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Part I. Near-critical geometry
» Near-critical scaling limits
» Our main statement on the near-critical limit of planar percolation

» |dea of proof

Part Il. Applications
» Minimal spanning tree in the plane
» Near-critical geometry in FK percolation (with H. Duminil-Copin)

» Dynamics at the critical point
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Near-critical geometry in general

Ising model near its critical point

C. Garban & G. Pete Near-critical scaling limits 3 /38



Erdés-Rényi random graphs G(n, p)

p<l/n
= logn

“Everything happens’ in the

near-critical window
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Alon and Spencer (2002): “ With A = —10°, say we have feudalism.
Many components (castles) are each vying to be the largest. As \
increases ... and by A = 10° it is very likely that a giant component,

the Roman Empire, has emerged. "

Theorem (Addario-Berry, Broutin, Goldschmidt, 2012)

1 law
(G(nyp)\,n)y mdgraph) — Goo(/\)

under (a slight generalization of) the Gromov-Hausdorff topology.




Near-critical percolation in the plane

Site percolation on the triangular lattice T :

“feudalism” Roman empire
p<1/2 p=1/2 p>1/2

Renormalise the lattice as follows: nT



Scaling limit of percolation

Theorem (Smirnov, 2001)

Critical site percolation on nT is asymptotically (as n \, 0) conformally
invariant.

Convergence to SLEg (Schramm-Loewner-Evolution with k = 6)
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looking for the right ZOOMING

We shall now zoom around p. as follows:

p=pc+r(n)]

A<0 A=0 A>0
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looking for the right ZOOMING

We shall now zoom around p. as follows:

p=pc+r(n)]

Theorem (Kesten, 1987)

The right zooming factor is
A< A=0 N> 0 given by

0 r(n) = nlaa(n,1)?
773/4+o(1)
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Heuristics behind these scalings

p=1/n+xn"*3 versus pe + An3/4+eld)

C
1 &)

O(n2/3) O(n2/3)
v
O(n*?) = g 3/4+o(1)
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Scaling limit 7

Definition

Define wp©(\) to be the percolation configuration on nT of parameter

|p=pc+\r(n)]

For all > 0, we define a monotone cadlag process

A ER— wpe(A) € {0,1}7"

Question

Does the process \ € R w)°(\) converge (in law) as n ™\, 0 to a limiting

process
A= wiS(N) ?

> For which topology 77 Find an appropriate Polish space (E, d) whose
points w € E are naturally identified to percolation configurations.



The first natural idea which comes to mind

This configuration on nT may be coded by
the distribution

Xy = Z Ox Ox

xenT

{X,} is tight in '~ and converge to the Gaussian white noise on
R,
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The first natural idea which comes to mind

This configuration on nT may be coded by
the distribution

Xy = Z Ox Ox

xenT

{X,} is tight in '~ and converge to the Gaussian white noise on
R,

Theorem (Benjamini, Kalai, Schramm, 1999)

This setup is NOT appropriate to handle percolation: natural observables
for percolation are highly discontinuous under the topology induced by
| - [[3y—1-= and in fact are not even measurable in the limit.
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Some other historical approaches

Aizenman 1998 and Aizenman, Burchard 1999.
Camia, Newman 2006.

The Schramm-Smirnov space 7, 2011

” I » o C{0,1}€

& » 7 can be endowed with a natural
topology T (= Fell's topology) for
which, (2, T) is compact,
Hausdorff and metrizable

O

Q/
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The “critical slice” wy, ~ Py

View w, ~ P, as a random point in the compact space (7, d »
n n

Theorem (Smirnov 2001, CN 2006, GPS 2013)

As 1\, 0, wy, ~ P, converges in law in (#,dx) to a continuum percolation

Woo ~ Poo

= this handles the case A =0
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Main results

Theorem (Garban, Pete, Schramm 2013)

Fix A € R.
e (A) 1L W ()

n (e.9]

The convergence in law holds in the space (A, dy).

Theorem (Garban, Pete, Schramm 2013)

The cadlag process A — wy©(A) converges in law to A\ — wiS(\) for the
Skorohod topology on 7.

The limit is a Non-Feller Markov process and is conformally covariant.
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Main results

Theorem (Garban, Pete, Schramm 2013)

Fix A € R.
e (A) 1L W ()

n (0.9}

The convergence in law holds in the space (A, dy).

