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Rough outline

What is a conformally invariant scaling limit?

Classical example: 2-dim Brownian motion.

Other models: Self-Avoiding Walks, Loop-Erased Random Walks, Uniform
Spanning Trees, Percolation, Ising model

The Fortuin-Kasteleyn random cluster model FK(p, q) is, in some sense, a
joint generalization of almost all of these.

Assuming conformal invariance (sometimes proved), the Schramm-Loewner
Evolution tells a lot about these models.

Will look at dynamical and near-critical versions. (Joint works with
Christophe Garban and Oded Schramm.)
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Simple random walk on Z2, 6 steps
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Simple random walk on Z2, 20 steps
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Simple random walk on Z2, 100 steps
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The scaling limit of SRW on Z2

X1, X2, . . . steps, Sn =
∑n

i=0 Xn positions in Z2.

E[Xi] = (0, 0), Var[Xi] =

(

1/2 0
0 1/2

)

. CLT:
Sn

√

n/2

d−→ N(0, Id).

Moreover, for 0 < t1 < t2 < 1,

(

St1n, St2n

)

√

n/2

d−→
(

N
(

0, t1Id
)

, N
(

0, t1Id
)

+ N
(

0, (t2 − t1)Id
)

)

.

And the limiting path can be proved to be continous. Hence the scaling
limit is 2-dimensional Brownian motion:

( Stn
√

n/2
: 0 6 t 6 1

)

d−→
(

Bt : 0 6 t 6 1
)

.

5



Rotational invariance of N(0, 1) implies same for (Bt)06t61.

Being a scaling limit implies scale invariance:

λBt ∼ λ
Stn

√

n/2
=

Sλ2tn/λ2

√

n/(2λ2)
=

Sλ2tm
√

m/2
∼ Bλ2t .

Having independent increments implies that can rotate and scale by different
values at different points!

For D ⊆ C, f : D −→ C is called conformal if it is holomorphic (complex
differentiable), injective, and the derivative is |f ′(z)| 6= 0 for any z ∈ D.

Multiplying by f ′(z) ∈ C is best linear approximation to f at z: locally
scale by |f ′(z)|, rotate by arg f(z).

Hence the trajectory of 2-dim Brownian motion is conformally invariant.
Just time will run locally at different speeds. (Lévy 1948)
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Simple random walk under an exponential map

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

They look the same.
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Conformal invariance of trajectory: another formulation

Given z ∈ D ⊂ C, the the hitting measure of Brownian motion on ∂D is
the harmonic measure νz. This is conformally invariant: for f : D −→ D′

conformal, νf(z) = f∗(νz).

f

Riemann mapping theorem: if D,D′ ( C are simply connected domains,
then ∃ f : D −→ D′ holomorphic bijection (then it is conformal except for
a countable set of points).
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Conformal invariance of trajectory: another formulation

Given z ∈ D ⊂ C, the the hitting measure of Brownian motion on ∂D is
the harmonic measure νz. This is conformally invariant: for f : D −→ D′

conformal, νf(z) = f∗(νz).

f

E.g., by f(z) = 1
2

(

z + 1
z

)

, uniform measure on circle is mapped to the
arcsine law 1

π
√

1−x2
dx on [−1, 1]. “Electrostatic potential.”

=⇒ Having a conformally invariant scaling limit is very useful.
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Mandelbrot’s 4/3 conjecture

Many things were computed about BM in ancient times; e.g., graph of 1-
dim BM has Hausdorff-dimension 3/2, graph of 2-dim BM has zero measure
but H-dim 2. But there are harder questions:
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Mandelbrot ‘82 observed visually that Brownian frontier appears to be
exactly as wiggly as Self-Avoiding Walk, conjectured to have H-dim 4/3.
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The Uniform Spanning Tree

On a finite graph, take one uniformly from all
spanning trees.

Paths inside are loop-erased random walk
paths (David Wilson’s algorithm ‘96).

Also related to domino tilings, and Rick
Kenyon ‘00 computed length ≍ n5/4.

Since we get LERW from SRW, reasonable
to think that it has a conformally invariant
scaling limit. However, loop-erasure of 2-
dim BM is very far from clear!

