zisodd,n € N} = {4"x: z is odd,n € N}.

C={z: zisodd}UB ={z: zisodd} U{4"x : xzisodd,n € N} = {4"z: zisodd,n €
N uU{0}}.

D=27Z- B =2Z—{4"z: zis odd,n € N} = {2?"1z : zis odd,t € N}.

The function f; is the restriction of f to C. Thus f; : C — B’ is defined by fi(z) = 4z for
x € {4"y :yis odd,n € NU{0}}.

The function h: C U D — B’ U D is defined by

h(z) = fi(z) fzeC [ 4z ifzxelC
o= ip(z) ifzeD ~— |z ifzeD.

Proof. Assume that f(m/n) = f(r/s). Since f(m/n) has 2k digits for some integer k > 2,
the integer f(m/n) contains at least k consecutive 0’s. Then the digits to the rightmost block
of k consecutive 0’s make up n while the digits to the left of this block make up m. Since

f(r/s) = f(m/n), it follows by the same argument that r =m and s =n. Som/n=r/s. =

Proof. The function g : N — Q% defined by g(n) = n is injective. Combining this with
the function f in (a) gives us, by the Schroder-Bernstein Theorem, |Q*| = |N| and so Q7 is

denumerable. -

Additional Exercises for Chapter 10

10.29 The proposed proof only says that |A — {a}| = |B — {b}|, but no proof of this fact has been given.

10.30 The function f in the proof is not onto since there is no z € (0, 00) such that f(z) = 0.

10.31

10.32

(a)

(a)

Proof. First we show that f is one-to-one. Assume that f(a) = f(b), where a,b € N. Observe
that 1 is the only positive integer whose image under f is 0. Hence if f(a) = f(b) = 0, then
a = b= 1. Thus, we may assume that f(a) = f(b) # 0. We consider two cases.

Case 1. f(a) = f(b) > 0. Then a and b are both even, say a = 2z and b = 2y, where x,y € N.
Thus f(a) =z and f(b) = y. Since f(a) = f(b), it follows that x = y and so a = 2x = 2y = b.

Case 2. f(a) = f(b) < 0. Then a and b are both odd, say a = 2z + 1 and b = 2y + 1, where
xz,y € N. Thus f(a) = —z and f(b) = —y. Since f(a) = f(b), it follows that = y and so
a=2x+1=2y+1=5b.

Hence f is one-to-one. Next, we show that f is onto. Let n € Z. If n € N, then f(2n) = n.
If n <0, then f(—2n+ 1) =n. Thus f is onto. ]

The set of integers is denumerable.

Consider the function f : (0,1) — (0,00) defined by f(z) = % for all x € (0,1). First,
we show that f is one-to-one. Let f(a) = f(b), where a,b € (0,1). Then %= = %. Thus

a(l —b) = b(1 — a) and so a = b. Hence f is one-to-one.
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Next we show that f is onto. Let r € (0,00). Let = Z5. Thus 0 <z <1 and

Y O T
f(x)_f<r+1)_1—+$_(r—i—l)—r_r'

Therefore, f is onto. Since f is bijective, (0,1) and (0, c0) are numerically equivalent.

(b) Consider the function f : (0,1] — [0, 00) defined by f(z) = =2 for all x € (0,1]. The proof

x

that f is bijective is similar to that in (a). Thus (0,1] and [0, c0) are numerically equivalent.
(¢) One possibility is to show:

(1) [0,1) and [0, 00) are numerically equivalent.

(2) [0,1) and [b, ¢) are numerically equivalent.

(3) [0,00) and [a,o0) are numerically equivalent.

For (1), consider f(x) = .

For (2), consider g(z) = (¢ — b)x + b.
For (3), consider h(x) = = + a.

Another possibility is to consider the function ¢ : [b,¢) — [a, o) defined by

(ac=b)—(a—1)zx

C—Xx

¢(x) =

for all z € [b, ).

10.33 Since |S —T'| = |T' — S|, there exists a bijective function g: S —T — T —S. Leti: SNT — SNT
be the identity function on S NT. Then the function f: S — T defined by

_ () ifxesS-T
f(x)—{ zg(a:) ifeesSNT

is bijective.

10.34 (a) Proof. Assume first that S is countable. Then S is either finite or denumerable. If S is finite,
then S = {s1, $2,..., sk} for some k € N and the function f : N — S defined by

s, fl1<n<k
f(n):{ s ifn>k

is surjective. If S is denumerable, then there exists a bijective function from N to S.

For the converse, assume that there exists a surjective function f : N — S. For each s € S,
let ns be a positive integer such that f(ns) = s. Let S" = {n, : s € S}. Since S’ C N and

|S’] = 15|, it follows that S has the same cardinality as a subset of N and so S is countable. m
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(b) The proof is similar to (a).

10.35 Proof. Let A be a finite nonempty set. Thus A = {ay, az,...,a} for some k € N. Since f: A - N
defined by f(a;) =i for each ¢ with 1 <4 < k is injective, it follows that |A| < |N|. Since A is not

denumerable, there is no bijective function from A to N. Thus |A| < |N]|. m

10.36 (a) |A x A| < |A].

Proof. For each a,b € A, where a = 0.a1aza3--- and b = 0.b1b2b3 - - -,
f(a, b) = O.a1b1a2b2a3b3 tee

is the decimal expansion of a unique element of A. Thus f : A x A — A is a function. We now
show that f is injective. Let f(a,b) = f(c,d) = 0.rqrers---. Then a = ¢ = 0.ryr3rs - -+ and
b=d = 0.raryrs - - -. Since these are unique decimal expansions of elements of A, (a,b) = (¢, d)
and so f is injective. [

Note that we cannot conclude (b) since for example, if ¢ = 0.101010--- and g(c) = (a,b),
then b = 0 ¢ A. Also, if ¢ = 0.191919--- and g(¢) = (a,b), then b = 1 ¢ A. Also, if
¢1 = 0.51010101 - - - and ¢ = 0.41919191--- and g(c1) = (a1,b1) and g(c2) = (agz,bs2), then
a; =0.5000---, by =0.1111-- -, as = 0.4999 - - -, by = 0.1111 - - -. Thus (a1, b1) = (a2, ba). Since

c1 # ¢, it follows that f is not injective.

10.37 Proof. We proceed by induction. By Result 10.5, the statement is true for n = 2. Assume for some
integer k > 2 that if By, Bs, ..., By are denumerable sets, then By X Bs X - -+ X By is denumerable.
Let Aq, As, ..., Axy1 be denumerable sets. Let A = A3 x Ay x -+ x Ay and B = Agy1. By the

induction hypothesis, A is denumerable. Since

Ax B = (A1XA2X-"XAk)XAk+1

A1><A2><--'><Ak+1,

it follows by Result 10.5 that A; x Ag X -+ X Ap41 is denumerable. The result then follows by the

Principle of Mathematical Induction. [
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Exercises for Chapter 11

Exercises for Section 11.1: Divisibility Properties of Integers

11.1

11.2

11.3

11.4

11.5

11.6

11.7

Proof. Assume that a | b and ¢ | d. Then b = ax and d = cy for integers « and y. Then

ad + be = a(cy) + (ax)c = ac(y + x). Since y + x is an integer, ac | (ad + be). L]
Proof. Assume that a | b. Then b = azx for some integer . Thus —b = —(az) = a(—z) and
b= (—a)(—z). Since —x is an integer, a | (—=b) and (—a) | b. ]

Proof. Assume that ac | be. Then be = (ac)x = c(ax) for some integer z. Since ¢ # 0, we can

divide by ¢, obtaining b = azx. So a | b. n

Proof. First, observe that 3 | (n® —n) for n = 0, n = 1, and n = 2. Suppose that n € Z and
n #0,1,2. Then n = 3¢+ r, where ¢ € Z and 0 < r < 2. Thus

nd—n = (3¢+7)° - Bq+r)=(27¢> +27¢% + 9qr® +1r°) — (3¢ +7)
= 3(9¢% + 9¢%r + 3qr® — q) + (r® — 7).
Since 3 | (r® —r), it follows that r® — r = 3s for some integer s. Thus
n3 —n = 3(9¢> + 9¢*r + 3¢r* — q) + 35 = 3(9¢® + 9¢%r + 3qr? — q + 5).
Since 9¢° + 9¢%r + 3qr? — q + s is an integer, 3 | (n® —n). [

Proof. Assume, to the contrary, that there exists a prime n > 3 that can be expressed as k3+1 > 3
for some integer k. Sincen = k> +1 = (k+1)(k* —k+1), it follows that k+1 =1 or k> —k+1 =1,

which implies that K =0 or k = 1. Thus n =1 or n = 2, which is a contradiction. [

Proof. Let p be a prime that can be expressed as n3 — 1 = (n — 1)(n? +n + 1) for some integer n.
Since p is prime, eithern —1=1orn?+n+1=1. Thusn=20rn=0,—1. Ifn=0o0rn = —1,
then p < 0, which is impossible. Therefore, n = 2 and p = 7 = 23 — 1 is the only prime that is 1

less than a perfect cube. [

Proof. We employ induction. For n = 1, we have 52! +7 = 32 and 8 | 32. Thus the result is true
for n = 1. Assume that
8| (5 +7)

for some positive integer k. We show that

8 | (52(k+1) n 7) .

Since 8 | (52’“ + 7), it follows that 52 4 7 = 8a for some integer a and so 5%* = 8a — 7. Thus

520540 4 7 = 52.5%F 4 7=925(8a—T7)+7
= 200a — 1754 7 = 200a — 168 = 8(25a — 21).

Since 25a — 21 is an integer, 8 | (52(k+1) + 7). The result then follows by the Principle of Mathe-

matical Induction. n
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11.8

11.9

11.10

11.11

11.12

Proof. We employ mathematical induction. For n = 1, we have 33"+ +27+! = 34 1 92 — 85 and
5 | 85. Thus the result is true for n = 1. Assume that

for some positive integer k. We show that

5| <33(k+1)+1 + 2k+2) .

Since 5 | (331 4 21 [it follows that 33! 4 2F+1 = 54 for some integer a. Thus
3%+ = 5q — 21 = 5q — 2. 28
Now observe that

g3k+1)+1 4 ok+2 33 g3k+l 4 92 ok _ 97 . 33k+1 4 4 9k
27(5a — 2 - 2%) + 4 - 2% = 5(27a) — 50 - 2%
5(27a — 10 - 25).

Since 27a — 10 - 2% is an integer, 5 | (33(F+1)+1 4 25+2)  The result follows by the Principle of

Mathematical Induction. n

Consider the n numbers
24 (n+ D34+ (n+1DL...on+(n+ 1D (n+1)+ (n+ 1)L
Observe for 2 < k <n + 1 that k divides k + (n + 1)!. Thus these n numbers are composite.

