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Outline of talk

• The Uniform Spanning Tree UST on finite graphs, and its connections
to random walks and electric networks.

• Infinite volume limits: the Free and Wired Uniform Spanning Forests,
FUSF and WUSF. Why are they natural and interesting?

• Our result: the FUSF behaves very unexpectedly on some tree-like
graphs.

• Many open questions.
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Uniform Spanning Tree (UST)

On a finite graph G(V,E), from all spanning trees, take one uniformly at
random.

Intimately related to electric networks (Kirchhoff 1847) and random walks
(Aldous-Broder 1989 and Wilson 1996).
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UST and LERW

David Wilson’s algorithm (1996) to generate
the UST via loop-erased random walks.

• Pick x0 ∈ V .

• Pick x1 ∈ V . Run random walk from x1

until hitting x0, and erase all the loops
as they are created. Get a simple path
T1.

• Pick x2 ∈ V . Run random walk from x2

until hitting T1. Get tree T2.

• And so on, until all vertices are included.

Amazingly, we get the UST, regardless of
how x0, x1, x2, . . . are chosen.
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UST and electric networks

Kirchhoff’s Effective Resistance Formula (1847):

P
[

(x, y) ∈ UST
]

= ix,y(x, y) = R(x↔ y),

where R(x↔ y) is the effective resistance between x and y,

and i = ix,y :
←→
E −→ R is the current flow from x to y, total flow 1:

• antisymmetric for every (u, v) ∈ ←→E : i(u, v) = −i(v, u),
• node law at every u ∈ V \ {x, y}: ∑v∼u i(u, v) = 0,

• cycle law for every cycle C = (ui)
t
i=0:

∑t
i=0 i(ui, ui+1) = 0,

• total flow:
∑

v∼x i(x, v) =
∑

v∼y i(v, y) = 1.

Kirchhoff proved this with linear algebra: his Matrix-Tree Theorem.

Easy with Wilson’s algorithm:

P
[

(x, y) ∈ UST
]

= Px[ 1st hit y via (x, y) ] = Ex[Nx,y −Ny,x ] = ix,y(x, y).
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Generalization by Burton & Pemantle (1993), the Transfer Current Theorem:

P
[

e1, . . . , ek ∈ UST
]

= det
[

Y (ei, ej)
k
i,j=1

]

,

where Y (e, f) = ie(f). So, the UST is a determinantal process.

Maybe surprisingly, Y (e, f) = Y (f, e). Why? What is this matrix?
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Generalization by Burton & Pemantle (1993), the Transfer Current Theorem:

P
[

e1, . . . , ek ∈ UST
]

= det
[

Y (ei, ej)
k
i,j=1

]

,

where Y (e, f) = ie(f). So, the UST is a determinantal process.

Maybe surprisingly, Y (e, f) = Y (f, e). Why? What is this matrix?

Consider H := ℓ2antisymm

(←→
E ,R

)

with standard inner product.
A basis: χx,y := 1(x,y) − 1(y,x), for all (x, y) ∈ E. Two subspaces:

star space ⋆ := span
{

∑

y∼x

χx,y : x ∈ V
}

,

cycle space ♦ := span
{

t
∑

i=0

χxi,xi+1 : all oriented cycles (xi)
t
i=0

}

.

Node law: ⋆⊥. Cycle law: ♦⊥. Easy: ⋆⊕♦ = H and ix,y = P⋆χ
x,y.

Hence Y is the matrix of the projection P⋆ in the basis {χx,y : (x, y) ∈ E}.
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Free and Wired Uniform Spanning Forests

On an infinite graph G, take exhaustion Gn ↑ G by finite subgraphs, maybe
with some boundary conditions, and hope there is a weak limit.

On each Gn, free or wired UST.

Free: just take the subgraph.

Wired: collapse boundary vertices into one.

The limit would be a random spanning forest: cycles cannot appear in the
limit, but connecting paths may get very long, disconnected in the limit.
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Free and Wired Uniform Spanning Forests

On an infinite graph G, take exhaustion Gn ↑ G by finite subgraphs, maybe
with some boundary conditions, and hope there is a weak limit.

On each Gn, free or wired UST.

♦f
n 6 ♦f

n+1 6 ♦G.

⋆w
n 6 ⋆w

n+1 6 ⋆G.

Thus P⋆w
n
↑ P⋆ and P⊥

♦f
n
↓ P⊥

♦ , so USTGw
n
↑WUSFG and USTGf

n
↓ FUSFG.

I.e., the limit forests exist, and are independent of the exhaustion.