1-dim BM has no first zero after B0 = 0.
2-dim BM has no first loop; infinitely
many loops on all scales. So?
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Bernoulli(p) bond and site percolation

Graph G(V, E) and p ∈ [0, 1]. Each site (or bond) is open with probability
p, closed with 1− p, independently. Consider open connected clusters.

pc(G) := inf
{

p : Pp[0←→∞] > 0
}

= inf
{

p : Pp[∃ ∞ cluster] = 1
}
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Bernoulli(p) bond and site percolation

Graph G(V, E) and p ∈ [0, 1]. Each site (or bond) is open with probability
p, closed with 1− p, independently. Consider open connected clusters.

pc(G) := inf
{

p : Pp[0←→∞] > 0
}

= inf
{

p : Pp[∃ ∞ cluster] = 1
}

Theorem (Harris 1960 and Kesten 1980).
pc(Z

2, bond) = pc(∆, site) = 1/2, and Ppc[0←→ ∂Bn(0)] = n−Θ(1).
For p > 1/2, there is almost surely one infinite cluster.
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Why is pc = 1/2? Duality!

Z2 bond percolation at p = 1/2: in an n × (n + 1) rectangle, left-right
crossing has probability exactly 1/2, because:

P[ LeftRight(n, n + 1) ]+P[ TopBottom(n + 1, n) ] = 1, and they are equal.

For site percolation on ∆, same on an n× n rhombus.
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Crossing probabilities and criticality

Theorem (Russo 1978 and Seymour-Welsh 1978). For p = 1/2 bond
percolation on Z2 or site percolation on ∆, for L, n > 0,

0 < aL < P[ left-right crossing in n× Ln ] < bL < 1.

p ≈ 0.9 p ≈ 0.55 p = 0.5 p ≈ 0.45

For p > 1/2, correlation length Lδ(p) := min
{

n : Pp

[

LR(n)
]

> 1 − δ
}

.
This is roughly the size of holes in the infinite cluster.
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Critical percolation on different lattices
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Universality Conjecture

Although pc depends on the lattice, behavior at pc should be the same!

E.g., “dimension” of large cluster boundaries should always be 7/4.

Or, Ppc[0←→ ∂Bn] = n−5/48+o(1).

Or, off-critical exponent Ppc+ǫ[0←→∞] = ǫ5/36+o(1).

Analogy: Simple random walk on any planar lattice has the same scaling
limit: planar Brownian Motion.
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Conformal invariance

Theorem (Smirnov ‘01). For critical site percolation on ∆1/n, if Q ⊂ C

is a piecewise smooth quad, then

lim
n→∞

P

[

ab←→ cd inside Q ∩∆1/n

]

exists, is strictly between 0 and 1, and conformally invariant.

c

d

a

b

Φ1−−→ Φ2−−→

Moreover, there is a continuum scaling limit, encoding macroscopic
connectivity structure, cluster boundaries, etc., Schramm ‘00, Camia-
Newman ‘06, Sheffield ‘09. In physics, usually just correlation functions.
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Schramm-Loewner Evolution

Given conformal invariance and spatial
Markov property, the exploration path
converges to the Stochastic Loewner
Evolution with κ = 6 (Schramm ‘00).

Using the SLE6 curve, critical exponents mentioned above can be computed
(Lawler-Schramm-Werner, Smirnov-Werner ‘01, Kesten ‘87). E.g.:

α4(r, R) := P







R

r






= (r/R)5/4+o(1),

Lawler-Schramm-Werner ‘04: the scaling limit of Loop-Erased Random
Walk on nice lattices is SLE2. The scaling limit of the Peano curve around
the Uniform Spanning Tree is SLE8. Exponents can be computed again.
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A unifying model: FK(p, q)

Fortuin-Kasteleyn ‘69 random cluster model: for ω ∈ {0, 1}E(G),

PFK(p,q)[ω] =
1

ZFK(p,q)
p|ω| (1− p)|E(G)\ω| q|clusters(ω)| .

q = 1: Bernoulli(p) bond percolation. q → 0, then p→ 0: UST

q = 2, 3, . . . : sibling of q-Potts; q = 2: Ising model of magnetization.

Conjecture. In FK(pc(q), q) for 0 6 q 6 4, the scaling limit of the
exploration path is SLEκ, with κ(q) = 4π/ arccos(−√q/2) ∈ [4, 8].

For the corresponding “outer-boundary type” models, we have 16/κ.

q = 2 proved by Smirnov ‘06, Chelkak-Smirnov ‘10: SLE16/3, SLE3.

Outer boundary of percolation is basically SLE8/3, which should be the
scaling limit of SAW. Just like outer boundary of 2-dim BM.

Domino tilings should have to do with SLE4.
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Proof of Mandelbrot’s 4/3

Lawler-Schramm-Werner ‘01: boundary of the union of 5 Brownian
excursions is exactly the union of 8 SLE8/3’s.

And H-dim of SLEκ is computable: 1 + κ/8 (Beffara ‘06).
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Perturbations near the critical point

Dynamical percolation: every site is switching between open and closed
using iid exponential clocks, keeping critical percolation stationary.