Note that (p1,c1) = (2,4), (p2,c2) = (3,6), (p3,c3) = (5,8), (pa,ca) = (7,9), (p5,¢5) = (11,10),
(ps,c6) = (13,12), and (p7,c7) = (17,14). Since every even integer that is at least 4 is composite
(and not prime), prox > 17+ 2k and c74x < 14 + 2k for all integers k£ > 0. Thus |pr4r — cr+k| > 3
for all k > 0. Therefore, 5 and 6 are the only positive integers n such that |p, — ¢,| = 1.

Proof. We employ induction. By Theorem 11.2, if a and x are integers such that d | a, then d | az.
Thus the statement is true for n = 1. Assume for some positive integer k, that if ay,aso, ..., ar and
Z1,%2,...,x are 2k > 2 integers such that d | a; for all i (1 < ¢ < k), then d | Zle a;x;. Let
b1,ba, ..., bry1 and y1,Y2,...,Yk+1 be 2(k + 1) integers such that d | b; for all ¢ (1 <i < k+1).
Let b = Zle biy;. By the induction hypothesis, d | b. By Theorem 11.2, d | bg4+1yk+1. Again by
Theorem 11.2, d | (b + bx41yk+1). Thus d | Zfill b;yi. The result then follows by the Principle of

Mathematical Induction. n

Exercises for Section 11.2: The Division Algorithm

Proof. We first show that there exist integers ¢ and r such that b = ag+r and 0 < r < |al.
Consider the set
S={b—azx: z€Zand b—azx > 0}.
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11.13

11.14

11.15

11.16

Suppose first that b > 0. If a > 0, then letting x = —1 we see that b — ax = b+ a > 0 and so
b—ax € S. If a < 0, then letting z = 1, we see that b —axr =b—a > 0 and so b — ax € S. Next,
suppose that b < 0. If @ > 0, then letting = b, we see that b — ax = b —ab =b(1 —a) > 0 and
sob—ax € S. If a <0, then letting + = —b, we see that b — ax = b+ ab = b(1 + a) > 0 and so
b—ax € S. Hence in any case, S is nonempty. By Theorem 6.7, S has a smallest element r and
thus » > 0. Since r € S, there exists an integer ¢ such that r = b — aq. Therefore, b = aq + r with
r > 0.

Next, we show that r < |a|. Assume, to the contrary, that » > |a|. Let ¢t = r — |a] > 0. Since
la] > 0, it follows that ¢t < r. Moreover,

t=r—lal=(b—-aq)—|al

Ifa>0,thent=(b—aq) —a=>b—a(qg+1); whileif a <0, thent = (b—aq) +a=0—a(qg—1).
In either case, t € S, contradicting the fact that r is the smallest element of S. Thus r < |a|, as

desired. (The remainder of the proof is identical to the proof of Theorem 11.4). (]

(a) 125=17-74+6 (¢=7,r =6).

(b) 125 = (—=17)- (=7)+6 (q=—7,7 =6).

96=8-12+0 (¢=12,r=0).

)
)
(c)
(d) 96 =(—8)- (—12)+0 (¢=—-12,7r=0).
)
)
) 0
) 0

e) —17=22-(-1)+5 (¢=-1,r=25).

(
(f) =17=(-22)-1+5 (¢g=1,r=5).
g) 0=15-04+0 (¢=0,r=0).

(
(h) 0=(-15)-0+0 (¢g=0,r=0).

Proof. Let p be a prime different from 2 and 5. Dividing p by 10, we obtain p = 10k + r for some
integers k and r, where 0 < r < 9. If r = 0, then 10 | p, which is impossible. If r = 2, then
p = 10k + 2 = 2(5k 4+ 1). Since 5k + 1 is an integer, 2 | p, again, an impossibility since p # 2. If
r =4, then p = 10k + 4 = 2(5k + 2). Since 5k + 2 is an integer, 2 | p, which is a contradiction. If
r =5, then p = 10k + 5 = 5(2k + 1). Since 2k 4 1 is an integer, 5 | p, which is impossible since
p#5. If r =6, then p = 10k + 6 = 2(5k + 3). Since 5k + 3 is an integer, 2 | p, which is impossible.
If r = 8, then p = 10k + 8 = 2(5k +4). Since 5k + 4 is an integer, 2 | p, which is impossible. Hence

p = 10k + r, where r € {1,3,7,9}. n
Proof. Let a be an odd integer. Then a = 2b + 1 for some integer b. Thus

=(2b+1)> =4b> +4b+ 1 =4(b* +b) + 1
Since k = b + b is an integer, a = 4k + 1. [

(a) Proof. Let n be an integer that is not a multiple of 3. Then n = 3¢+ 1 or n = 3¢+ 2 for some

integer q. We consider these two cases.
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Case 1. n =3¢+ 1. Then
n? = (3¢+1)* =9¢°> + 6¢ + 1 = 3(3¢°> +2¢) + 1.
Letting k = 3¢® 4 2q, we see that n? = 3k + 1, where k € Z.
Case 2. n =3q+ 2. Then
n?=(3¢+2)2*=9¢"+12¢+4=9¢>+12¢+3+1=3(3¢* +4¢+1) + 1.

Letting k = 3¢ 4 4q + 1, we see that n? = 3k + 1, where k € Z. ]

Proof. Assume, to the contrary, that there exists an integer n such that n? = 3m — 1 =
3(m — 1) + 2 for some integer m. Thus n? is not a multiple of 3. By (a), n? = 3k + 1 for some
integer k. Thus 3m —1=3k+1 or 3m — 3k = 3(m — k) = 2. Since m — k € Z, it follows that

3 | 2, which is impossible. ]

11.17 Result The square of an integer that is not a multiple of 5 is either of the form 5k + 1 or bk + 4

11.18

11.19

for some integer k.

Proof. Let n be an integer that is not a multiple of 5. Then a = 5q + r for some integers ¢ and r

with 1 < r < 4. We consider these four cases.

Case 1. n =5q+ 1. Then

n? = (5¢+1)* = 25¢°> + 10q + 1 = 5(5¢* + 2¢) + 1,

where 5¢° + 2q € Z.

(The other three cases are handled similarly.) n

(a)

(b)

(a)

Observe that m = 5q + r, where ¢,r € Z and 0 < r < 4. If m = 5¢, then m is a multiple of 5.
If m = 5q + 1, then m + 4 is a multiple of 5. If m = 5g + 2, then m + 8 is a multiple of 5. If
m = 5q + 3, then m + 12 is a multiple of 5. If m = 5q + 4, then m + 16 is a multiple of 5.

Result Let n € Z. For every integer m, one of the integers
m,m+(n—1),m+2n-1),...,m+ (n—1)>

is a multiple of n.

Proof. By the Division Algorithm, there exist integers ¢ and r such that m = ng + r, where

0 <r <n— 1. For the number m + r(n — 1), we have
m+r(n—1)=Mmg+r)+r(n—1)=ng+rn=n(g+r).
Since g + r € Z, it follows that n | [m + r(n — 1)]. L]

Proof. Let p be an odd prime. Then p = 2a + 1 for some integer a. We consider two cases,

depending on whether a is even or a is odd.
Case 1. a is even. Then a = 2k, where k € Z. Thus p =2a+1=2(2k) + 1 =4k + 1.

Case 2. a is odd. Then a =2k+1, where k € Z. Thusp=2a+1=22k+1)+1=4k+3. =
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11.20

11.21

11.22

11.23

11.24

(b) Proof. Let p > 5 be an odd prime. Then p = 2a + 1 for some integer a. We consider three
cases, depending on whether a = 3k, a = 3k + 1, a = 3k 4+ 2 or some integer k.

Case 1. a =3k. Then p=2a+1=2(3k)+1=06k+ 1.

Case 2. a=3k+1. Thenp=2a+1=238k+1)+1=6k+3=3(2k+1). Since 2k+1 is an

integer, 3 | p, which is impossible as p > 5 is a prime. Thus this case cannot occur.
Case 3. a=3k+2. Thenp=2a+1=23k+2)+1=6k+5. m
(a) 13=4-3+1. (b)11=4-243. (¢)7=6-1+1. (d)17=6-2+5.
(a) Observe that n = 6¢g+5 =3(2¢) +3+2 = 3(2g+ 1) + 2. Letting k = 2¢ + 1, we see that
n =3k +2.

(b) The converse is false. The integer 2 = 3 -0+ 2 is of the form 3k + 2, but 2 is not of the form
6g + 5 since 6g + 5 = 2(3¢g + 2) + 1 is always odd.

Proof. We proceed by induction. By Result 4.11, the statement is true for n = 2. Assume
that if a1,a9,...,ar are k > 2 integers such that a; = 1 (mod 3) for each ¢ (1 < ¢ < k), then
arag---a =1 (mod 3). Now let by,ba,...,bk11 be k+ 1 integers such that b; = 1 (mod 3) for all
1 (1 <i<k+1). We show that biby---brr1 =1 (mod 3). Let b = byby - - b;. By the induction
hypothesis, b = 1 (mod 3). Since b = 1 (mod 3) and bi+1 = 1 (mod 3), it follows by Result 4.11
that b1be - - - bgy1 = bbry1 = 1 (mod 3). The result then follows by the Principle of Mathematical

Induction. n

Proof. Assume that an even number of a, b, and ¢ are congruent to 1 modulo 3. We consider two

cases.
Case 1. None of a, b, and c is congruent to 1 modulo 3. We consider two subcases.

Subcase 1.1. At least one of a, b, and ¢ is congruent to 0 modulo 3, say a = 0 (mod 3). Then a = 3¢
for some integer q. Thus abc = 3gbe. Since gbc € Z, it follows that 3 | abc and abc = 0 (mod 3).
Hence abc # 1 (mod 3).

Subcase 1.2. None of a, b, and c is congruent to 0 modulo 3. Then all of a, b, and ¢ are congruent to
2 modulo 3. By Result 4.11, ab = 1 (mod 3). Applying Result 4.11 again, we have abc = 2 (mod 3)
and so abc Z 1 (mod 3).

Case 2. FEzactly two of a, b, and ¢ are congruent to 1 modulo 3, say a and b are congruent to 1
modulo 3 and c is not congruent to 1 modulo 3. (The proof is similar to that of Case 1.) [
The statement is true.

Proof. Since a and b are odd integers, a = 2z + 1 and b = 2y + 1, where z,y € Z. If 4 | (a — b),
then we have the desired result. Thus we may assume that 4 t (a —b). Then a —b = 2(x — y), where
x —y is an odd integer. Let x —y =2z + 1, where z € Z. Thusa=b+2(x —y) =b+4z+ 2 and

a+b = 20+42+2=2Q2y+1)+4z+2
= 4d(y+z+1).
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11.25

Since y + z + 1 € Z, it follows that 4 | (a + ). ]

(a)

(b)

Proof. Let Sy = {ai1,az,...,ar} for each integer k with 1 < k < n. For each integer k

k
(1 <k<n), Zai = r (mod n) for some integer r, where 0 < r < n — 1. We consider two
i=1
cases.
k k
Case 1. Zai =0 (mod n) for some integer k. Then n | Zai, that is, n divides the sum of
i=1 i=1

the elements of Sj.

k
Case 2. Zai # 0 (mod n) for all integers k (1 < k < n). Hence there exist integers s and
i=1

S t
t with 1 < s < t < n such that Zai = r (mod n) and Zai = r (mod n) for an integer r
i=1 i=1

with 1 < r <n — 1. Therefore,

s t
Zai = Zai (mod n)
i=1 i=1

and so
t s
ol (oY),

i=1 i=1

Hence
t
nl > a
1=s+1

that is, n divides the sum of the elements of the set T = {asi1, as+2,...,at}. n
No, except it would be better not to use the word “set”. Show, for every n integers aq, as, . . ., ay,

distinct or not, that n divides the sum of some k of them (1 < k < n).