Theorem (Garban, Pete, Schramm 2013)

The cadlag process A — wy©(A) converges in law to A\ — wiS(\) for the
Skorohod topology on 7.
The limit is a Non-Feller Markov process and is conformally covariant.

Theorem (Nolin, Werner 2007)

Fix X # 0. All the subsequential scaling limits of wpZ()) @ Doo(A) are such

that their interfaces are singular w.r.t the SLEg curves !

v
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Two possible approaches

Smirnov’s approach to handle the critical case (A = 0):

This suggests the following approach to handle the case \ # 0: for all
p # pc(T) = 1/2, find a massive harmonic observable F,:

| AF(2) ~ m(p)Fyp(2) ]

The “mass’ m(p) should then scale as [p — p|%/3.

A “perturbative” approach.
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Naive Strategy to build A — w2S(\)

R |
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Naive Strategy to build A — w2S(\)




Naive Strategy to build A — w2S(\)

PPP on R? x
R, of intensity

pp(da)dA

\

\/

R |



Naive Strategy to build A — w2S(\)

PPP on R?

X
R, of intensity/

pp(da)dA

\

R |




Naive Strategy to build A — w2S(\)

PPP on R? x
R of intensity
pp(diz)d
A
Plwx(0) |




Some difficulties along the way

Too many pivotals! @
The mass measure p is ~

&

degenerate (00)

= introduce a cut-off ¢ > 0

Stability question as e — 0 Measurability issues on the
Schramm-Smirnov space (.7, d»)

—~—a

- 02/“1




Scaling covariance of our limiting object

Theorem

Near-critical percolation behaves as follows under the scaling z — « - z:

(A= a-w) & (A~ wisa4N)

X23/4

>~y
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Gradient percolation
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Traveling Salesman Problem
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Traveling Salesman Problem

TSP

C. Garban & G. Pete Near-critical scaling limits 19 / 38



Minimal Spanning Tree (MST)

MST
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MAIN QUESTION: scaling limit of the planar MST 7
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Minimal Spanning Tree on Z?2
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Minimal Spanning Tree on Z?2

o 088 o 012 055
0.21 .02 0.88 0.11
¢ 022 L o042 [ 028 |
D.81 0.62 0.17 0.27
o 071 L 097 [ 031 [
0.98 D.18 0.32 0.49
o928 {071 ¢ 021 §
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Kruskal's algorithm on Z?

0.88 ° 0.12 PR V5
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Kruskal's algorithm on Z?

0.88 ° 0.12 PR V5
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Kruskal's algorithm on Z?

0.88 e 0.12 o U090 o
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Kruskal's algorithm on Z?

0.88 e 0.12 o U090 o
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Kruskal's algorithm on Z?

0.88 e 0.12 o--U30_ _o
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Kruskal's algorithm on Z?

0.88 e 0.12 o U090 o
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The MST on Z2 seen from further away ...
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Monotone coupling in percolation

0.88 0.12 0.55
Definition (Standard coupling)
0.21 .02 0.8 0.11 )
0,99 049 0.98 For all e € Z#, sample ue ~ Unif][0, 1].
For any fixed p € [0, 1], let
0.17 p.27
.81 0.62 wp(e) — 1ue§p
0.71 0.97 0.31
Then wp ~ P, for all p, and
58 18 0.32 0.49 .
0.28 0.71 0.21 wp Swy Hp=p. J
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Kruskal's algorithm on Z?




Minimal Spanning Tree in the plane

Raising p from 0 to 1, the edges where the percolation p-clusters coalesce
are exactly the MST.

Thus, the macroscopic structure of MST might be understood from

near-critical percolation: at p = pc + Ar(n), how clusters coalesce as A
increases from —oco to oo.




Minimal Spanning Tree in the plane

Theorem (Aizenman, Burchard, Newman,
Wilson, 1999)

The Minimal Spanning Tree on nZ? is tight
asn — 0.

Results on the geometry of any limit; e.g.,
degrees are a.s. less than some k.




Main results on the scaling limit of MST

Theorem (GPS 2013)

On the rescaled triangular lattice nT,
MST,, converges in law to MST .,
in the topology of [ABNW 1999]

Theorem (GPS 2013)

Invariant under rotations,
scalings, translations

The Hausdorff dimension of the
branches lies in (1 +¢,7/4 — ¢)

All points have degree < 4

There are no pinching points
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Near-critical FK-Ising

Ising model
For o € {-1,1}V,
P, [a] o exp(% Z,-Nj oioj)

T > T.: correlations decay quickly.
T.: they decay slowly.
T < T¢: they do not decay.