1. How long does it take to change macroscopic crossings? Or, how noise
sensitive are the crossing events?

A reasonable guess: the expected number of pivotal
switches (i.e., changes of the left-right crossing event)
should be of order one. Hence time should be
1/E|Pivn| = n−3/4+o(1) — very small!

2. On an infinite lattice, are there random exceptional times with an infinite
cluster? In other words, which events are dynamically sensitive?

3. In the unit square (or in another conformal rectangle), with mesh 1/n
and rate 1/E|Pivn| for the exponential clocks, is there a scaling limit of the
process, giving a Markov process on continuum configurations?
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The answers

Theorem (Garban, P & Schramm 2010).

• At time ≫ 1/E|Pivn|, crossing events completely decorrelate.

• There are exceptional times on Z2.

• On the triangular grid they have Hausdorff dimension 31/36.

• On the triangular grid, there are exceptional times with an infinite white
and an infinite black cluster simultaneously. (1/9 6 dim6 2/3)

Proof uses discrete Fourier analysis. (Finding the decomposition of crossing
event indicators into eigenfunctions of the dynamics.)

Theorem (Garban, P & Schramm 2013). Dynamical and near-critical
percolation with the right rescaling have Markovian, conformally covariant
scaling limits.
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The near-critical regime

Recall the correlation length Lδ(p) := min{n : Pp

[

LR(n)
]

> 1− δ}.

Pp[LR(n)]

τ1−δ
δ (n)

p

1− δ

δ

Lδ

(

pc + τ1−δ
1/2 (n)

)

= n

Kesten ‘87: Near-critical window for percolation is given by number of
pivotal points at criticality: τ(n) = n−3/4+o(1) ≈ 1/Epc|Pivn|.

Duminil-Copin, Garban & Pete ‘11: In Ising-FK, this is NOT the case. Still,
we can find τ(n) = n−1+o(1) using conformal invariance techniques.
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The near-critical ensemble in percolation

Standard coupling: to each site (or bond) x ∈ G, assign V (x) i.i.d. Unif[0, 1],
and let x be open at level p if V (x) 6 p.

In Q∩∆1/n, when raising p from pc, when does it become well-connected?

A site is pivotal in ω if flipping it changes the
existence of a left-right crossing. Equivalent to
having alternating 4 arms. For nice quads, there are
not many pivotals close to ∂Q, hence

Epc|Pivn| ≍ n2 α4(n) = n3/4+o(1) on ∆1/n.

If p−pc≫ n−3/4+o(1), we have opened many critical pivotals, hence already
supercritical. But maybe many new pivotals appeared on the way, hence
there is a pivotal switch earlier?

��
��
��

��
��
��

��
��
��

��
��
��

New pivotals do appear. But will they
be switched as p is raised?

27



Stability by Kesten (1987): multi-arm probabilities stay comparable inside
this regime, hence changes are not faster, and this n−3/4+o(1) is indeed the
critical window.

And then the near-critical scaling relation:

Pp

[

0↔∞
]

≍ Pp

[

0↔ L(p)
]

≍ P1/2

[

0↔ L(p)
]

≍
(

(p− 1/2)−4/3+o(1)
)−5/48+o(1)

= (p− 1/2)5/36+o(1).

28



The near-critical ensemble in FK(p, q)

Want a monotone coupling as p varies, i.e., random Z ∈ [0, 1]E(G) labeling
such that Z6p ⊂ E(G) is FK(p, q). Desirably Markov in p.

Harder than in percolation. Grimmett ‘95 showed its existence: defined a
Markov chain Zt on labelings with the right stationary measure. (Works
only for q > 1.)

Another difference from percolation: from specific heat computation in the
Ising model, density of edges in Z6pc+ǫ \Z6pc is not ≍ ǫ, but ǫ log(1/ǫ) for
q = 2, and polynomial blowup for q > 2.
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Onsager vs pivotals

From Onsager ‘44 and other Ising results: correlation length ǫ−1+o(1),
with a related but different definition, using correlation decay. I.e.,
τ(n) = n−1+o(1) should be the window. But DC&G computed
E|Pivn| = n13/24+o(1), too few! And specific heat doesn’t help enough.

Hence, correlation length is not given by amount of pivotals at criticality.
Stability in near-critical window fails, the changes are faster. How come?

Conclusion: Any monotone coupling must be very strange: when raising
p in the monotone coupling, open bonds do not arrive in a uniform,
Poissonian way, but with self-organization, to create more pivotals and build
long connections. Would contradict Markov property in p, unless there are
clouds of open bonds appearing together.

We don’t understand geometry of clouds, but at least can see directly in
Grimmett’s coupling that clouds do happen. Intuitively: good to open many
edges together, without lowering number of clusters.
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