Exercises for Section 11.4: The Euclidean Algorithm

11.26 (a) ged(51,288) =3.  (b) ged(357,629) = 17.  (c) ged(180,252) = 36.

11.27

(a) ged(51,288) =3 = 51 - (17) 4 288 - (—3).

107



11.28

11.29

11.30

11.31

11.32

11.33

11.34

11.35

(b) ged(357,629) = 17 =357 - (—7) 4+ 629 - 4.

(c) ged(180,252) =36 = 1803+ 252 (—2).
Observe that if d = as + bt and k € Z, then d = a(s + kb) + b(t — ka).
Proof. Assume first that n is a linear combination of @ and b. Thus n = as + bt for some integers
s and t. Since d = ged(a, b), it follows that d | @ and d | b. By Result 11.2, d | (as+bt) and so d | n.

For the converse, assume that d | n. Then n = dc for some integer c. Since d = ged(a,d), it

follows by Theorem 11.7 that d = ax + by for some integers = and y. Therefore,

n = dec = (ax + by)c = a(xc) + b(yc).
Since zc and yc are integers, n is a linear combination of a and b. [
Since n | (Tm+ 3), it follows that n | 5(7m + 3). Hence n | [(35m + 26) — (35m + 15)]. Thus n = 11.

Proof. Since d = ged(a, b), it follows by Theorem 11.7 that d = as + bt for some integers s and ¢.
Thus
d=as+ bt = (a1d)s + (b1d)t = d(ays + bit).

Dividing both sides by d, we obtain a;s + bit = 1. It then follows by Theorem 11.12 that
gcd(al,bl) =1. |

Proof. Since a = b (mod m) and a = ¢ (mod n), it follows that a = b+ ma and a = ¢ + ny for
some integers x and y. Hence b+ mx = ¢ + ny and so b — ¢ = ny — ma. Since d = ged(m,n), it

follows that d | m and d | n. Thus m = dr and n = ds, where r, s € Z. Therefore,
b—c=ny—mz=(ds)y — (dr)z = d(sy — rz).

Since sy — rx is an integer, d | (b — ¢) and so b = ¢ (mod d). n

Exercises for Section 11.5: Relatively Prime Integers

(a) Consider a =4 and b =c¢ = 2.
(b) Counsider a =b=c=2.

Proof. Assume, to the contrary, that /3 is rational. Then v/3 = a/b, where a and b are nonzero
integers. We may assume that a/b has been reduced to lowest terms. Thus a? = 3b%. Since b2
is an integer, 3 | a%. It then follows by Corollary 11.14 that 3 | a. Thus @ = 3z for some integer
x. So a? = (3x)? = 3(32%) = 3b? and so 322 = b2. Since 22 is an integer, 3 | b2 and so 3 | b by
Corollary 11.14. However, 3 is a common factor of a and b, contradicting the fact that a/b has been

reduced to lowest terms. n

Proof. Assume, to the contrary, that v/6 is rational. Then v6 = a/b, where a,b € N. Further-
more, we may assume that ged(a,b) = 1. Hence 6 = a?/b? and a? = 6b*> = 2(3b?). Since 3b>

2

is an integer, a® is even. By Theorem 3.12, a is even. Thus a = 2c¢ for some integer c¢. Hence
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11.36

11.37

11.38

11.39

11.40

a? = (2¢)? = 4¢? = 6b% and so 2¢? = 3b2. Since ¢? is an integer, 2 | 3b%. Since ged(2,3) = 1, it
follows by Theorem 11.13 that 2 | b2. By Theorem 3.12, b is even. This contradicts our assumption

that a/b has been reduced to lowest terms. (]

" is rational. Then p'/" = a/b, where a and b are

Proof. Assume, to the contrary, that p'/

nonzero integers. We may assume that a/b has been reduced to lowest terms. Thus a”/b" = p

and so a™ = pb". Since b" is an integer, p | a™. Since p is a prime, it follows by Corollary 11.15

that p | a. Since p | a, it follows that a = pc for some integer ¢. Thus a™ = (pc)™ = p™c™ = pb™.
n—1_n n—2_n

Hence b = p"~1c" = p(p"~2c™). Since n > 2, we have that p"~2c" is an integer and so p | b". By

Corollary 11.15, p | b. This contradicts our assumption that a/b has been reduced to lowest terms. m

Proof. We give a proof by contrapositive. Hence we show that if p > 2 is an integer that is not a
prime, then there exist two integers a and b such that p | ab but p{a and ptb. Assume that p is
not a prime. Then there exist two integers a and b such that 1 < a < p, 1 <b < p, and p = ab.
Thus p | ab. Since a < p and b < p, it follows that p{a and p 1 b. n

(a) Proof. Let a and b be two consecutive odd positive integers. Then a = 2k+1 and b = 2k +3

for some integer k. Since
1=02k+1)-(k+1)+ (2k+3)- (—k)

is a linear combination of 2k + 1 and 2k + 3, the integers 2k + 1 and 2k + 3 are relatively

prime. [

(b) One possibility: Every two consecutive integers k and k + 1 are relatively prime since 1 can
be expressed as a linear combination of k& and k + 1, namely, 1 = (k+1)-1+ k- (—1). In part
(a), we saw that every two consecutive odd positive integers a = 2k + 1 and b = 2k + 3 are
relatively prime by writing 1 = ax + by, where z = k+ 1 and y = —k. (Note the values of z
and y.) The integers a = 3k + 2 and b = 3k + 5 are relatively prime as well since we can write
1 = axz + by, where x = 2k 4+ 3 and y = —(2k + 1). (Again, note the values of x and y.) More
generally, we have:

Result For every positive integer n and every integer k, the integers a = nk + (n — 1) and

b =nk + (2n — 1) are relatively prime.
Proof. Observe that 1 = ax+by, where z = (n—1)k+(2n—3)and y = —[(n—1)k+(n—2)]. m

(a) False. Consider n = 3.
(b) True since (=3)(2n+1)+2(3n+2) =1

Let p and ¢ be primes with p > g > 5. By Exercise 11.19(b), p = 6a + 1 and ¢ = 6b £+ 1 for some

integers a and b. Hence
p? —¢* = (36a* £ 12a + 1) — (36b* + 12b+ 1) = 12(3a* + a) — 12(3b* £ b).

By Theorem 3.12, a? and a (and b? and b) are of the same parity. Thus 3a? + a and 3b% £ b are

both even and we can write p? — ¢ = 24k for some integer k.
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11.41 (a) Proof. Let (a,b,c) be a Pythagorean triple. Then a? + b? = ¢2. Therefore, (an)? + (bn)? =

a’n? 4+ b?n? = (a® + b?)n? = 2n? = (en)?. Thus (an,bn,cn) is a Pythagorean triple. ]
(b) Proof. Assume, to the contrary, that ab is odd. So a and b are both odd. Then a = 2z 41
and b =2y + 1, where z,y € Z. Observe that

a? +0% =2+ 1%+ 2y + 1) =42 + 4z + 1+ 4y + 4y + 1.

Thus ¢ = 42?2 +4x+4y? +4y+2 = 2(222 +22+2y*+ 2y +1). Since 222 +2x+2y>+2y+1 € Z,

it follows that ¢? is even and so c is even. Let ¢ = 2z, where z € Z. Thus
2= (22)% — (42? + 4o + 4y +4y) = 42° — (4o + 4o+ 4 +4y) = 422 —2* —x —y® — ).

This implies that 4 | 2, which is a contradiction. [

(c) Proof. Assume, to the contrary, that a and b are of the same parity. By (b), ab is even and
so at least one of a and b is even. By our assumption then, a and b are both even. Thus

ged(a, b) > 2, which is a contradiction. n

11.42 Proof. Assume that @ = b (mod m) and a = b (mod n), where ged(m,n) = 1. Thus m | (a — b)
and n | (a —b). By Theorem 11.16, mn | (a — b). Hence a = b (mod mn). L]

11.43 Proof. Assume that ac = bc (mod n) and ged(c,n) = 1. Thus n | (ac — be) and so n | ¢(a — b).
Since ged(e,n) = 1, it follows by Theorem 11.13 that n | (a — b). Hence a = b (mod n). L]

Exercises for Section 11.6: The Fundamental Theorem of Arithmetic

11.44 (a) Since 539 = 72 - 11, the smallest prime factor of 539 is 7.
(b) Since 1575 = 3% - 52 - 7, the smallest prime factor of 1575 is 3.
()
)

(d) Since 1601 is a prime, the smallest prime factor of 1601 is 1601.

Since 529 = 232, the smallest prime factor of 529 is 23.

11.45 (a) 4725=3%-52-7. (b) 9702=2-32-72.11. (c) 180625 =5* 172

11.46 (a) Proof. Let p = 3n+1 be a prime. We claim that n must be even. If n is odd, then n = 2k+1 for
some integer k. So p = 3(2k+1)+1 = 6k+4 = 2(3k+2). Thus 2 | p, which is impossible. Thus,
as claimed, n is even and so n = 2k for some integer k. Therefore, p=3(2k)+1=6k+1. =m

(b) Proof. Let n be a positive integer such that n = 3¢ 4+ 2, where ¢ € Z. If n is a prime, then
the proof is complete. Assume, to the contrary, that no prime factor of n is of the form 3k + 2

for some k € Z. We consider two cases.

Case 1. Some prime factor p of n is of the form 3k, where k € Z. Necessarily then, 3 | p and

so p = 3, contradicting our assumption that n = 3¢ + 2, where ¢ € Z.

Case 2. FEvery prime factor of n is of the form 3k 4+ 1, where k € Z. By Exercise 11.22, n is

of the form 3k 4 1, which is a contradiction. [
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1147 (a) 4278 =2-3-23-31 and 71929 = 11 - 13 - 503.
(b) ged(4278,71929) = 1

Exercises for Section 11.7: Concepts Involving Sums of Divisors

11.48 (a) Proof. Assume that k is composite. Then k = ab, where a,b € Z and 1 < a,b < k.

Therefore,
ok —1=2% _1=(29"—1.

