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A basic question

Pairwise independence is weaker than full independence. E.g., can have
X1, Xo,..., X, on (2,P), with values in some V', and a subset A C V,
S.t.

e the events {X; € A} are pairwise independent, P| X; € A] =1/2,
e but the joint probability is large: P[ X4,..., X,, € A] =1/n.

Namely, let 0;, i = 1,...,k be independent uniform £1 bits, n = 2*, and
vs = |],cq0i € {—1,1}, forall S C [k]. Then xg and 7 are independent
for ST, butPlzg=1VSC[k]|=Ploy,=1Vieclk]]=2"%=1/n.

Can this happen for stationary reversible Markov processes? l.e.,

e a fast pairwise decorrelation P[ Xy, X; € A] — P[ X, € A]°,
e but a fat exit tail P[ X, € Aforall 0 < s <¢t]7?

Say, can the first one be exponential but the second one only polynomial?



A famous example: random walk on expanders

A bounded degree finite graph G(V, E) is an expander if |0S|/|S| = ¢ > 0
for all |S| < |V|/2. With random walks: P[ X; € S | Xy ~ Unif(S5)] > ¢

With functional analysis: Markov operator Pf(z) := E[ f(X1) | Xo = x|,
self-adjoint on L?*(V,w), where 7 is the stationary measure. Then
(Pls,15) < (1 —¢)(1g,1g). More generally, if m(suppf) < 1 — ¢, then

(Pfaf)<(1_51>(f7f) and (Pfapf)<(1_52)(f7f)

Equivalently, spectral gap g := 1 — Ay > 0, where

(Pf.f) __(Pf.PHYV*

Ag 1= sup = sup

rin (f ) s (F, ))Y2

Absolute spectral gap g, :=1 —sup {|\| : A € Spec(P) \ {1}}.

For any E[f] = 0, we have E[ f(Xo)f(X})] < (1 — g.)" Ex[f?].



Theorem ( 1987). Let (X;)2, be a
stationary reversible chain with P and 7w and Ay < 1, and let 7(A4) < 8 < 1.
Then there exists y(\2, 3) > 0 with

P[Xi e A for all i:O,l,...,t} < O(1—7).
Proof. Consider the projection () : f +— f14. Then,

P(X;€Afori=0,1,...,2t+ 1] = (Q(PQ)*"'1,1)
= (P(QP)'Q1,(QP)'Q1), by self-adjointness of P and Q

A\

<(1=01)(1-62)" B,

and done for odd times. For even times, use monotonicity in . 0

< (1-461) ((QP)'Q1,(QP)'Q1), by m(supp(Qg)) < 3

< (1 —0q) ( (QP)"'Q1,P (QP)t_lQl) , by ) being a projection
< (1—-61)(1-32) ((QP)Q1,(QP)"'Q1), by m(supp(Qg))

< (1—67) (1= 6,) (Ql Ql) , by iterating previous step

< B



A general result

Stationary Markov process wy, operator T;. Let 7(C) = P[wo C C] = p,
and let f = 1¢. The decay of correlations of f can be quantified by

P[wo,wt < C} — Plwg € C]2 = (f.Tvf) — (Ef)? < d(t) Var[f]
or Var[T, f] = (T.f, Ty f) — (Ef)? < d(2t) Var[f] .

Same for reversible Markov processes.

Theorem (Hammond, Mossel & P 2011). Under the second condition,

t—etoll) if d(t) ==t

P[ws cC Vs e [O,t]} < {exp ( B tl_%ﬂro(l)) if d(t) = eXp(_ta—l—o(l)).

Sharp in the regime of polynomial decay. Open in the exponential case.

Proof is not hard, maybe later. But now the motivation.



Bernoulli(p) bond and site percolation

Given an (infinite) graph G = (V, E) and p € [0,1]. Each site (or bond)
is chosen open with probability p, closed with 1 — p, independently of each
other. Consider the open connected clusters. 6(p) := P,[|0 «— o0].

L I_| A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'

VAYAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY

A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'

'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A

] VaVaVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY,

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY

VaAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY,

— 'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A

T AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY,

'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A

|:, N A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'

'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A

A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'

|_:|_ 'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A
T

Fno

II_II
A

A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'A'

Theorem ( 1960 and 1980).
pe(Z?,bond) = p.(A,site) = 1/2, and 6(1/2) =
For p > 1/2, there is a.s. one infinite cluster.



Bernoulli(1/2) bond and site percolation




Conformal invariance on A

Theorem (Smirnov 2001). For p = 1/2 site percolation on A,, and
Q C C a piecewise smooth quad (simply connected domain with four
boundary points {a, b, c,d}),

lin%P {ab «—— cd inside Q, in percolation on A,
n—

exists, is strictly between 0 and 1, and conformally invariant.

oF ‘/_L Py

Calls for a continuum scaling limit, encoding macroscopic connectivity,
cluster boundaries, etc. Aizenman ‘95, Schramm ‘00, Camia-Newman ‘06,
Sheffield ‘09, Schramm-Smirnov “10. In physics, correlation functions.



