MATC16 Cryptography and Coding Theory
Gábor Pete
University of Toronto Scarborough

$$
\text { Two proofs of } \varphi(n)=n \prod_{p \mid n}(1-1 / p)
$$

1 First proof

First, a very useful combinatorial tool:
Lemma 1.1 (Sieve formula). If $A_{1}, \ldots A_{n}$ are finite subsets of some set S, then

$$
\begin{aligned}
\left|A_{1} \cup \cdots \cup A_{n}\right|= & \sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|+\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|- \\
& \cdots+(-1)^{n-1}\left|A_{1} \cap \cdots \cap A_{n}\right| .
\end{aligned}
$$

Proof. Let's compare how many times each $x \in S$ is counted on the two sides. If x is in exactly m of the sets A_{i}, with $1 \leq m \leq n$, then, on the left, it is counted once. On the right, in the first sum it is counted m times, in the second sum it is subtracted $\binom{m}{2}$ times, then in the third sum it is added $\binom{m}{3}$ times, and so on, up to $(-1)^{m-1}\binom{m}{m}$. It is not counted in intersections with more than m sets. So, we need to show that

$$
1=\binom{m}{1}-\binom{m}{2}+\binom{m}{3}-\cdots+(-1)^{m-1}\binom{m}{m} .
$$

This can be done with combinatorial tricks, but the most elegant way is to notice that

$$
0=(1-1)^{m}=\binom{m}{0}-\binom{m}{1}+\binom{m}{2}-\cdots+(-1)^{m}\binom{m}{m}
$$

and we are done.
We now take $A_{p}:=\{i: 1 \leq i \leq n, p \mid i\}$, for all primes $p \leq n$. Clearly, $\varphi(n)=$ $n-\left|\bigcup_{p \mid n} A_{p}\right|$. By the sieve formula, this is $n-\sum_{p \mid n} n / p+\sum_{p \neq q \mid n} n /(p q)-\ldots$, which is just the product with the brackets opened up, as desired.

2 Second proof

Lemma 2.1. If p is a prime and $k \in \mathbb{Z}_{+}$, then $\varphi\left(p^{k}\right)=p^{k}-p^{k-1}$.
Proof. This is pretty clear: every p th number falls out.

Lemma 2.2. If $\operatorname{gcd}(n, m)=1$, then $\varphi(n m)=\varphi(n) \varphi(m)$.
Proof. This follows from the Chinese Remainder Theorem, which we will discuss later.
Alternatively (well, the content is basically the same), with a sieve-type argument one can show

$$
(n-\varphi(n)) m+(m-\varphi(m)) n-(n-\varphi(n))(m-\varphi(m))=m n-\varphi(m n),
$$

and rearranging gives the desired formula.
For $n=p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}$, factorization into distinct prime factors, by the two lemmas we have

$$
\varphi(n)=\prod_{i=1}^{m} \varphi\left(p_{i}^{k_{i}}\right)=\prod_{i=1}^{m}\left(p_{i}^{k_{i}}\left(1-1 / p_{i}\right)\right)=n \prod_{i=1}^{m}\left(1-1 / p_{i}\right)
$$

and we are done.