Letting x = 2%, we have ok _ 1 =g2b— 1, where x > 4. Since b > 2, we have
2 —1=(z -1+ 24 1)

Thus (z — 1) | (2 — 1) and so 2¥ — 1 is not prime. L]

(b) Proof. Assume that 2¥ — 1 is prime. Let p = 2¥ — 1. Then k > 2. The proper divisors
of n = 2F=1(2% — 1) = 2k=1p are then p,2p,2%p,..., 2" 2p and 1,2,22,...,2*~1. The sum of

these integers is
p(1+2422 4 42 p (1424224 4280 = pF-t 1)+ (2F-1)

2F — D[t —1)+1)
2k=1(2%F _ 1) =n,

as desired. n

Additional Exercises for Chapter 11

11.49 (a) Proof. Let f(m/n) = f(s/t), where m,n,s,t € N, m and n are relatively prime, and s
and t are relatively prime. Since m and n are relatively prime, as are s and ¢, the positive
rational numbers m/n and s/t are uniquely expressed as the ratios of two positive integers.
Then 2™3" = 23!, By the uniqueness of the canonical factorization of a positive integer, it

follows that m = s and n =t and so m/n = s/t. L]

(b) Since the identity function from N to QT is injective and there is an injective function from
Q™ to N by (a), it follows by the Schréder-Bernstein Theorem that Q* and N have the same

cardinality.

11.50 (a) Proof. Suppose that a is a composite. Then a = rs for some integers r and s, where 1 <r < a
and 1 < s < a. Then f(r) =72 —r+rs=r(r—1+s). Sincer >1landr—1+s> 1, it

follows that f(r) is not a prime.
(b) 2, 3, 5.

(c) The number f(a) = a? is not a prime.
11.51 Result Let p and ¢ = p+ 2 be two primes. Then pg — 2 is prime if and only if p = 3.
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11.52

11.53

11.54

11.55

11.56

11.57

11.58

11.59

Two possibilities:
Result Let p and ¢ = p + 4 be two primes. Then pg — 2 is a prime if and only if p = 3.

Result Let p and g = p + 8 be two primes. Then pg — 20 is a prime if and only if p = 3.
It is wrong to say: “Then 3 | n and so n is not prime.” Note that 3 | 3 and 3 is prime.

Let 2 = pi1,p2,...,ps be the first eight primes. Since p; is odd for 2 < ¢ < 8, it follows that
Zle p; = k is odd. Let {A, B} be any partition of S = {p1,pa, ..., ps}, where the sum of primes in
A is a and the sum of primes in B is b. Thus a + b = k. Since k is odd, a and b are of the opposite
parity and so a@ # b. Note that 2+5+11+13+19=3+7+ 17+ 23 = 50.

Proof. We use the Strong Principle of Mathematical Induction. Since a; = ag = 1, it follows that
ged(ap,ar) = ged(1,1) = 1. Hence the statement is true for n = 0. Assume for a positive integer
k, that ged(a;, a;41) = 1 for every integer ¢ with 0 <4 < k. We show that ged(ag,ar+1) = 1. We

consider two cases, according to whether k is even or k is odd.

Case 1. k is even. Then k = 2{¢ for some positive integer ¢. Thus ay = ag—1 + a¢. Since
k+1=20+1, it follows that ax+1 = ae. Because ar = ax41 + ag—1, it follows by Lemma 11.9 that

ged(ag, ap1) = ged(ag—1, ary1) = ged(ae—1,ae) = 1.

Case 2. k is odd. Then k = 2¢ + 1 for some positive integer ¢. Thus ar = ay. Since k+ 1 =20+ 2,
it follows that agy1 = a¢ + ar+1. Because ax11 = ap + aey1, it follows by Lemma 11.9 that
ged(ag, ags1) = ged(ag, apr1) = ged(ag, apyr) = 1.

By the Strong Principle of Mathematical Induction, a,, and a,+1 are relatively prime for every

nonnegative integer n. [

(a) Since v/5039 < 71 and 5039 has no prime factor less than 71, it follows by Lemma 11.19 that
5039 is prime. Since 5041 = 712, 5041 is not prime.

(b) Of course, all of the even integers between 5033 and 5047 are composite. Because
715033, 515035, 35037, 715041, 3| 5043, 5| 5045, 7 | 5047,

it follows that 5039 is the only prime between 5033 and 5047.

Proof. Assume, to the contrary, that log, 3 is rational. Then log, 3 = ¢, where a,b € N. We
may assume that ged(a,b) = 1. Thus 2% = 3 and so (2%)b = 3b. Therefore, 2% = 3. Since 2 | 22,

it follows that 2 | 3° and so 2 | 3 by Corollary 11.15. This is a contradiction. ]

Result If p and g are distinct primes, then log, g is irrational.

Proof. Assume, to the contrary, that log, q is rational. Then log,q = ¢, where a,b € N. We
may assume that ged(a,b) = 1. Thus p? = ¢ and so (p%)b = ¢b. Therefore, p* = ¢. Since p | p?,
it follows that p | ¢ and so p | ¢ by Corollary 11.15. This is a contradiction. [

(c) |A] = |B].
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11.60

Proof. We first show that f and g are injective, beginning with f. Assume that f({i,5}) = f({r, s}),
where ¢ < j and r < s. Then {i,5,i+j} = {r,s,r+s}. Hencei < j<i+jandr <s<r+s.

Thus i =7, j = s, and {i,j} = {r, s}. Therefore, f is injective.

Next we show that g is injective. Let g({4,4,k}) = g({r,s,t}), where i < j < k and r < s < t.
Then {27,375F} = {27,3%5!}. Since 2! is the only even element of U = {2¢,375%} and 2" is the only
even element of W = {27,3%5'} and U = W, it follows that 2! = 2" and so i = r. This also implies

that 375 = 35!, By the uniqueness of the canonical factorization of an integer as a product of

primes, it follows that j = s and k = ¢ and so g is injective.

By the Schroder-Bernstein Theorem, |A| = |B). ]

(a)

()

Proof. Suppose that
f((a‘ilaaizv oo 7ain)) = f((aj17aj2a v 7ajn))7

where (@i, , @iy, -, a3, ), (@jy, a4y, - .-, aj,) € A". Then

PYDY D = piph Pl
By the uniqueness of the canonical factorization of an integer as a product of primes, it follows
that iy = ji for every k with 1 <k <n. Thus (a;,, @iy, ..., ai,) = (aj,,aj,,...,a;,). Hence f
is injective. -
Proof. Since the function g : A — A™ defined by f(a) = (a,q,...,a) is injective, it follows by

this fact, (a), and the Schroder-Bernstein Theorem that A™ and A are numerically equivalent. m

Proof. Let A and B be denumerable sets. Thus |A| = |B|. By (b), |A"| = |A| and |B™| = |B|.
Thus |A™| = |B™]|. ]

11.61 Proof. Assume, to the contrary, that M is not a prime. Then M = ab for some integers a and b
with 1 < a < M and 1 < b < M. Let p be the smallest prime such that p | a and let ¢ be the

smallest prime such that ¢ | b. We may assume, without loss of generality, that p < q. We now

consider two cases, according to whether p € Sorp ¢ S.

Case 1. p € S. Then either p = ¢; for some ¢ with 1 <17 < s or p = r; for some j with 1 < j <,

but not both. Suppose that p = ¢;, where 1 < i < s. Since p | a, it follows that p | M. Also,

Pl qiga---qs. Thusp | (M —qiga---¢s) and so p | 72 - - - ;. This implies that p = r; for some j

with 1 < 5 <'t, a contradiction.

Case 2. p¢ S. Hence ¢ > p > pnpy1 and so M > pg > piﬂ, a contradiction. [
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Exercises for Chapter 12

Exercises for Section 12.1: Limits of Sequences

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Proof. Let € > 0 be given. Choose N = [1/2¢]| and let n > N. Thus n > 1/2¢ and so

|% - 0‘ = % <e. (]
Proof. Let € > 0. Choose N = (%] and let n be any integer such that n > N. Thus n > %
d so % < e. Now ob that L 1.
and so =5 < e. Now observe that | —— — 0| = 5—— < — <e. L]
n? n? 41 n2+1 ~n?

Proof. Let € > 0 be given. Choose N = max (1, [log, (£)]) and let n > N. Thus n > log, (1),
and so 2™ > 1/e and 1/2™ < €. Therefore, |(1 + 2%) — 1| = 2% < €. n

Proof. Let e > 0. Choose N = E] and let n be any integer such that n > N. Thus n > % and

SO % < €. Then

2n+3 2

< —< e
in+6 n ¢ "

n+ 2 1‘_ 1

There exists a real number € > 0 such that for each positive integer N, there exists an integer
n > N such that |a, — L| > €.

Let P(L,e,n) : |an, — L| > e.
VLeR,Jec R VN eN,IneN,n>N, P(L,e,n).

Proof. Let M > 0 be given. Choose N = [M7] and let n > N. Then n > M7 and so n* > M. m

Proof. Let M be a positive number. Choose N = {\3/ M—‘ and let n be any integer such that

5

n° + 2n
n2

. . 2
n > N. Hence n > /M and so n® > M. Thus =nd+Z>nd> M. [ ]
n

Exercises for Section 12.2: Infinite Series

Let s, = 2?21 m for each integer n > 1.

_ 1 _1 _ 1 12 _ 1 1 1 _ 3
@) si=m=ps2=gtm=%8=11t17 70 = 10
Conjecture s, = 57 for alln € N.
(b) Proof. We proceed by induction. By (a), s; = 75; = 1 and so the formula holds for n = 1.
Assume that s, = 3k—111 for a positive integer k. We show that sx411 = m Observe that

k+1

1
2 BGi—2)Bi+1)

=1

1 1
Bi—2)@Bi+]) BrLD)-2BE+1) 1]

k

=1
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B k N 1  kBk+4)+1
0 3k+1 0 Bk+1)(Bk+4)  (Bk+1)(3k+4)

3k2 + 4k + 1 k+1)Bk+1)  k+1

Bk+1)(3k+4) (k+1)(Bk+4) 3k+4

By the Principle of Mathematical Induction, s, = TnaT for all n € N. [

(c) We show that lim,, # = %

Proof. Let e > 0. Choose N = f%] and let n be any integer such that n > N. Thus n > %

1 1
dso 1 <e Th -l = < - <e
and so + <€ en | 3' o3 <y <€ n
12.9 Let s, = >0 QL for each integer n > 1.
(a) si=3,52=3+p=3+i1=% ss=3+ptm=3+iti=1t

Conjecture s, =1— 2% for all n € N.

