MATC16 Cryptography and Coding Theory Gábor Pete University of Toronto Scarborough

Two proofs of
$$\varphi(n) = n \prod_{p|n} (1 - 1/p)$$

1 First proof

First, a very useful combinatorial tool:

Lemma 1.1 (Sieve formula). If A_1, \ldots, A_n are finite subsets of some set S, then

$$|A_1 \cup \dots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \dots + (-1)^{n-1} |A_1 \cap \dots \cap A_n|.$$

Proof. Let's compare how many times each $x \in S$ is counted on the two sides. If x is in exactly m of the sets A_i , with $1 \leq m \leq n$, then, on the left, it is counted once. On the right, in the first sum it is counted m times, in the second sum it is subtracted $\binom{m}{2}$ times, then in the third sum it is added $\binom{m}{3}$ times, and so on, up to $(-1)^{m-1}\binom{m}{m}$. It is not counted in intersections with more than m sets. So, we need to show that

$$1 = \binom{m}{1} - \binom{m}{2} + \binom{m}{3} - \dots + (-1)^{m-1} \binom{m}{m}.$$

This can be done with combinatorial tricks, but the most elegant way is to notice that

$$0 = (1-1)^{m} = {\binom{m}{0}} - {\binom{m}{1}} + {\binom{m}{2}} - \dots + (-1)^{m} {\binom{m}{m}},$$

and we are done.

We now take $A_p := \{i : 1 \le i \le n, p \mid i\}$, for all primes $p \le n$. Clearly, $\varphi(n) = n - \left| \bigcup_{p \mid n} A_p \right|$. By the sieve formula, this is $n - \sum_{p \mid n} n/p + \sum_{p \ne q \mid n} n/(pq) - \dots$, which is just the product with the brackets opened up, as desired.

2 Second proof

Lemma 2.1. If p is a prime and $k \in \mathbb{Z}_+$, then $\varphi(p^k) = p^k - p^{k-1}$.

Proof. This is pretty clear: every *p*th number falls out.

Lemma 2.2. If gcd(n,m) = 1, then $\varphi(nm) = \varphi(n) \varphi(m)$.

Proof. This follows from the Chinese Remainder Theorem, which we will discuss later.

Alternatively (well, the content is basically the same), with a sieve-type argument one can show

$$(n - \varphi(n))m + (m - \varphi(m))n - (n - \varphi(n))(m - \varphi(m)) = mn - \varphi(mn),$$

and rearranging gives the desired formula.

For $n = p_1^{k_1} \cdots p_m^{k_m}$, factorization into distinct prime factors, by the two lemmas we have

$$\varphi(n) = \prod_{i=1}^{m} \varphi(p_i^{k_i}) = \prod_{i=1}^{m} \left(p_i^{k_i} (1 - 1/p_i) \right) = n \prod_{i=1}^{m} (1 - 1/p_i),$$

and we are done.