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Summary of talk

Together with Oded Schramm, we proved the existence and conformal
covariance of the scaling limits of dynamical and near-critical percolation
on the triangular lattice. These are closely related; both mechanisms (and
hence the right space-time scalings) are governed by macroscopic pivotals.

Trying to generalize this to critical Ising and FK(2) on Z
2, we found:

1. Dynamical FK(2) scaling limit works fine.

2. Near-critical FK(2) is very different from dynamical, with a different
scaling. We can’t prove a scaling limit.

3. Spin cluster evolution in dynamical Ising is completely mysterious.

4. Some results and conjectures on exceptional times with infinite clusters
during the dynamics. E.g., we proved that, as opposed to percolation, there
are no exceptional times in dynamical Ising.
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The Ising and q-Potts models

Spin configuration σ : V −→ {1, . . . , q}. For q = 2, usually {−1, +1}.

Hamiltonian: H(σ) :=
∑

(x,y)∈E(Γ) 11{σ(x) 6=σ(y)}.

For β = 1/T > 0 inverse temperature, Gibbs measure on configurations
agreeing with some given boundary configuration ξ on ∂V ⊂ V :

P
ξ
β[σ] :=

exp(−βH(σ))

Zξ
β

, where Zξ
β :=

∑

σ:σ|∂V =ξ

exp(−βH(σ)) .

This Zβ is called the partition function.

Sometimes external field, favoring one kind of spin.

Instead, vary β now and look for change in decay of spin correlations.

Above critical βc: non-uniqueness of infinite volume measures. Can be
produced via different boundary conditions ξ.
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The critical temperature of Ising

β = 0.881374 β = 0.9

Theorem (Onsager 1944, Aizenman-Barsky-Fernández 1987, Beffara-
Duminil-Copin 2010). βc(Z

2) = 1
2 ln(1 +

√
2) ≈ 0.881374.

Onsager also showed that E
ξ
βc

[σ(0)] ≍ n−1/8 for ξ = +1∂Bn(0).

3



The random cluster model FK(p, q)

Fortuin-Kasteleyn (1969): for ω ∈ {0, 1}E(G) and ξ ∈ {0, 1}∂E(G) for
∂E(G) ⊂ E(G),

P
ξ
FK(p,q)[ω] =

p|ω| (1− p)|E(G)\ω| q|cl(ω)|

Zξ
p,q

.

q = 1: Bernoulli(p) bond percolation.
q → 0, then p→ 0: Uniform Spanning Tree

For q ∈ {2, 3, . . . }: color each cluster independently with one of q colors,
then forget ω: get q-Potts, with β = β(p) = −1

2 ln(1− p).

Therefore, Correlξβ,q[σ(x), σ(y)] = P
ξ
FK(p,q)[x←→ y]!

If q > 1, then increasing events are positively correlated: FKG-inequality.

For q < 1, there should be negative correlations, proved only for UST,
which is a determinantal process.
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FK(p, q) on Z
2

Exhaustion of Z
2 by finite boxes, with free

of wired boundaries. Limit measures exist,
FKfree(p, q) and FKwired(p, q).
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FK(p, q) on Z
2

Exhaustion of Z
2 by finite boxes, with free

of wired boundaries. Limit measures exist,
FKfree(p, q) and FKwired(p, q).

Self-dual point psd(q) =
√

q/(1 +
√

q).

FKfree(p, q) =FKwired(p, q) for all p 6= psd(q). (Welsh ‘93, Grimmett ‘95)

Critical point pc(q): threshold for existence of infinite cluster.

Theorem (Beffara & Duminil-Copin 2010). pc(q) = psd(q) for q > 1.

At psd(q = 2): FKfree =FKwired, no percolation. (Conjectured for all q 6 4.)
(Simplest proof by W. Werner ‘09.)
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Russo-Seymour-Welsh theory

Proving criticality relies on proving box-crossing and RSW estimates.
For general q > 1, tricky gluing argument by Beffara & Duminil-Copin.
For q = 2, stronger results using Smirnov’s conformal invariant observable:

Theorem (Duminil-Copin, Hongler & Nolin ‘09). At p = pc(2), with
any boundary condition ξ around a piecewise smooth quad (D,a, b, c, d)
with four marked boundary points, for any mesh η > 0,

0 < c1 < P
ξ
FK

[

ab←→ cd in D ∩ Z
2
η

]

< c2 < 1 .