— 51,

(b) Proof. We proceed by induction. Since s1 = % =1— 2 the formula s,, holds for n = 1. Thus
the statement is true for n = 1. Assume that s, = 1 —

2% for a positive integer k. We show
that sp11 =1— 2,5% Observe that

k+1 k
1 1 1 1 1
25 = <Z§>+W:1_27+W

i=1
1 1 2-1 1
1_<2_k_2k+1>:1_ ok+1 :1_2k+1'

By the Principle of Mathematical Induction, s, =1 — 2% for all n € N.

m
(¢) The proof that lim, (1 — 5 ) = 1 is similar to the one in Exercise 12.3.
. _1_ 1 _1 2 _1_ 1 _ 1 _ 1 _ 1 2 _ 3 _ 1
12.10 Observe that a1 = g =53, 2= - 35357 =g " 13—~ —sp ad a3 =15 — 375 = 355 = 15
From this, we are led to conjecture that
1
p = ————
(n+1)(n+2)
for all n € N, which we now prove.
Proof. We proceed by mathematical induction. Since a; = % = m, the formula holds for

n = 1. Assume that a; = m for some positive integer k. We show that ap41 = m
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Since k > 1, it follows that k£ + 1 > 2. Therefore,

2
Wl = T T Y (ke + 2)(k + 3)
_ 1 2
T ok+Dk+2) (k+D(k+2)(k+3)
_ 1 ) 2\ 1
- (k+1)(k+2)( _(k+3)>_(k+2)(k+3)’
which is the desired result. ]

Next, we prove that the series Y .-, a; is convergent and determine its value.

Proof. The nth partial sum of the series is

n n

1 = 1 1
= Yo ey - L m - w)

=1 1= i=1

We now show that the sequence {s,} converges to 1/2. Let € > 0 be given and let N = [1]. Now
1etn>Nandson>N2%. Thus%<e. Then

11 U_ 1 |_ 1 1
2 n+2 2l T T2l nr2 o0 €
Therefore, Y7 | a; = lim,—oc S = 3. .

Exercises for Section 12.3: Limits of Functions
12.11 Proof. Let € > 0 be given and choose 6 = 2¢/3. Let « € R such that 0 < |z — 2| < § = 2¢/3.
Thus |(324+1) —4|=|32-3| =3[z -2/ <3 L = n
12.12 Proof. Let € > 0 be given. Choose § = ¢/3. Let z € R such that 0 < |z + 1| < § = ¢/3. Then
|3z —5) — (—8)| =3z + 3| = 3|z + 1] < 30 = 3(¢/3) =,
as desired. (]
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12.13

12.14

12.15

12.16

12.17

222 -3
lim =~ 272 _ 9 Proof. Fora given € > 0, choose 6 = min (1,¢/3). Let z € R such that
z—3 22 — 8z + 15

0<|r—3]<d<1 Thus 2 <z <4 and so |z — 5| > 1. Henceﬁ<1. Observe that

2 —2x -3 2 —2x -3 (22 — 22 — 3) + 2(2? — 8z + 15)

— 8z +15 (=2) x2—8x+15+ 2 —8x +15

322 — 182+ 27  3(2? —62+9)
—8x+15  z2—-8x+15

3(z —3)2 3(x —3)

(x—=3)(x—-5) (z—5)"

Thus ](7;22_—8%;;135) - (_2)‘ = 38l < 3la - 3] < 3(¢/3) = €. .

Proof. Let e > 0 be given. Choose § = min(1,e/9)and let € R such that 0 < |z — 2| < 4. Since
|z — 2| < d <1, it follows that -1 < —2 < 1landsol <z < 3. Hence 5 < 22+ 3 <9 and so
|22 43| < 9. Then |(222 —2—5)—1|=|(x —2)(2x+3)| = |z — 2|[22 + 3| < Yz — 2| < 9(/9) = €. m

Proof. Let ¢ > 0 be given and choose 6 = min(1,¢/19). Let x € R such that 0 < |z — 2| <
d = min(1,€/19). Since |z — 2| < 1, it follows that —1 < 2 —2 < 1 and so 1 < z < 3. Thus
|22 + 22 + 4] < 19. Because |z — 2| < €/19, it follows that |2° — 8| = |z — 2|22 + 22 + 4| <
|z —2]-19 < (¢/19) - 19 =e. m

Proof. Let € > 0 be given. Choose § = min(1,33¢). Let € R such that 0 < |z — 3| < §. Since
|z — 3] < § <1, it follow that 2 < < 4. Thus 11 < 4z 4+ 3 < 19 and so |[4x + 3| > 11. Hence

m < 1—11 Therefore,

3x+1 2 x—3 |z — 3| |z — 3| 1

iz +3 3' 12ar—|—9‘ 3[4z +3] © 3-11 33 33330 =
as desired. (]
1im1 ey 1. Proof. For a given € > 0, choose § = min (1/10,€¢/10). Let z € R such that
€Tr— xr —

0<|x—1|<(5 Slnce |z — 1] < 6 < {5, it follow that % < < 15 and so 3 < 5z —4 < 3. Hence

|5z — 4| > £ and B 4| < 2. Therefore,

1 —5r+5 5|z — 1|
1l _ <10jz— 1] < 10-= =€,
bz —4 ‘ ‘5;3—4} o —q) < H0le 1 <1075

as desired. n
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12.18

12.19

12.20

1
Proof. Assume, to the contrary, that 1ir% — exists. Then there exists a real number L such that
Tr— X

1
hn%) — = L. Let € = 1. There exists § > 0 such that if 0 < |z < 4, then
xTr— €T

1
—2—L}<e:1. Let n
T

be an integer such that n > [1/6?]. So n > 1/6% and \/n > 1/6. Let x = 1/y/n < 6. Then

1
—Q—L}:|n—L|:|L—n|<1
X

1
andso —1<L—n<1 Thusn—1< L <n+1. Now, let y = < x < 9. Then
Y Vn + 2
1
— —L|=|L-(n+2)| <1
)
Hence n+1 < L < n+ 3. Therefore, n +1 < L < n+ 1, which is a contradiction. [
(a) lirr}3 f(z) does not exist. Proof. Assume, to the contrary, that lirré f(x) exists. Then
lirr%3 f(z) = L for some real number L. Let ¢ = 1/2. Then there exists 6 > 0 such that if
z€Rand 0 < |z —3] <6, then |[f(z) —L| <e= 1. If0 <z —3 <4, then f(z) = 2. So
2L <3 Thus L > 1.5. If -6 <2 —3 <0, then f(z) =1and |1 — L| < 1. So L < 15.
Since 1.5 < L < 1.5, this is a contradiction. n
(b) limg,—, f(z) = 2. Proof. Let ¢ > 0 be given. Choose § = .1. Let x € R such that 0 <
|z — 7| <d. Then x > 7 —.1 > 3. Thus f(r) =2 and so |f(z) —2| =0 <e. L]

Exercises for Section 12.4: Fundamental Properties of Limits of Functions

Proof. We use mathematical induction. Let p be a constant polynomial, that is, p(z) = c € R
for all z € R. Then p(a) = ¢. By Theorem 12.28, lim,_., p(z) = lim,_,, ¢ = c¢. Thus the result
holds for n = 0. Assume that the result holds for polynomials ¢ defined as

q(z) = apz® +ap_12" 1+ -+ aiz +ag

for all x € R, where k is a nonnegative integer and ag,as,...,ar are fixed real numbers. By

assumption, lim,_,, ¢(x) = ¢(a). Let p be a polynomial defined by
p(x) = cpa"™ et + - 4w+ e
for all x € R, where c¢g,cq,...,cr1 are fixed real numbers. We show that

lim p(z) = p(a).

r—a

Observe that
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p(z) = cpp1a™*t +r(z),
where the polynomial r is defined by
r(z) = cpa® + -+ 1z + co.

By Theorems 12.25, 12.28, and 12.30,

lim ck_Ha:kH = ck+1ak+1.
Tr—a

By the induction hypothesis, lim,_,, r(x) = r(a). It then follows by Theorem 12.23 that

lim p(z) = lim o1 4 lim 7(2) = cpp1a® + r(a) = pla).

r—a r—a

The result then follows by the Principle of Mathematical Induction. [

12.21 By Theorem 12.23,

lim (f1(z) + f2(x)) = ;igflfl(ff) + %igafz(x) =Li+ Lo

r—a

and so the result is true for n = 2. Assume that if g1, g2, ..., gr are k functions, where k > 2, such
that lim g¢;(z) = L; for 1 <14 <k, then
Tr—a

lim (g1(x) + g2(x) + -+ + gr()) = L + Lo+ -+ + Ly

Let f1, f2,.-., fre+1 be k + 1 functions such that lim f;(z) = M; for 1 <i < k+ 1. We show that

r—a

Thg}l (fi(@) + fo(x) + -+ for1(x) = My + Mo+ - - + Mg,
Observe that
fi@) + fa(z) + -+ frev1(2) = [fr(@) + fo(@) + -+ fr(@)] + frg1 ().
We can use Theorem 12.23 and the induction hypothesis to obtain the desired result.
12.22 (a) Observe that

liml(x?’ —22% — 52 +8) = lim 2%+ lim(—22?) + lim (—5z) + lim 8

x—1 r—

1-2-5+8=2.

(b) lim, 4z + 7)(322 — 2) = lim, 1 (4x + 7) - lim, 1 (322 —2) =11-1 = 11.

2721 _ limg_2(22%—1) 7

(c) limg_o 323+1 — lim, _.o(3z3+1) _ 25°

Exercises for Section 12.5: Continuity

12.23 Proof. We prove by induction on the degree n of a polynomial p that for every real number a,

lim,_, p(z) = p(a). Suppose first that n = 0 and that p is a polynomial ¢ of degree 0. Then p is a
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12.24

12.25

12.26

12.27

constant polynomial and limg_,, p(z) = lim;—, ¢ = ¢ = p(a). Assume that the result is true for all

polynomials of degree k > 0, and let p be a polynomial of degree k + 1. Hence
p(a) = cprrz™ ot o e+ e,

where ¢; € R for 0 < i < k+ 1. Let q¢(z) = cpa® + cx_12* -~ + c12 + co. By the induction
hypothesis, lim, ., ¢(x) = q(a). Also, lim, ., cxr 1251 = cxy1a*T1. By Theorem 12.23,

lim p(z) = lm(cppra®™ + e+ 4+ 1w+ o)
= lim (cpp12" 4+ ¢(2)) = lim cppr2® + lim g(2)
= cand™ +gla) = pla).
The result then follows by the Principle of Mathematical Induction. [

Proof. Let a be a real number that is not an integer. Then n < a < n + 1 for some n € Z and
f(a) = [a] = n+ 1. We show that lim f(z) = f(a) =n + 1. Let € > 0 be given and choose

d =min(a —n,(n+1) — a).

Let z € Rsuchthat 0 < |[t—a| < 4. Thusn <a—d <z <a+d<n+1landso f(x)=[z] =n+1.
Therefore,
[f(@) = fla) =[(n+1) = (n+1)[=0<¢

completing the proof. [
29

Ves, define f(3) = 2. Then lim =~ —

Observe that f is not defined at z = 2 and

2. (Use an argument similar to that in Result 12.15.)

(Use an argument similar to that in Result 12.15.) Thus if we define f(2) = 1, then lim,_,5 f(z) =

1= f(2) and so f is continuous at 2.