But now HG = ⋆G ⊕ ♦G ⊕ ∇HDG, where HDG is the set of harmonic
functions h : V −→ R with finite Dirichlet energy: ∇h(x, y) := h(x)−h(y)
lies in HG. Hence HDG 6= R⇐⇒ P⋆ < P⊥

♦ ⇐⇒ WUSFG � FUSFG.
This was observed by Benjamini, Lyons, Peres, Schramm (2001).

E.g., on Zd (or any amenable transitive graph), WUSF = FUSF.
On transitive graphs with infinitely many ends, WUSF 6= FUSF.
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On any transient graph, WUSF can be generated by Wilson’s algorithm
rooted at infinity: “x0 =∞”. This is immensely useful:

On Zd, the WUSF = FUSF is a single tree iff d 6 4, by Pemantle ‘91.
For d > 4, two random walks avoid each other with positive probability.

But no good algorithm for FUSF. . . Need to take the limit.

FROM NOW ON, WEWILL ONLY TALK ABOUT TRANSITIVE GRAPHS.
In fact, Cayley graphs Cay(Γ, S) of finitely generated groups. Then both
forests have translation-invariant laws, by independence on the exhaustion.
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What properties depend only on the group?

(0) On any Cayley graph, EWUSF[ deg(o) ] = 2.
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What properties depend only on the group?

(0) On any Cayley graph, EWUSF[ deg(o) ] = 2.

(1) FUSF > WUSF iff ♦⊥ > ⋆, and the difference is given by ∇HD.
Quantitatively: for G = Cay(Γ, S), EFUSF(G)[ deg(o) ] = 2 + 2dimΓ(HDG),
where dimΓ is the Γ-invariant von Neumann dimension.

Just like in Hodge theory, dimΓ(HDG) is the 1st ℓ2-Betti number of the
Cayley graph (Lyons 2009), which does not depend on the generating set:

EFUSF[ deg(o) ] = 2 + 2β
(2)
1 (Γ).
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(2) In particular, whether FUSF 6= WUSF depends only on the group.
Moreover, this is a quasi-isometry invariant (Soardi 1993).
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(2) In particular, whether FUSF 6= WUSF depends only on the group.
Moreover, this is a quasi-isometry invariant (Soardi 1993).

(3) Whether WUSF is connected: if |Bn|/n4 → ∞, then WUSF has ∞
many trees, otherwise 1 (Pemantle 1991, Lyons, Peres, Schramm 2003).
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What properties depend only on the group?

(0) On any Cayley graph, EWUSF[ deg(o) ] = 2.

(1) FUSF > WUSF iff ♦⊥ > ⋆, and the difference is given by ∇HD.
Quantitatively: for G = Cay(Γ, S), EFUSF(G)[ deg(o) ] = 2 + 2dimΓ(HDG),
where dimΓ is the Γ-invariant von Neumann dimension.

Just like in Hodge theory, dimΓ(HDG) is the 1st ℓ2-Betti number of the
Cayley graph (Lyons 2009), which does not depend on the generating set:

EFUSF[ deg(o) ] = 2 + 2β
(2)
1 (Γ).

(2) In particular, whether FUSF 6= WUSF depends only on the group.
Moreover, this is a quasi-isometry invariant (Soardi 1993).

(3) Whether WUSF is connected: if |Bn|/n4 → ∞, then WUSF has ∞
many trees, otherwise 1 (Pemantle 1991, Lyons, Peres, Schramm 2003).

(4) Number of ends: 1 or 2 in the WUSF (Morris 2003).
If FUSF 6= WUSF, then all the FUSF trees have continuum many ends
(Hutchcroft-Nachmias 2017, Timár 2018).
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Natural conjectures, and our answers

Lyons-Peres (2016): is the number of trees also in the FUSF independent
of the generating set?

More generally, is it a quasi-isometry invariant for transitive graphs?

In the k-regular tree Tk, the FUSF is obviously the entire tree.

Tang (2019): In Tk ×K2, the FUSF is one tree.

Conjectured this should hold for Tk ×H, any k, any finite graph H.
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Natural conjectures, and our answers

Lyons-Peres (2016): is the number of trees also in the FUSF independent
of the generating set?

More generally, is it a quasi-isometry invariant for transitive graphs?

In the k-regular tree Tk, the FUSF is obviously the entire tree.

Tang (2019): In Tk ×K2, the FUSF is one tree.

Conjectured this should hold for Tk ×H, any k, any finite graph H.

Theorem 1 (Timár-P.). For every d there is kd such that if k > kd, and H
is a connected finite d-regular transitive graph on more than k5/2 vertices,
then the FUSF on Tk ×H has infinitely many trees a.s.