This implies quad-crossing bounds in Ising with certain boundary conditions:

_

+

_

_

_
+

+
_
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Conformal invariance at criticality

Theorem (Smirnov ‘01, Smirnov ‘07, Chelkak-Smirnov ‘10). For
critical site percolation on ∆η, and for FK(pc(2), 2) and βc-Ising on a large
class of graphs Gη, if Q ⊂ C is a piecewise smooth quad, then

lim
η→0

P

[

ab←→ cd inside Q ∩Gη

]

exists, is strictly between 0 and 1, and conformally invariant.

c

d

a

b

Φ1−−→ Φ2−−→

Moreover, there is a continuum scaling limit, encoding macroscopic connec-
tivity structure, cluster boundaries, etc., Aizenman ‘95, Schramm ‘00,
Camia-Newman ‘06, Sheffield ‘09. In physics, only correlation functions.

8



Schramm-Loewner Evolution SLEκ

q = 1, κ = 6 q = 2, κ = 16/3 κ = 3

Conjecture. In FK(pc(q), q) for 0 6 q 6 4, the scaling limit of the
exploration path is SLEκ, with κ(q) = 4π/ arccos(−√q/2) ∈ [4, 8].

For the corresponding “outer-boundary type” models, we have 16/κ.

Known for q = 0, 1, 2.
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SLEs and critical exponents

Using the SLE6 curve, several critical exponents can be computed (Lawler-
Schramm-Werner, Smirnov-Werner 2001), e.g., α1(r,R) = (r/R)5/48+o(1),

α4(r,R) := P











R

r











= (r/R)5/4+o(1). (ρ4 = 5/4)

Also implies off-critical exponent θ(pc + ǫ) = ǫ5/36+o(1), by Kesten (1987).

For discrete results from SLE: RSW crossing estimates =⇒ Separation of
interfaces phenomenon =⇒ quasi-multiplicativity of arm probabilities. For
percolation, done by Kesten (1987).

Garban (2011): α
FK(2)
4 (n) = n−35/24+o(1) and αIsing

4 (n) = n−21/8+o(1).

21/8 > 2 =⇒ no macroscopic pivotals in Ising ↔ no self-touches of SLE3.
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Dynamical versions

Ising Glauber dynamics: i.i.d. Poisson clocks on vertices. When clock rings,
update spin in a local manner: the conditional law of new spin depends
only on the old spins in a bounded neighbourhood. Keep Ising stationary.

Example 1: Gibbs sampler = heat-bath dynamics. Example 2: Metropolis.

FK(p, q) heat-bath dynamics: i.i.d. Poisson clocks on edges. Not quite local
stationary dynamics:

P
G
p,q

[

e is on
∣

∣ ω on G \ {e}
]

=

{

p if {x ω←→ y} in G \ {e}
p

p+(1−p)q otherwise.

Open problem. Does this make sense on infinite Z
2? (Information

leaking from infinity?) Limits of dynamics on finite boxes do exist (using
monotonicity, Grimmett 1995), but they are non-Fellerian processes. Are
they given by these local transition rules?
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Main dynamical questions

Question 1: How much time does it take to change macroscopic crossing
events? (How noise sensitive are the crossing events? Complexity theory:
“primitive” Boolean functions under iid measure are quite stable.)

Question 2: On an infinite lattice, are there random times with exceptional
behavior, e.g., an infinite cluster? (Dynamical sensitivity?)

The more noise-sensitive the system is, the more chances there are to see
exceptional events.

Question 3: With a well-chosen rate r(η) for the clocks, is there a scaling
limit of the process, giving a Markov process on continuum configurations?