We show that lim, 10 vz — 1= f(10) = 3. Proof. Let ¢ > 0 be given and choose § = min(1, 5¢).
Let x € R such that 0 < |x — 10| < 4. Since |z — 10| < 1, it follows that 9 < x < 11 and so

V& —1+3 > 5. Therefore, 1/(v/x —1+3) < 1/5. Hence

W -1-3) Vo —14+3)|  |z—10| 1
We—1-3 = Vi 113 = Vici+3 5

(5¢) = ¢,

completing the proof. [
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Exercises for Section 12.6: Differentiability

12.28 f’(3) = 6. Proof. Let ¢ > 0 be given and choose § = ¢. Let x € R such that 0 < |z — 3| < J = e.

Then
flx) = FB3) a? -9 (z —3)(z+3)
—6 = _g| = 2T g
Tz —3 Tz —3 Tz —3
= [(xa+3)—6l=|z—3|<e
Thus f'(3) = 6. L
12.29 f'(1) = —3%. Proof. Let ¢ > 0 be given and choose § = min(1,18¢). Let z € R such that

0< |z —1] < 4. Since |a:—1|<1,itfollowsthat2<x+2<4andsoﬁ+2<%. Then

f@ -t (1] _ |mmos 1| -l+e
x—1 9 z—1 9 9(x +2)
|z — 1 Ix—ll<ﬁ_€
9(z +2) 18 8
Thus f/(1) = —35. m

12.30 f’(0) = 0. Proof. Let € > 0 be given and choose § = €. Let « € R such that 0 < |z| < § = e. Then

x2sint —0
i R

z—0

1 1
xsin—‘:|x| sin—‘ <d-l=e
x x

_0‘:

Thus f/(0) = 0. ]

Additional Exercises for Chapter 12

12.31 Proof. Let ¢ > 0. Choose N = [(4 + 3¢)/9¢| and let n be any integer such that n > N. Thus

n > 449'636 and so 3n —1 > %. Hence

n+1 1‘_

m—1 3 <

4 | 4
9n —3| 3

ol
=] &

3n—1

as desired. -

12.32 Proof. Let € > 0. Choose N = (%] and let n be any integer such that n > N. Thus n > %

and so = < e. Therefore, < e. [

n2

o2n2 1 1 <1
dn2+1 2| 8n2+2  n2
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12.33

12.34

12.35

12.36

12.37

12.38

12.39

Proof. Assume, to the contrary, that lim, [l 4 (—=2)"] = L for some real number L. Let € = 1.
Thus there exists a positive integer N such that if n > N, then |1 + (—2)" — L| < 1. Hence
—1<1+(-2)"—L<landsoL > (—2)"and L < (—2)" + 2. Thus if n > N and n is even, then
L > (—2)™ > 0; while if n > N and n is odd, then L < (=2)" +2 < 0. So 0 < L < 0, which is a

contradiction. -

Proof. Let ¢ > 0. Choose N = {2%] We show that if n is an integer with n > N, then

| (Vn?+1—n) — 0| <e Let n € Z such that n > N. Hence n > [4]| > 5 and so 1/(2n) < e.
Therefore,

3 _ 3 vn2 n
(Vr2+T-n) —0| = (m_n).ﬁ

(P41 —n? 1 1
vn2+1l4+n vni+l4+n  Vn24n
1

= = — <,

as desired. -

Proof. For a given ¢ > 0, choose § = €/|c1]. Let x € R such that 0 < |x —a| < §. Then

|(c1w + co) — (c1a + co)| = |er]|z — af < |es] (¢/]er]) = e u

Observe that lir% f(z) = 4 and so this limit does exist. Since lir% f(z) =4 # 2= f(2), the function

f is not continuous at x = 2. However, this is not the question that was asked.

The integer N is required to be a positive integer. If € is large, then N (as defined) need not be a

positive integer. For example, if ¢ = 10, then

o[-

which is not permitted. We would choose N = max(1, [

[
™ |O
I
wlot
—
~

Notice that if |2z — 3| < 7, then ﬁ > 1. Thus

Notice also that the “proof” concerns real numbers x with 0 < z < 2. One such value of z is 1.5,

for which ﬁ is not defined. One way to eliminate this problem is to choose § = min(i, %)

n
2n+1

Proof. Assume, to the contrary, that the sequence {(—1)’“rl } converges. Then

Jim (- = L
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for some real number L. We consider three cases, depending on whether L =0, L > 0, or L < 0.

1
Case 1. L = 0. Let e = 3" Then there exists a positive integer N such that if n > N, then

n
2n+1

_1n+1 n
‘( ) 3% n+1 "3

1
0' < - or < —. Then 3n < 2n+1 and so n < 1, which is a contradiction.

L
Case 2. L > 0. Let e= 7 Then there exists a positive integer N such that if n > N, then

L
(—1)"4'1L — L| < =. Let n be an even integer such that n > N. Then
2n+1 2
L n L
2 2n+1 2
L L
Hence — < — n < 3—, which is a contradiction.

2 2n+1 2

L
Case 3. L < 0. Let e= —3 Then there exists a positive integer N such that if n > N, then

L
(—1)"+t D Ll <—Z. Let nbean odd integer such that n > N. Then
2n+1 2
L n L
2 2n+1 2
3L L
and so — < n < —. This is a contradiction. n

2 2n+1 2

1 1 1
12.40 Proof. Let ¢ > 0 be given. Choose N = [1/9¢] and let n > N. Then n > 9% 9 3 and so
€ 9e

1
9n > — —3 and 9n + 3 > 1/e. Hence < €. Thus
€ In+3
n 1 3n—3n—1 1 1 <
JRE = = |— = €
3n+1 3 3(3n+1) n+3 9In+3 7
as desired. [

12.41 (a) Proof. Let ¢ > 0 be given. Since lim a,, = L, there exists a positive integer Ny such that if

n—oo
n € Z and n > Ny, then |a, — L| < €¢/2. Also, since lim ¢, = L, there exists a positive integer

n—oo
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N3 such that if n € Z and n > Ny, then |¢, — L| < €/2. Let N = max(Ny, No) and let n € Z
such that n > N. Then

|(Cn_an)_0| |Cn_an|: |(CH_L)+(L_an)|

€

2

:G,

< |cn—L|+|an—L|<§+

as desired. n

(b) Proof. Since a,, < b,, < ¢, for every positive integer n, it follows that 0 < b, — a, < ¢, — an.
Let € > 0 be given. By (a), lim (¢, — a,) = 0. Hence there exists a positive integer N’ such
that if n € Z and n > N/, ?}Te?lo |en — an| < €/4. Since lim ¢, = L, there exists a positive
integer N such that if n € Z and n > N”, then |¢, — L|n2°§/2 Let N = max(N’, N"”) and
let n € Z with n > N. Then

b = L| = |(bn — an) + (an — cn) + (cn — L)
< bn = anl + |an — cn| +lcn — L
< en —an| + |en — an| + |en — L
= 2|cn—an|—|—|cn—L|<2(§)—|—§=6,
completing the proof. n

12.42 Proof. Let a be an irrational number. Let € > 0 and let n = {H Then n > % and so % <e. Let
d=min(|¢; —a|] : 1 <i<n} and let 6 = min{e,d}. Suppose that z € R such that |z — a| < 4.
Consider |f(z) — f(a)| = |f(z)] = f(x). If x ¢ Q, then f(x) =0 < e. If z € Q, then z = g, for

some integer m with m > n. Then f(z) = # < % < e. Hence f is continuous at a. ]
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Exercises for Chapter 13

Exercises for Section 13.1: Binary Operations

131 (a) zx(y*2)=zxzx=yand (zxy)x2=2%2=y. Sox* (y*2) = (T*y)* 2
(b)
)y
)

x(xxzx)=zxy=zand (zxx)xx=y*xzr=1y9.

8

x(yxy)=yrx=yand (y*xy)xy=x*xy==z.

(¢
(d

The binary operation * is neither associative nor commutative.

13.2 (a) Yes. G1, G4 (b) No.
(¢) Yes. None (d) Yes. G1, G2 (e = 1), G4
(e) Yes. G1, G2 (e=0), G4 (f) Yes. G1, G2 (e=1), G3 (s =2 —a), G4
(g) Yes. None (h) Yes. G1, G2 (e=2),G3 (s=a/(a—1)), G4
(i) No. (j) No.

13.3 (a) Let A1,As € T. Then A; = { a1 —b } and Ay = { az —b; } for some ay,b1,a2,b2 € R.
b1 aq by as

Then A; + Ay = ar+ay —(bi+be) . Since A1+ As € T, it follows that T is closed under
b1 +bx a1 +as |

addition.
(b) Since A1A2 = |:

a; —b as —by | | araz — bibo —(a1by + byas) ' ‘
b1 a1 ] [ by as N [ a1bs + bras  ajas — biby € T, it follows

that T is closed under matrix multiplication.

13.4 Proof. Let a,beT. Thenaxx=x*aand bxx =z *b for all x € S. For each = € 5,

(axb)yxx = ax(bxx)=ax(x*xb)=(axz)*b

= (xxa)xb=xx(ax*b)

andsoaxbeT. [
13.5 Proof. Let a,b € T. Thus a*xa =a and bxb = b. Hence
(axb)x(axb) = (axb)x(bxa)=ax(bx(bxa))=ax((bxb)x*a)
= ax(bxa)=ax*(axb)=(axa)xb=axb,
]

as desired.

Exercises for Section 13.2: Groups
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13.6 (a) See the table.

* | a b ¢ d
ala b ¢ d
blb ¢ d a
cle d a b
dld a b ¢
(b) Yes.
13.7 See the table.

* | a b ¢ d
ald ¢ b a
blc d a b
c|lb a d c
dla b ¢ d

13.8 (a) Since (1¥16)%16 = /16%16 = 4%16 = /64 = 8 and 1% (16%16) = 1%v/162 = 116 = V16 = 4,

it follows that x is not associative and so (RT, x) is not a group.

(b) Since (1*1)*2=1%x2=1/2and 1% (1%2) =1x%1/2 =2, it follows that * is not associative

and so (R*, x) is not a group.

(¢) Since there is no identity, (R*,*) is not a group. If e € R* such that a * ¢ = ¢ x a = a, then

axe=a+e+ae=aandsoe+ae=ce(l+a)=0. Since e € R*, it follows that e # 0 and so

e(l4+a) #0 for all a € R* — {—1}.

Exercises for Section 13.3: Permutation Groups

13.9 The table for (F,o) is shown below. Composition of functions is always associative. All other

properties can be obtained from the table.

o | fi fo f3 fa f5 fe
filfh fo f3 fa f5 fo
falfo i fa 35 fo fs
fs|fs fs fi foe fo fa
falfa fo fo fs f1 f3
s fs fo fi fa fo
fe | fe fo fs fo f3 fi

13.10 Let a,b,c € A. Let a,3 € S4 such that a(a) = b, a(b) = a, and a(z)
B(b) = ¢, Blc) = b, and f(x) = z for © # b,c. Then (ao B)(b) = af
(Boa)(b) =p(ad)) =p(a) =a. Thus aof # foa.