Theorem 2 (Timár-P.). For k large enough, the group Fk × Zk8 has a
Cayley graph (cycle in the 2nd coordinate) in which the FUSF has infinitely
many components, and another Cayley graph (complete graph in the 2nd
coordinate) in which the FUSF is connected.
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Strategy of proof for Theorem 1

The ball and sphere of radius n around root o ∈ Tk will be Tn and Sn.

Generate UST in Tn × H by Wilson’s algorithm, first taking LERW from
a = (o, ha) to b = (o, hb). GOAL: the LERW contains some boundary
vertex (z, hz) ∈ Sn ×H with a positive probability not depending on n.

Want a “leaf bag” {z} ×H such that if πthere

is the SRW path from a to that bag, and πback

is the path back to b, then:
(1) No backtracking on ray of bags from o to z
in πthere or πback; (2) no intersections between
πthere or πback outside this ray; (3) nor inside.

To guarantee (1) and (2), will take k large, so
that the set of bags that πthere enters outside
the ray is disjoint from those of πback.

To guarantee (3), we will take H large, so that there is enough space in
each bag for πthere and πback to avoid each other.
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Strategy of proof for Theorem 1

Requirements (1) and (2) are only about SRW on Tk. Closely related to:

Proposition (Sparsely visited rays). For the SRW excursion on Tn away
from o, with uniformly positive probability, there exists a ray that is fully
visited, but the local times are all bounded by O(k).

For any z ∈ Sn, we show that P[ ray to z is good ] >
(

c log k
k

)n

.

Hence the expected number of good leafs is > (c log k)n.
This is so large that there is room to do guarantee (3), as well.
Get positive probability via the 2nd Moment Method.
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Strategy of proof for Theorem 1

Requirements (1) and (2) are only about SRW on Tk. Closely related to:

Proposition (Sparsely visited rays). For the SRW excursion on Tn away
from o, with uniformly positive probability, there exists a ray that is fully
visited, but the local times are all bounded by O(k).

For any z ∈ Sn, we show that P[ ray to z is good ] >
(

c log k
k

)n

.

Hence the expected number of good leafs is > (c log k)n.
This is so large that there is room to do guarantee (3), as well.
Get positive probability via the 2nd Moment Method.

Once we have disconnectedness with positive probability, also get infinitely
many trees almost surely:

Proposition (1−∞ law). On any transitive tree-like graph, any invariant
spanning forest that has only infinite trees and satisfies a weak insertion
tolerance, has either 1 or ∞ many trees a.s.
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Strategy of proof for Theorem 2

(dependence on the generating set)

1. When H is a cycle, long compared to k, then Theorem 1 applies:
we get a disconnected FUSF.

2. Now take a generating set so that H is the complete graph.

This makes the SRW that generates the LERW spend a lot of time in each
bag {v} × H before moving in the tree-coordinate, leaving long pieces of
the LERW in the bag:

Lemma. Running SRW in Kn for time ≫ √n, resulting LERW is ≍ √n.

This makes it very likely that the πthere and πback trajectory pieces meet
in that bag. Hence the loop-erasure erases every long excursion away from
the root bag {o} ×H.
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Open questions

Problem 1. If Γ is a finitely generated treeable group with WUSF 6= FUSF,
does it always have two generating sets such that the FUSF is disconnected
in the first Cayley graph, while it is connected in the second?

Problem 2. Is it true that if the FUSF in some Tk ×H is disconnected,
then any two components touch each other only at finitely many places?

The measurable cost of a group is the infimum of all the average degrees
of connected invariant random graphs on the group. Gaboriau (2002) has
shown that

cost(Γ) > β
(2)
1 (Γ) + 1,

and asked if there is always equality.

When the FUSF can be made connected by adding a small density invariant
bond percolation, then YES.

E.g., for infinite Kazhdan groups, β
(2)
1 (Γ) = 0 has been known for long, but

Hutchcroft & P (2020) showed only recently that cost(Γ) = 1.
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Now that the FUSF can be disconnected when it “shouldn’t be”, maybe it
is also difficult to make it connected:

Problem 3. For the FUSF in any Tk ×H, is the union of the FUSF with
an independent Bernoulli(ǫ) bond percolation connected, for any ǫ > 0? If
not, is there any invariant way to make the FUSF connected by adding an
arbitrarily small density edge percolation?

disco(H) := inf
{

k : FUSF(Tk ×H) is disconnected
}

∈ {3, 4, . . . ,∞}.

We know that disco(P2) = ∞ from Tang (2019), while Theorem 1 implies
that if ℓ is large enough, then the cycle Cℓ of length ℓ has disco(Cℓ) <∞.

Problem 4. What is the smallest ℓ for which disco(Cℓ) <∞? In particular,
what is disco(C3)?

Problem 5. Are there infinitely many finite graphs H with disco(H) =∞?
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