RW → BM: shrinking steps to η, need to speed up time: r(η) = η−2.
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Good time scale: pivotals

A site (or bond) is pivotal in ω if flipping it changes
the existence of a left-right crossing. Equivalent to
having alternating 4 arms. For nice quads, there are
not many pivotals close to ∂Q, hence E|Pivη| ≍ η−2 α4(η, 1).

Taking r(η) = 1/E|Pivη|, the expected number of pivotal switches in unit
time will be about 1, so let’s fix that.

Short time: small expectation =⇒ P[∃ pivotal switch] is small, so things
don’t change.

Long time: large expectation 6=⇒ probability. But with a second moment
argument (ρ4 < 2), at this scale things do start changing, great.

But do crossing events completely decorrelate after long time? YES, but
it’s hard, and needs Fourier analysis w.r.t. product measure on hypercube:
Benjamini-Kalai-Scramm ‘98, Schramm-Steif ‘05, Garban-P.-Schramm ‘08.
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Dynamical percolation and FK(2) scaling limits

Theorem (GPS 2010-11). On ∆η, with r(η) = 1/E|Pivη| = η3/4+o(1)

clocks, the scaling limit of dynamical percolation exists, is Markov, and
conformally covariant: if domain changes by φ(z), then time scales locally
by |φ′(z)|3/4. By GPS ‘08, the process is ergodic (t−2/3 correlation decay).

Proof. Step 0. Work in quad-crossing description of the full scaling limit
(Schramm-Smirnov ‘10), uniqueness following from Camia-Newman ‘06.

Step 1. Scaling limit of counting measure on macroscopic ρ-important
pivotals exists: pivotal measures µρ(ω), measurable w.r.t. continuum
percolation, conformally covariant, with exponent 3/4.

So, can hope that scaling limit of dynamics is given by ωt=0 plus a “filtered”
Poisson point process (Pρ)ρ>0 of flips from µρ(domain) × Lebesgue(time).
This was suggested by Camia-Fontes-Newman ‘06.

Step 2. Stability: no new macroscopic info from invisible scales: originally
unimportant points do not become important and then switch.
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Scaling limits for FK(2) heat-bath and Ising Glauber?

Theorem (Garban-P. 2011). Assuming uniqueness of the quad-crossing
full scaling limit for FK(pc(2), 2), on any compact D ∩ Z2

η, with r(η) =

1/E|Pivη| = η13/24+o(1) clocks, the scaling limit of the heat bath dynamics
exists, is Markov, and conformally covariant with exponent 13/24.

For quad-crossings by spin clusters in the Ising Glauber model, situation is
very unclear: because of ρ4 > 2, dynamical second moment argument for
pivotal switches doesn’t work, hence even the right time scale is unclear,
maybe need more than n2α4(n).

And even if the right time scale is given by α4(n), more small pivotals are
switching than big ones, hence stability (no cascade of information from
microscopic scales) becomes unclear.

Maybe it’s “physically irrelevant” anyway. . . Though mixing time is not
given by magnetization, either. . . And once we have natural dynamics on
CLE6 and CLE16/3, why not on CLE3?
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The near-critical ensemble in percolation

Standard coupling: to each site (or bond) x ∈ G, assign V (x) i.i.d. Unif[0, 1],
and let x be open at level p if V (x) 6 p.

Dynamical version: starting from criticality, whenever a clock rings, switch
to open. So, at time t, each site is open with probability ∼ 1/2 + t r(η),
with our old r(η). May also take t < 0, bias towards closed.

Super/sub-critical as t → ±∞. But maybe changes are faster because of
monotonicity? Could critical window be smaller than the dynamical?

Kesten (1987): Multi-arm probabilities stay comparable inside window!
Above window, already supercritical. (Doesn’t need Fourier analysis.)

Borgs-Chayes-Kesten-Spencer (2001): Finite size versions of previous.

Nolin-Werner (2008): Subsequential limits of the near-critical interface
exist, and are singular w.r.t. the critical interface SLE6.

GPS (2010-11): Scaling limit of near-critical ensemble exists, etc.
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The correlation length in near-critical percolation

How did Kesten find the off-critical exponent θ(pc+ǫ) ≈ ǫβ, with β = ρ1
2−ρ4

?