(¢) (Z,+)

13.11 (a) S,

13.12 22 = o for all z € {a1, a9, a3, a4}, 23 = oy for all x € {1, a5, a6}

(b) Ss

(d) (M3 (R),-)
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13.13

13.14

13.15

13.16

13.17

13.18

13.19

13.20

The table for (G, o) is shown below. That G is an abelian group can be seen from the table.

olm 2 13 m
Y| T Y2 Y3 M4
Y2 | Y2 Y3 Y4 M
Y3 Y3 Y4 1 72
Y4 | Y4 1 Y2 3

Exercises for Section 13.4: Fundamental Properties of Groups

Proof. Assume that b+ a = cxa. Let s be an inverse for a. Then (b*a) *s = (¢*a) * s. Thus
b=bxe=bx(axs)=(bxa)xs=(cxa)xs=cx*(axs)=c*rxe=c
and so b =c. (]

Proof. Let s be an inverse for a and let x = b * s. Then
zxa=(bxs)xa=bx(sxa)=bxe=h.

Hence x = b x s is a solution of the equation = * a = b.
Next we show that x * a = b has a unique solution in G. Suppose that x; and xzo are both

solutions of x x @ = b. Then x1 *a = b and x5 * a = b. Hence x1 *x a = x2 * a. Applying the Right

Cancellation Law, we have z1 = x5. n
(a) = a txexbL. (If x1 and zo are two solutions, then a*x;*xb = a*x9*b = ¢. An application
of the Left and Right Cancellation Laws yield 1 = x5.)
(b) 2 =b"txa"lxc. (Verifying the uniqueness is similar to (a).)
Since G has even order, G — {e} has an odd number of elements. Consider those elements g € G
for which g # ¢g~! and let Sy, = {g,g7'}. Hence S, = Sg-1. If we take the union of all such sets

S, for which g # ¢!, then US, C G — {e}. Hence there exists an element h € G — {e} such that
h ¢ US, and so h = h~!. Thus h? =e.

Proof. Let a,b € G. Then (a*a)* (b*b) = e = (a+*b)*(ax*b). Applying the Left and Right

Cancellation Laws, we obtain a x b = b x a. [

Proof. Assume that ab = ba. Applying Theorem 13.11, we obtain
a~'b"t = (ba)"t = (ab)"t =b"ta!,
giving the desired result. L]

Proof. Assume that G is abelian. Let a,b € G. By Theorem 13.11, (ab)~! = b~1a~!. Since G is

1= ¢~ 1'»~1. For the converse, assume that G is a group such that b=la~! = a~1b~!

abelian, b~ ta~
for every pair a, b of elements of G. We show that G is abelian. Let 2,y € G. Then z~!,y~! € G.

By assumption, (w‘l)fl (y‘l)fl = (y‘l)fl (w‘l)fl and so zy = yx. Thus G is abelian. n
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13.21 See the table below.

+ 0] O] 2138 [4 [BI][6] [7] [8]
o o] [} 21 18] M [5][6] [7] (8]
B 18] [ [BI6] [7] (8] [0 [1] [2]
6] | [6] [7] [81]0] [ 21|18 M 5
Ul 2 BI[[@ B 6@ 8 o
[4] 1[4 5] (6] | [71 8] (o] | [ (2] [3]
707 8 O[] [2 B[4 5] [6
2 [ 21 3] [ |5 6 [’ [0 [
(5| (5] 6] [7] 8] (o] [ | [2] (3] [4]
B8 |8 [0 0]} B 4B (6 [7]

Exercises for Section 13.5: Subgroups

13.22 (a) No. There is no identity for N under addition.

(b) No. The subset is not closed under +. For example, [2] + [4] = [6] ¢ {[0], [2], [4]}.

(¢) Yes. (d) Yes.

13.23 Proof. First assume that H is a subgroup of G and let a,b € H. Since b € H, it follows by
the Subgroup Test that b~! € H. Since a,b~! € H, we have, again by the Subgroup Test, that

ab™!

€ H.

We now verify the converse. Assume, for a nonempty subset H of a group G, that ab~! € H
whenever a,b € H. Since H # (), the set H contains an element h. Thus hh~' =e € H. Let a € H.
Then e,a € H and so ea™! = ¢! € H. Now let a,b € H. Then b' € H and so a, b € H.
Therefore, a (b‘l)_1 =ab € H. By the Subgroup Test, H is a subgroup of G. [

13.24 (a) Proof. Since H is closed under , it suffices to show that g~ € H for each g € H by the

13.25

(a)

Subgroup Test. Let H = {g1,92,.-.,9x} and let g € H. We claim that g+ g1,9* ga,...,9* gk
are k distinct elements in H, for suppose this is not the case. Then g * g; = g * g¢ for distinct
elements gs,g: € H. By the Left Cancellation Law, g; = g;, which is impossible. Thus, as

claimed, g * g1,9 * g2, ..., g * g are k distinct elements in H and so

H={g*xg1,9%g2,...,9*%gr}

Since g € H, it follows that g = g*g; for some integer ¢ with 1 <1 < k. Hence g = g*g; = g*e
for the identity e of G. By the Left Cancellation Law, g; = e and so e € H. Therefore, gxg; =€

1

for some integer j with 1 < j < k and so g; = g~ !, implying that g~' € H. [

The set N is a subset of the infinite group (Z,+). Note that N is closed under +, but N is
not a subgroup of (Z,+) by Exercise 13.22(a).

The statement is true.

Proof. Since H and K are subgroups of G, it follows that e € H ande € K. Soee HNK
and HNK # (). Let a,b € HNK. Then a,b € H and a,b € K. Since H and K are subgroups
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of G, it follows that ab € H and ab € K. Soabe HN K. Let a € HN K. It remains to show
that ! € HN K. Since a € H, a € K, and H and K are subgroups of G, it follows that
a '€ Handa ' € K. Soa™! € HN K. By the Subgroup Test, H N K is a subgroup of G. m

(b) The statement is false. For example, H = {[0],[3]} and K = {[0],[2],[4]} are subgroups of
(Zg,+), but HU K is not a subgroup of (Zg,+).

11

2 1
1 0 1

13.26 (a) No.LetA:B:{ ]EH.ThenAB:[ 1}¢H.

(b) The algebraic structure (H,-) is a subgroup of (M;5(R),-).

10

Proof. First, observe that [ 0 1

] € H and so H # (. Let A;,A3 € H. Then A; =
[ @ b ] and As = [ 82 [22 ], where a;, b;,¢; € R and a;¢; # 0 for ¢ = 1,2. Then
2

airaz arbs + bicy

Ay = [ 0 c1C2

Since the entries of A; A5 are real numbers and ajascice # 0, it follows that A1 As € H. Also,

for A = [ a b ] € H,
0 ¢
i _3
[ e
0 2
Thus (H,-) is a subgroup of (M (R),-) by the Subgroup Test. L]

13.27 Proof. Since /3 € H, it follows that H # (). First, we show that H is closed under multiplication.
Let r = a + bv/3 and s = ¢ + dv/3 be elements of H, where at least one of a and b is nonzero and

at least one of ¢ and d is nonzero. Therefore, » # 0 and s # 0. Hence
rs = (ac + 3bd) + (ad + be)V'3 # 0.

Thus at least one of ac + 3bd and ad + be is nonzero. Since ac + 3bd, ad + be € Q, it follows that

rs € H, and so H is closed under multiplication.

Next, we show that every element of H has an inverse in H. Let r = a + W3eH , Where at

least one of a and b is nonzero. Then

11 a—by3
a+bV/3 a+bV/3 a—bV/3

S|

a b
T 32 —a2 + 3b2—a2\/§'
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13.28

13.29

13.30

13.31

Observe that 3b% — a? # 0; for if 3b> — a? = 0, then a/b = ++/3, which is impossible since a/b € Q
and v/3 € L. Hence 1/r e H.

By the Subgroup Test, H is a subgroup. [

Proof. Let ay be the identity of S,,. Then as(t) = ¢ for all t € {1,2,---,n} and consequently
a1(t) =t forall t € T. Thus oy € Gr and so Gy # 0. Let o,3 € Gr and let t € T. Thus
(aB)(t) = a(B(t)) = a(t) =t. So aB € Gr. Again, let a € Gp. We show that a=! € Gp. Since

a~loa = ay, it follows for each t € T that
(@ toa)(t)=ai(t) =t

Hence (o=t oa)(t) = a t(a(t)) = a7 1(t) = t. Thus a~! € Gr. By the Subgroup Test, Gr is a
subgroup of (Sy, o). L]

Proof. Let e be the identity in G. Since e? = e € H, it follows that H # (). Let a?,b?> € H, where
a,b € G. Since G is abelian, a?b* = (ab)? € H. Also, if a®> € H, then (a®)~! = (a71)? € H. By the
Subgroup Test, H is a subgroup of G. [

Proof. For the identity e of G, it follows that e? = e € H and so H # (). Let a,b € H. Then
a?> = b2 = e. Then (ab)? = a?*h?> = e-e = ¢ and so ab € H. Therefore, H is closed under
multiplication. Let ¢ € H. Then a? = e. Thus (a2)_1 = e. However, (a2)_1 = (a‘1)2 = e and so

a~! € H. By the Subgroup Test, H is a subgroup of G. [

Exercises for Section 13.6: Isomorphic Groups

(a) Proof. Since[(l) ?}EH, it follows that H # (). Let A,B € H. ThenA:{(l) Cll}and
) |1 a+d 4|1 oa
B_[O 1},Wherea,bez. ThenAB—[0 1 ]EH. Also,1fA—[O 1]€H7
then Alz[(l) EQ}EH. By the Subgroup Test, H is a subgroup of (M;(R), ). u

(b) Proof. First, we show that f is one-to-one. Suppose that f(a) = f(b), where a,b € Z. Then

1 n

0 1

[(1) Lf} = {(1) Z{] Hence a = b. Next, we show that f is onto. Let A = [

|en.

Then f(n) = A and so f is onto. Finally, we show that f is operation-preserving. Let a,b € Z.
Then

rasn =g 7= 5 1] 0 V] @ re

and so f is operation-preserving. Therefore, f is an isomorphism. [

(c) It suggests that
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13.32

13.33

13.34

13.35

m={[{ 1] acQfumim={[} 1] rer}

are also subgroups of (M3 (R), -), where (Q, +) is isomorphic to (Hq, -) and (R, +) is isomorphic
to (HQ, )

(a) Since 1 is not the image of any integer under ¢, the function ¢ is not onto and so ¢ is not an
isomorphism.

(b) Since ¢(0) = 1, the image of the identity 0 in (Z,+) is not the identity in (Z,+). By Theo-
rem 13.16(a), ¢ is not an isomorphism.

(¢) The function ¢ is an isomorphism.