Given the conformal invariance, the
exploration path converges to the
Stochastic Loewner Evolution with
k=6 (Schramm 2000).
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Dynamical percolation

Triangular lattice A, with mesh 7), each site is resampled according to an
independent exponential clock.

Question 1: How much time does it take to change macroscopic crossing
events? (How noise sensitive are the crossing events? Complexity theory:
primitive Boolean functions are quite stable.)

Question 2: On an infinite lattice, are there random times with exceptional
behavior, e.g., an infinite cluster? (Dynamical sensitivity?)

Toy example: Brownian motion on the circle does sometimes hit a fixed
point. The set of these exceptional times is a random Cantor set of Lebesgue
measure zero (because of Fubini) and Hausdorff-dimension 1/2.

Question 3: With a well-chosen rate r(n) for the clocks (probably coming
from Question 1), is there a scaling limit of the process, giving a Markov
process on continuum configurations?



Dynamical percolation results

Theorem (Haggstrom, Peres & Steif 1997).
e No exceptional times when p # p..

e No exceptional times when p = p,. for bond percolation on Z¢, d > 19.

| The latter is essentially due to Hara-Slade ‘90 on
8,4 0) the off-critical exponent 3 = 1: even switching
asymmetrically, E[number of e-subintervals of
0,1] with exceptional times| = O(1). But the
exceptional set is closed without isolated points.

- P

Recall that, on the triangular lattice A, we have 3 =5/36 = 25_/34 = 2§—1§4.

Theorem (Garban, P & Schramm 2008).
e There are exceptional times also on ZZ.

e On the triangular grid they have Hausdorff dimension 31/36.
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Lower bound needs decay of correlations in &g = {t : 0+ R}:

1. B[ fon(wo) fon(w,siem) | —El fon]* <o t2/* ast — oo, uniformly
in mesh n, for the indicator of left-right crossing in the quad Q.

2. E[ fr(wo) fR(th)}/]53[fl~‘a(w)]2 = ¢~@/B)&+ol) 35 ¢ — 0, for the
indicator of the one-arm event to radius R.

Now, by the Mass Distribution Principle for the measure pgrla,b] =
f 1{0 < R} /P[0<——R]dt and some compactness, if

Sup/ / fR(wS)] dtds < oo,

|1t = sp

then dim(&) > v a.s. Hence

For Z?, we have “¢; 4+ &4 < &5 = 2", hence 1 — 25—154 > (, so there exist
exceptional times.



Two natural questions on the exceptional set

How do exceptional infinite clusters look like? The first one? A typical one?

There is an “infinite critical cluster” in the static world, Kesten's Incipient
Infinite Cluster measure (1986): for H C A and w® configuration in H,
the limit 1IC(w??) = limp_.o P[w!? |0 <> R] exists.

All other natural definitions give the same measure (Jarai 2003).
What is the hitting time tail P[ &N [0,t] =0]7?
To answer the first question, we needed to answer the second one:

Theorem (Hammond, Mossel & P. 2011). The hitting time tail is
exponentially small.

Theorem (Hammond, P. & Schramm 2012). The configuration at a
“typical” exceptional time has the law of [IC, but the First Exceptional
Time Infinite Cluster (FETIC) is thinner.
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Local time measure for exceptional times

r b
M, (w,) = ;ft% = r}]’ ,.|a, b] ::/a M, (ws)ds, fila,b]:= lim 7,.|a,b].

r—00

This M ,(w) is a martingale w.r.t. the filtration .%,. of the percolation space
generated by the variables 1{0 < r}. Moreover, Efi.[a,b] = b — a, and, by
the correlation decay, sup, E|7,[a,b]* | < Cy. So lim, exists.

. P0=R|Ww] . Plw?|0- R] IC(w?)
Mpy(w) = lim Pl0—R] A% Pof] Plof]

MT’(WS) = MBr(ws)a Mr[av b] ::/ Mr(ws) ds, :u[avb] ;= lim ,LLT[CL, b]

T — 00

Now M,.(w) is a MG w.r.t. the full filtration .7, generated by w(B,), again
Eula,b] = b—a, and M,.(w) < Cy M ,.(w) because of quasi-multiplicativity:



P[0 — R|w"] P[0« R|w"r]
P[0~ R] ~ P[0~ r]|P[r— R]
- Plr < R|wPr|1{0 < r} _ 1{0 < r}
= P[0~ r]|P[r < R] P[0 < r]

Hence, both local time measures exist, and are clearly supported inside & .

