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Two proofs of ¢(n) =n]],,(1 —1/p)

1 First proof

First, a very useful combinatorial tool:

Lemma 1.1 (Sieve formula). If Aq,... A, are finite subsets of some set S, then
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Proof. Let’s compare how many times each x € S is counted on the two sides. If z is in
exactly m of the sets A;, with 1 < m < n, then, on the left, it is counted once. On the right,
in the first sum it is counted m times, in the second sum it is subtracted (g”) times, then
in the third sum it is added (') times, and so on, up to (—1)™~'(™). It is not counted in
intersections with more than m sets. So, we need to show that
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This can be done with combinatorial tricks, but the most elegant way is to notice that

0:(1‘1)m:(73)‘(T)*(?)—WH—W(Z),

and we are done. O

We now take A, := {i : 1 < i < n, p|i}, for all primes p < n. Clearly, p(n) =
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the product with the brackets opened up, as desired. O

. By the sieve formula, thisis n =3 n/p+3_ ., n/(pg) — ..., which is just



2 Second proof

Lemma 2.1. If p is a prime and k € Z, then ¢(p*) = p* — pF~L.

Proof. This is pretty clear: every pth number falls out. O

Lemma 2.2. If gcd(n,m) = 1, then p(nm) = ¢(n) p(m).

Proof. This follows from the Chinese Remainder Theorem, which we will discuss later.
Alternatively (well, the content is basically the same), with a sieve-type argument one
can show

(n = @(n))m+ (m —p(m))n — (n—p(n))(m —p(m)) = mn — p(mn),
and rearranging gives the desired formula. O

For n = p% ... pFm factorization into distinct prime factors, by the two lemmas we have
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and we are done. O