Proof. First, we show that ¢ is one-to-one. Suppose that ¢(a) = ¢(b), where a,b € R. Then
2¢ = 2%, Thus a = log, 2% = log, 2° = b and so ¢ is one-to-one. Next, we show that ¢ is onto.
Let r € R*. Then log, r € R. Hence ¢(log, r) = 2!°%2" = and so ¢ is onto. Finally, we show
that ¢ is operation-preserving. For a,b € R,

$la+b) =270 =27-2" = ¢(a) - (b).

Therefore, ¢ is an isomorphism. [
10 2
(d) Let A = [ 0 1 } and B = 1 |- Then ¢(A) = ¢(B) =1, but A # B. Thus ¢ is not
2

one-to-one and so ¢ is not an isomorphism.

The function ¢ is an isomorphism.

Proof. First we show that ¢ is one-to-one. Let ¢(r) = ¢(s), where 7,5 € RT. Then r? = s2.
Since 7,5 € R*, it follows that r = s and so ¢ is one-to-one. Given r € R*, let z = /r € R™.
Then ¢(z) = r and so ¢ is onto. Moreover, ¢(rs) = (rs)? = 125> = ¢(r)¢(s). Therefore, ¢ is

operation-preserving and so ¢ is an isomorphism. ]

Proof. Assume that ¢ : G — H is an isomorphism. Since ¢ is a bijection, ¢! is a bijection by
Theorem 8.10. It remains to show that ¢! is operation-preserving. Let hq,hy € H. Then there
exist g1,92 € G such that ¢(g1) = h1 and ¢(g2) = ha. Thus ¢~ (hy) = g1 and ¢~ L(h2) = go.
Furthermore, ¢(g1 * g2) = ¢(g1) 0 #(g2) = h1oha. Hence ¢~ (hioha) = g1xga = ¢~ (h1)* ¢~ (ha).
Thus ¢! is operation-preserving and so ¢! is an isomorphism. [

Proof. By Corollary 9.8, the composition ¢ o ¢1 of two bijections ¢; and ¢ is also a bijection.
Since ¢1 : G — H and ¢ : H — K are isomorphisms, ¢1(st) = ¢1(s)¢1(t) for s,t € G and
da(ab) = ¢2(a)da(b) for a,b € H. Therefore, if s,t € G, then

(P2001)(st) = ¢2(d1(st)) = d2(¢1(s)d1(t))
D2(01(5))P2(P1(t)) = (d2 © d1)(s) (P2 © ¢1)(1),

implying that ¢s o ¢1 is an isomorphism. [
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13.36

13.37

13.38

13.39

(a) Proof. Let a,b € G. Since aob = bxa € G, it follows that o is a binary operation on G.
Let a,b,c € G. Then (aob)oc=cx(aob)=cx(bxa)=(cxb)xa=(boc)xa=ao(boc).

Thus o is an associative operation. Let e be the identity of (G, *). Then
ace=exa=a=axe=eoa

and so e is the identity of (G, o). Let g € (G, 0) and let g~! be the inverse of g in (G, *). Then

gog =g lxg=e=gxg =90y

Thus ¢! is the inverse of g in (G, o). Therefore, (G, o) is a group. ]

(b) Proof. Consider the function ¢ : (G,*) — (G,o) defined by ¢(g) = g—! for each g € G.
We show that ¢ is an isomorphism. First, we show that ¢ is bijective. Let ¢(g1) = ¢(g2),
where g1, g2 € (G,%). Then g;' = g;*. Since (9171)71 = (g271)71 in (G, o), it follows that
g1 = g2 in (G,*). Thus ¢ is one-to-one. Let h € (G,0). Then ¢(h™t) = (h’l)71 =h
and so ¢ is onto. It remains to show ¢ is operation-preserving. Let g1,92 € (G,*). Then
Blgr % g2) = (g1 *g2)"" = (g20g1)"" = g7 095" = ¢(g1) © p(g2) and so ¢ is operation-
preserving. Therefore, ¢ is an isomorphism, implying that (G, *) and (G, o) are isomorphic. m

Additional Exercises for Chapter 13

Proof. Since e x e = e, it follows that G has an idempotent, namely e. Let g be an idempotent
in G. Then g x g = g = g * e. Applying the Left Cancellation Law, we obtain g = e. Thus e is the

only idempotent in G. n

Proof. Since ea = ae, it follows that e € Z(a) and so Z(a) # 0. Let g1,92 € Z(a). Then g;a = ag;
for i =1,2. Thus (g192)(a) = g1(g2a) = g1(ag2) = (g1a)g2 = (ag1)g2 = a(g1g2) and so g1g2 € Z(a).
Hence Z(a) is closed under multiplication. Next, let g € Z(a). We show that g~! € Z(a). Since
g € Z(a), it follows that ga = ag. Thus

-1 1 1

=g "(ga)g™
—1

g la = (97 a)gg " =g ag)g™
= (97'9)ag™") =e(ag™") =ay

Hence g~ € Z(a). By the Subgroup Test, Z(a) is a subgroup of G. m

Proof. Since H has at least two elements, H contains a nonzero integer k. Since H is a subgroup
of (Z,+), it follows that H contains the inverse of k, namely —k. Because either k or —k is positive,
H contains some positive integers. By the Well-Ordering Principle (Chapter 6), H contains a

smallest positive integer m.

Now we show that every multiple of m is an element of H, that is, mZ C H. Since (H,+) is
a subgroup, 0 = 0-m € H. Next we show that nm € H for every positive integer n. We employ
mathematical induction. Certainly, 1m = m € H. Suppose that km € H, where k € N. Then
(k+1)m = km +m € H since H is a subgroup and is therefore closed under addition. Thus
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13.40

13.41

nm € H for every positive integer n. Since nm + (—n)m = 0, the inverse of nm is (—n)m. Again,

because (H,+) is a subgroup, (—n)m € H. Therefore, nm € H for every integer n.

It remains to show that every element of H is a multiple of m, that is, H C mZ. Let n € H.

By the Division Algorithm, n = gm+r, where 0 < r < m. Since r = n+(—¢)m and n, (—q)m € H,

it follows that r € H. Because m is the smallest positive integer in H, the integer r cannot be

positive. Thus r = 0 and n = gm is a multiple of m. [

(a)

(a)

Proof. Since 0 =a-0+b-0 is a linear combination of a and b, it follows that 0 € H and so
H # (. Let 21,29 € H. Then x1 = amq + bny and x9 = ams + bng, where my, ma,n1,no € Z.
Now x1 + 2 = a(mq + ma) + b(n1 + ne) and so 1 + x2 € H. Let x € H. Then z = am + bn
for integers m and n. Thus —x = a(—m) + b(—n). Since —m and —n are integers, —z € H.
By the Subgroup Test, H is a subgroup of (Z,+). [
Proof. Let d = ged(a,b). By Theorem 11.7, d = ar + bs for some integers r and s. Thus
d € H. Let x € dZ. Hence x = dk for some integer k. Therefore,

x =dk = (ar + bs)k = a(rk) + b(sk).
Since rk, sk € Z, it follows that * € H and so dZ C H. Next, we show that H C dZ. Let

¢ € H. Then ¢ = am + bn for some integers m and n. By Exercise 11.29, d | £ and so ¢ € dZ.
Therefore, H = dZ. ]

Proof. First, we show that * is a binary operation on R — {1}. Let a,b € R — {1}. We show
that axb=a+b—abe R—{1}. faxb=a+b—ab=1,thenab—a—-b+1=0, or
(a—1)(b—1)=0. Soa =1 or b=1, which is impossible. Thus * is a binary operation on
R - {1}.

It remains to show that the operation * satisfies properties G1, G2, and G3. Let a,b,c €
R — {1}. Since

(axb)yxc=(a+b—ab)xc = (a+b—ab)+c—(a+b—ab)c
= a+b+c—ab—ac—bc+ abe

and

ax(bxc)=ax(b+c—bc) = a+(b+c—bc)—alb+c—bc)
= a+b+c—ab—ac— bc+ abe,

it follows that (a % b) * ¢ = a * (b * ¢) and so property G1 is satisfied. Since a*0=0xa =a
for all a € R — {1}, it follows that 0 is the identity and so property G2 is satisfied. For each
a € R—{1},let b= —%5. We show that b € R—{1}. If b = %5 = 1, then a = a — 1, implying

a—1" a

that 0 = —1, which is impossible. Since

a a2

b= — =0
ax a+a—1 a—1 ’

it follows that b is the inverse of a. Therefore, (R — {1}, %) is a group. Moreover,
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13.42

13.43

13.44

axb=a+b—ab=b+a—-ba=bxa
and so (R — {1}, %) is an abelian group. ]
(b) Proof. Define ¢: (R —{1},%) — (R*,-) by ¢(a) =1 — a. Then ¢ is a bijection. Moreover,

plaxb)y=1—axb=1—(a+b—ab)=(1—a)(1—>b) = ¢(a)p(h).
Thus ¢ is an isomorphism. [

The proposed proof contains a mistake. The statement “Since x and y are the only two elements
of G that do not commute, ! and y do commute.” assumes that z and ! are distinct. Thus

the proof is incomplete. The case where # = =1 (or y = y~!) must also be considered.
This proof is correct.

The statement is true.

Proof. Suppose that G is abelian and contains an odd number k > 3 of elements = such that
22 = e. Denote these elements by g1 = €, 92,93, ..,gr and let H = {g1,g2,...,gr}. Since g7 =e
for 1 <14 < k, it follows that gi_1 = g;. Hence if g; € H, then gi_1 € H. Let g;,9; € H. Thus
g7 = gjz = e and so (g;g;)? = gfgjz- = e. Hence g;9; € H. By the Subgroup Test, H is a subgroup
of G. Suppose that the elements g1 = e, g2,9s, ..., gr of H are labeled so that gag; = g;41 for each
odd integer ¢ with 1 <14 < k. Observe that for 1 <4,j <k and ¢ # j, we cannot have g29; = g29;,

for otherwise, g; = g; by the Left Cancellation Law. Thus

9291 = 92,9293 = 94, ---,929k—2 = Gk—1-

Since g2g; = ¢i+1 for each odd integer ¢ with 1 <14 < k, we must have ¢g2g;+1 = g; since

929i+1 = 92(929:) = g%gi = €gi = gi-

Therefore, for each ¢ with 1 < i < k — 1, g2g; # gx. Consequently, gogr = g, which implies that
g2 = e = g1, which is impossible. [
[Another approach is as follows: By Exercise 13.30, H is a subgroup of G. Let a € H and a # e.
Then A = {a, e} is a subgroup of order 2 in H. Define a relation R on H by = Ry if xy~! € A for

x,y € H. Then R is an equivalence relation on H. Futhermore, for each h € H, the equivalence

class
h] = {x€H:xRhy={zxcH:xh™'c A}
= {zeH:ah ' =aorazh™! =e} = {h,ah}.
Suppose that [h1], [ha],. .., [h:] are the distinct equivalence classes of R. Then |H| = |3\_ [hi]| =

2t, which is even.]
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