/\ WIR(Q)S)

b

Vs

M, , for fixed r and R — 0.

time

_— P[0~ R|Z.] a.s.
E[MRIQQZT}: P[OHR] oo

Theorem ( 2012). @ = i a.s. At a p-typical
time, the configuration has the distribution of |IC.

Question: is it true that supp (u) = &7



FETIC versus IIC

Mutual singularity should hold, but let's just show that there is some w®"

such that limp_ o FETICr(w?r) # limp_ oo HCr(w?r).

The configuration at a typical switch time for {0 «— R} is size-biased by
the number of pivotals. Because of the many pivotals far from the origin,
inside B, this bias becomes negligible as R — o0, so we still have IIC.

The configuration at FET R is further size-biased by the length of the
non-connection interval ending at the switch time.

For any w = wPBr satisfying {0 «— R}, get
THIN,.(w) by thinning inside B,..

Want to show that the reconnection time
V = V, r started from THIN,.(wPR) is larger
in expectation than NV = N, g, the one started
from the normal wPr, uniformly as R — oo.
(While both are very small.)



Because of the thinning, there is some €(r) — 0 and g(r) — oo with
PV >gr)|V>er)] > a. (1)

Also, from stochastic domination, P[V > ¢(r)] > P[N > €(r)]. (2)
(1) would be hard, so our thinning is different, and (2) doesn’t quite hold.
Write X = X 1;xs¢(r)}- Note that size-biased N times Unif|0, 1] is FET.

A size-biasing lemma: P[N > e(r)} = EE}J[[N ]] > co and E[ ] < C7 imply

E[N|N>er)] < Cs. (3)
From these three,
E[N¢]
Cy

E[V] > cg(r)P[N>e€r)] = cg(r)

hence
EV > E[V¢] >, E[N°| > cEN.

16



Proof of exponential tail for FET

Dynamical percolation in Bg is just continuous time random walk on the
hypercube {0, 1}P~, with rate 1 clocks on the edges. On {0,1}", discrete
time random walk has spectral gap 1/n, but in continuous time, the gap is
uniformly positive, so could try to use | '87].

Of course, P[0 «+— R] is tiny, so we don't want to hit that. But
P[&r N 1[0,1] # 0] is uniformly positive!

So, first idea: Markov chain {w[2t,2t + 1] : ¢ = 0,1,2} on a huge state
space. This again has a uniform spectral gap. However, it's not reversible!

So, another trick: L?(Q2,P) is the space of trajectories {w; : t € R},
on it the event A; := {&r N [t,t + 1] = 0} for any t € R, then the
projection () f := f1 4, is still self-adjoint and P|supp(Q:g)| < § < 1 for
any g. On the other hand, for g;(w) := E| f;(w[0,1]) | wg = w], we have
E| f1(w[0,1]) fa(w[t,t + ])} = E.[g1 T}92], hence the spectral gap of T;
can be used.



What about the tail of left-right connection?

As mentioned before, E| fo ,(wo) fQ’n(wtn3/4_|_O(1))] — E[me]2 =g t72/3

as t — o0, uniformly in mesh 7, hence natural to rescale time like this.

In fact, there exists a scaling limit of dynamical percolation [Garban, P. &
Schramm 2012], so one can either talk about the rescaled finite chains,
“uniformly in ", or about the scaling limit process.

Earlier theorem [HIVIP11] gives P[ fo(ws) =1 Vs € [0,¢]] < t72/3+0(1),

In fact, by cutting Q vertically into L slabs: < ¢=2L/3+°(1) for any L,
superpolynomial decay.

Exponential lower bound is easy from dynamical FKG inequality.
Conjecture. P[ fo(ws) =1 for all s € [0,t] | = exp(—¢t2/3To),

Supported by a very non-rigorous renormalization argument.
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Proof of Correlation decay — exit time tail [HMP*11]

Let p < A < 1. Consider A; := {w €S :PlwselClw=w]< )\}, the
set of not very good hiding places.

Fix large k, let 7 =t/k. Check ws € C at s = j7, for j =0,..., k. Let /
be the last of these times when wy, € ASNC. Then

k
P|lws,€CVs € [O,t]} <A )Y AFEDVOPTy, e A

£=0
2— A
<)\k+mP[A§].

On the other hand, if s is large, then one expects P[Aﬂ to be small.
Indeed,
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\P[A7] < E[fe) | A5 P[AS] = B[14:7.f]
=E[14cp] ‘|‘E{1A§ (Tsf —Ef)

Rearranging and using Cauchy-Schwarz,

A=p)P[A:] < E|1ag(Tf —Bf) | <|[Lagla | Tof — Ef]l2,

hence (A —p)P[AS]"? <||T.f — Bf|ly = Var[T,f]/2.

Thus

P[47] < (5= };) d(2t/k).

and can optimize the sum of two terms over k.



