Stochastic Differential Equations Problem set No 2 - March 6, 2012

\triangleright Exercise 1. Prove directly from the definition of Itô integrals that
(a) $\int_{0}^{t} s d B_{s}=t B_{t}-\int_{0}^{t} B_{s} d s$;
(b) $\int_{0}^{t} B_{s} d B_{s}=\frac{1}{2} B_{t}^{2}-\frac{1}{2} t$;
(c) $\int_{0}^{t} B_{s}^{2} d B_{s}=\frac{1}{3} B_{t}^{3}-\int_{0}^{t} B_{s} d s$. (Hint: $a^{2}(b-a)=(a-b)^{3} / 3+\left(b^{3}-a^{3}\right) / 3-(b-a)^{2} a$.)
\triangleright Exercise 2.
(a) Show that if $X_{t}: \Omega \longrightarrow \mathbb{R}^{n}$ is a martingale w.r.t. a filtration $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$, then it is also a martingale w.r.t. its own filtration $\mathcal{F}_{t}^{X}:=\sigma\left\{X_{s}: s \leq t\right\}$.
(b) Show that if X_{t} is a martingale w.r.t. some filtration $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$, then $\mathbf{E}\left[X_{t}\right]=\mathbf{E}\left[X_{0}\right]$ for all $t \geq 0$.
(c) Give an example of a process X_{t} that satisfies $\mathbf{E}\left[X_{t}\right]=\mathbf{E}\left[X_{0}\right]$ for all $t \geq 0$, but is not a martingale w.r.t. its own filtration. (Harder version: $\mathbf{E}\left[X_{t} \mid X_{s}\right]=X_{s}$ for all $t \geq s$.)
\triangleright Exercise 3. Check directly (without Itô integrals) which of the following processes are martingales w.r.t. $\mathcal{F}_{t}:=\sigma\left\{B_{s}: s \leq t\right\}$:
(a) $X_{t}=B_{t}+4 t$;
(b) $X_{t}=B_{t}^{2}$;
(c) $X_{t}=B_{t}^{2}-t$;
(d) $X_{t}=t^{2} B_{t}-2 \int_{0}^{t} s B_{s} d s$;
(e) $X_{t}=B_{t}^{3}$;
(f) $X_{t}=B_{t}^{3}-3 t B_{t}$;
(g) $X_{t}=B_{1}(t) B_{2}(t)$, where $\left(B_{1}(t), B_{2}(t)\right)$ is a 2-dimensional Brownian motion.
\triangleright Exercise 4. A famous result of Itô (1951) gives the following formula for n times iterated Itô integrals:

$$
n!\int_{0 \leq u_{1} \leq \cdots \leq u_{n} \leq t} \ldots\left(\int_{0}\left(\int_{u_{1}}\right) d B_{u_{2}}\right) \ldots d B_{u_{n}}=t^{n / 2} h_{n}\left(B_{t} / \sqrt{t}\right)
$$

where h_{n} is the Hermite polynomial of degree n, defined by

$$
h_{n}(x)=(-1)^{n} e^{x^{2} / 2} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2} / 2}\right), \quad n=0,1,2, \ldots
$$

$\left(\right.$ Thus $\left.h_{0}(x)=1, h_{1}(x)=x, h_{2}(x)=x^{2}-1, h_{3}(x)=x^{3}-3 x.\right)$
(a) Verify that in each of these n Itô integrals the integrand satisfies the usual requirements.
(b) Verify the formula for $n=1,2,3$.
(c) Deduce part (f) of the previous exercise.
\triangleright Exercise 5. Assume that ξ_{t} is a stochastic process that satisfies the following:
(i) ξ_{t} is independent of ξ_{s} if $t \neq s$;
(ii) it is time-stationary;
(iii) $\mathbf{E}\left[\xi_{t}\right]=0$;
(iv) it has continuous paths almost surely.

Show that ξ_{t} is constant zero almost surely. (Hint: consider $\mathbf{E}\left[\left(\xi_{t}^{(N)}-\xi_{s}^{(N)}\right)^{2}\right]$, where $\xi_{t}^{(N)}=$ $(-N) \vee\left(N \wedge \xi_{t}\right)$, for $\left.N=1,2, \ldots\right)$

Exercise 6. Suppose $f, g \in \mathcal{V}(S, T)$ and that there exist constants C, D such that

$$
C+\int_{T}^{S} f(t, \omega) d B_{t}(\omega)=D+\int_{T}^{S} g(t, \omega) d B_{t}(\omega) \quad \text { for a.a. } \omega \in \Omega
$$

Show that $C=D$ and $f(t, \omega)=g(t, \omega)$ for a.a. $(t, \omega) \in[T, S] \times \Omega$.
\triangleright Exercise 7 (Bonus). Let $B:[0,1] \longrightarrow \mathbb{R}$ be one-dimensional Brownian motion with $B_{0}=0$ and let $f:[0,1] \longrightarrow \mathbb{R}$ be a deterministic $\operatorname{Hölder}(\epsilon)$ function for some $\epsilon>0$, i.e., there exists $C<\infty$ such that $f(x)-f(y)|<C| x-\left.y\right|^{\epsilon}$ for all $x, y \in[0,1]$. Show that the Riemann sums

$$
\sum_{i=0}^{n-1} f(i / n)\left(B_{(i+1) / n}-B_{i / n}\right)
$$

converge almost surely (not only in L^{2}) to the Itô integral $\int_{0}^{1} f(t) d B_{t}$, as $n \rightarrow \infty$.