Near-critical FK-Ising

Ising model
For o € {-1,1}V,
P, [a] o exp(% Z,-Nj oioj)

T > T.: correlations decay quickly.
T.: they decay slowly.
T < T¢: they do not decay.

Fortuin-Kasteleyn's FK(p, g) random cluster model (1972)

wE {0’ 1}E ]P)p7q [w] x p]iopen(w) (1 _ p)ﬂclosed(w) qﬁclusters(w)

Edwards-Sokal coupling for g = 2: toss a fair coin for each w-cluster. Get
Ising with 2 = —In(1 — p), thus Correlt[o(x),o(y)] = Prx(p2) [x<—y].

» Study FK percolation phase transition at p (72, q = 2) = %



Notion of correlation length L(p)




Notion of correlation length L(p)

P = Ppc+0p

v+o(1)

L(p) = =

Example (critical perco-
lation):

Theorem (Smirnov-
Werner 2001):

L(p) = |2

4/3+0(1)




Recipe to guess the correlation length

A

Take p = pc + dp. Find the scale R = L(p) for which
|6p| R?c4(R) < 1.

This works for percolation: Kesten's near-critical scaling relation (1987).
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Correlation length of FK-Ising

Using conformal invariance and SLE
(Smirnov, Chelkak, et al):

Theorem (Hao Wu, 2015)
OZEK(q:2)(R) — R—%-‘ra(l) J

The above recipe would then give

1 24/13+0(1)

p— pc(2)

L(p) = ‘




Correlation length of FK-Ising

Using conformal invariance and SLE
(Smirnov, Chelkak, et al):

Theorem (Hao Wu, 2015) J

OZEK(q:2)(R) — R—%-‘ra(l)

The above recipe would then give

1 24/13+0(1)

p—= pc(2)

L(p) = ‘

But this contradicts closely related results of Onsager (1944), suggesting

24/13

! I

P = Pc

L(p) ~ |

‘ 1
P — Pc




What is wrong with the recipe?

» To make sense of the recipe need a monotone coupling as p varies,
i.e., random Z € [0,1]5(¢) labeling such that Z-, ~ FK(p, q).
Shown to exist by Grimmett (1995), but not very explicit.

» The density of edges in Z<, 45p \ Z<p. is not < dp, but Jplog $ for
g = 2, and polynomial blowup for g > 2.

» If they were arriving in a Poissonian way, our stability proof would
work, and get the same exponent! But changes are much faster!

There are clouds of open bonds appearing together, with some clever
self-organization, to create long connections.



What we can prove

Theorem (Duminil-Copin, G., P., 2014)
For g = 2, there are constants ¢, C > 0 s.t.
1 1 1

c <Lp)<C log
|P*Pc‘ |P*Pc‘ |pfpc‘

for all p # pc.

Proof technique: Do not understand self-organization enough. Instead,
massive version of Smirnov's fermionic observable, building on work of
Beffara & Duminil-Copin (2012).
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Stationary dynamics

» Each edge of Z? has an independent Poisson clock, resampling its
state according to FK(p, q), given all the other edges.

» For 1 < g <4, at any given time t, the system almost surely has no
infinite cluster. (Duminil-Copin, Sidoravicius, Tassion 2015).

» But there could exist exceptional random times with an infinite cluster!




Exceptional times in dynamical FK

Theorem (GPS 2010)
For q = 1, they exist, and their Hausdorff dimension is 31/36. J

Upper bound is easy, using comparison with near-critical dynamics. Lower
bound needs strong noise sensitivity, proved via discrete Fourier analysis.

Theorem (GP, in preparation)

For q = 2, using fake Poissonian near-critical dynamics, H-dim < %.
For g > 4, using discontinuity of phase transition, no exceptional times.

Conjecture (GP)
Upper bound is correct for all
qg=>1

There are no exceptional times iff
q>q" :=4cos’(2/14) ~ 3.83.




Some open questions

v

Show that MST, is not conformally invariant!
Or at least that MST, # UST.. The latter is given by SLEg.
Find the Hausdorff dimension of branches

v

\4

\4

Describe the massive SLEg we obtained

» Prove noise sensitivity of dynamical FK-Ising.

v

Prove the conjectures on exceptional times.
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