Stability: Fixed domain, mesh η, p = pc + ǫ with ǫ 6 Cη2−ρ4 = η3/4+o(1)

— we are still basically critical. So, at pc + ǫ and unit mesh, critical in
domains of size ǫ−4/3+o(1), and supercritical in larger domains.

This ǫ−1/(2−ρ4) = ǫ−4/3+o(1) is called the correlation length.

His proof of stability used Russo’s formula for d
dpα

p
1(n) and d

dpα
p
4(n).

Also follows from our dynamical stability argument (Step 2 above).

Therefore, to have 0←→∞ at pc + ǫ, need

1. 0←→ ǫ−4/3+o(1), happening with the critical probability
α1(1, ǫ

−1/(2−ρ4)) = ǫρ1/(2−ρ4);
2. ǫ−4/3+o(1)←→∞, happening with the supercritical probability ≍ 1,

and done.
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The near-critical ensemble in FK(p, q)

Want a monotone coupling as p varies, i.e., random Z ∈ [0, 1]E(G) labeling
such that Z6p ⊂ E(G) is FK(p, q), preferably Markov in p. Asymmetric
heat-bath is not good. Instead, Grimmett ‘95: define a Markov chain Zt on
labelings with the right stationary measure.

Set Te(Z) := inf
{

p : endpoints of e are connected in Z6p \ {e}
}

.

If e rings at time t, then, to get the right conditional distribution on e in
Z6p, need

P[Zt(e) 6 p] =

{

p if p > Te(Zt−)
p

p+(1−p)q if p < Te(Zt−).

We can get this simultaneously for all p by defining this update rule for
Zt(e). Makes sense if q > 1. Note Dirac point mass at Te(Zt−).

First difference from asymmetric heat-bath: from specific heat (variance of
energy) computation on Z2, density of edges in Z6pc+ǫ \ Z6pc is not ≍ ǫ,
but ǫ log(1/ǫ) for q = 2, and polynomial blowup for q > 2.
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Onsager vs pivotals

From Onsager ‘44 magnetization results: P
Z

2

pc(2),2

[

0←→ R
]

= R−1/8+o(1)

and P
Z

2

pc(2)+ǫ,2

[

0←→∞
]

= ǫ1/8+o(1). This gives a correlation length

ǫ1+o(1). But Garban computed 1/(2− ρ4) = 24/13, which is much larger!

1. Correlation length is not given by amount of pivotals at criticality.

2. Near-critical window is much shorter than dynamical window.

3. Asymmetric heat bath is very different from the monotone coupling.
When raising p in the monotone coupling, open bonds do not arrive in a
uniform, Poissonian way, but with self-organization, to create more pivotals
and build long connections. Would contradict Markov property in p, unless
there are clouds of open bonds appearing together.

We don’t understand geometry of clouds, but at least can see directly that
they are happening, due to the Dirac mass in the update rule. Intuitively:
good to open many edges together, without lowering number of clusters.
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Exceptional times with infinite clusters

Häggström-Peres-Steif ‘97: No exceptional times for Bernoulli(p 6= pc).
No exceptional times at p = pc for bond percolation on Zd, d > 19.

Zd

p

pθ    (  )

The latter is essentially due to Hara-Slade ‘90 on
the off-critical exponent β = 1: even switching
asymmetrically, E

[

number of ǫ-subintervals of
[0, 1] with exceptional times

]

= O(1). But the
exceptional set is closed without isolated points.

Garban-P.-Schramm ‘08: On ∆ or Z
2, Hausdorff dimension of exceptional

times is a.s. 1− β = 1− ρ1
2−ρ4

, which is 31/36 on ∆, and positive on Z2.

Garban-P. ‘11: For the Ising Glauber dynamics, no exceptional times for
infinite spin clusters (even with *-connections), due to having few pivotals.

Moreover, assuming SLEκ(q) conjectures, no exceptional times for q ∈
(q∗, 4), (i.e., κ ∈ (4, κ∗)), despite having many macroscopic pivotals
(meaning noise sensitivity?), since dimension 6 1− ρ1/(2− ρ4) < 0.
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