Stochastic Differential Equations Problem set No 3 - March 8, 2012

\triangleright Exercise 1. Applying Itô's formula to a suitable function $g\left(t, B_{t}\right)$, show that
(a) $\int_{0}^{t} s d B_{s}=t B_{t}-\int_{0}^{t} B_{s} d s$;
(b) $\int_{0}^{t} B_{s} d B_{s}=\frac{1}{2} B_{t}^{2}-\frac{1}{2} t$;
(c) $\int_{0}^{t} B_{s}^{2} d B_{s}=\frac{1}{3} B_{t}^{3}-\int_{0}^{t} B_{s} d s$.
\triangleright Exercise 2. Using Itô's formula, write X_{t} in the standard form of an Itô process, $d X_{t}=u(t, \omega) d t+$ $v(t, \omega) d B_{t}(\omega)$:
(a) $X_{t}=2+t+e^{B_{t}}$;
(b) $X_{t}=\left(t_{0}+t, B_{t}\right)$;
(c) $X_{t}=\left(B_{1}(t)+B_{2}(t)+B_{3}(t), B_{2}^{2}(t)-B_{1}(t) B_{3}(t)\right)$, where $\left(B_{1}(t), B_{2}(t), B_{3}(t)\right)$ is 3-dimensional Brownian motion.
\triangleright Exercise 3. Let X_{t}, Y_{t} be Itô processes in \mathbb{R}. Prove that

$$
d\left(X_{t} Y_{t}\right)=X_{t} d Y_{t}+Y_{t} d X_{t}+d X_{t} \cdot d Y_{t}
$$

Deduce the following integration by parts formula:

$$
\int_{0}^{t} X_{s} d Y_{s}=X_{t} Y_{t}-X_{0} Y_{0}-\int_{0}^{t} Y_{s} d X_{s}-\int_{0}^{t} d X_{s} \cdot d Y_{s}
$$

In particular, if $X_{t}(\omega)=f(t, \omega)$, a function of bounded variation for a.a. ω, or in other words, $d X_{t}(\omega)=f^{\prime}(t, \omega) d t$, and $d Y_{t}=d B_{t}$, then

$$
\int_{0}^{t} f(s) d B_{s}=f(t) B_{t}-\int_{0}^{t} B_{s} f^{\prime}(s) d s
$$

\triangleright Exercise 4. Using Itô's formula (in particular, the previous exercise), show that following processes are martingales w.r.t. $\mathcal{F}_{t}:=\sigma\left\{B_{s}: s \leq t\right\}$:
(a) $X_{t}=e^{t / 2} \cos B_{t}$;
(b) $X_{t}=e^{t / 2} \sin B_{t}$;
(c) $X_{t}=\left(B_{t}+t\right) \exp \left(-B_{t}-t / 2\right)$.
\triangleright Exercise 5. Let X_{t} be a 1-dimensional Itô process $d X_{t}(\omega)=v(t, \omega)^{\top} d B_{t}(\omega)$, with $v(t, \omega), B_{t} \in \mathbb{R}^{n}$ and $v \in \mathcal{V}^{n}[0, T]$ bounded. Prove that

$$
M_{t}:=X_{t}^{2}-\int_{0}^{t}\left\|v_{s}\right\|^{2} d s
$$

is a martingale. The process $\langle X, X\rangle_{t}:=\int_{0}^{t}\left\|v_{s}\right\|^{2} d s$ is the quadratic variation process of X_{t} or M_{t}.
\triangleright Exercise 6. Let B_{t} be n-dimensional BM and let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be C^{2}. Use Itô's formula to prove

$$
f\left(B_{t}\right)-f\left(B_{0}\right)=\int_{0}^{t} \nabla f\left(B_{s}\right)^{\top} d B_{s}+\frac{1}{2} \int_{0}^{t} \Delta f\left(B_{s}\right) d s .
$$

\triangleright Exercise 7 (Exponential martingales). Let $\theta(t, \omega)=\left(\theta_{1}(t, \omega), \ldots, \theta_{n}(t, \omega)\right) \in \mathbb{R}^{n}$ with $\theta_{k}(t, \omega) \in$ $\mathcal{V}[0, T]$ for each k and some $T \leq \infty$, and let $B(s)$ be Brownian motion in \mathbb{R}^{n}. Define

$$
Z_{t}:=\exp \left\{\int_{0}^{t} \theta(s, \omega)^{\top} d B(s)-\frac{1}{2} \int_{0}^{t}\|\theta(s, \omega)\|^{2} d s\right\} ; \quad 0 \leq t \leq T
$$

(a) Use Itô's formula for a suitable $g\left(t, Y_{t}\right)$ to prove that $d Z_{t}=Z_{t} \theta(t, \omega) d B(t)$.
(b) Deduce that Z_{t} is a martingale for $t \leq T$, provided that $Z_{t} \theta_{k}(t, \omega) \in \mathcal{V}[0, T]$ for each k.

Remark 1. A sufficient condition that Z_{t} be a martingale is the Kazamaki condition

$$
\mathbf{E}\left[\exp \left(\frac{1}{2} \int_{0}^{t} \theta(s, \omega)^{\top} d B(s)\right)\right]<\infty \quad \text { for all } t \leq T
$$

This, in turn, is implied by the stronger Novikov condition

$$
\mathbf{E}\left[\exp \left(\frac{1}{2} \int_{0}^{T}\|\theta(s, \omega)\|^{2} d s\right)\right]<\infty .
$$

Remark 2. The simplest discrete analogue of these exponential martingales is

$$
M_{n}:=1-\prod_{i=1}^{n}\left(1-X_{i}\right), \quad M_{0}=0
$$

where the $X_{i} \in\{-1,1\}$ are i.i.d. fair coin flips. This describes the double the stake until you win strategy, which almost certainly earns you money in a fair game, provided you have an unbounded credit.
\triangleright Exercise 8. In each of the cases below, find the process $f(t, \omega) \in \mathcal{V}[0, T]$ for Itô's representation, i.e., such that

$$
F(\omega)=\mathbf{E}[F]+\int_{0}^{T} f(t, \omega) d B_{t}(\omega)
$$

(a) $F(\omega)=B_{T}(\omega)$;
(b) $F(\omega)=B_{T}(\omega)^{2}$;
(c) $F(\omega)=\int_{0}^{T} B_{t}(\omega) d t$;
(d) $F(\omega)=\sin B_{T}(\omega)$.
\triangleright Exercise 9. Given an \mathcal{F}_{T}-measurable variable Y with $\mathbf{E}\left[Y^{2}\right]<\infty$, consider the martingale $M_{t}=$ $\mathbf{E}\left[Y \mid \mathcal{F}_{t}\right]$ for $t \in[0, T]$. According to the martingale representation theorem, there exists a unique process $g(t, \omega) \in \mathcal{V}[0, T]$ such that

$$
M_{t}=M_{0}+\int_{0}^{t} g(s, \omega) d B(s), \quad t \in[0, T]
$$

Find g in the following cases:
(a) $Y=B_{T}^{2}$;
(b) $Y=B_{T}^{3}$;
(c) $Y=e^{\sigma B_{T}}$ (hint: use that $e^{\sigma B_{t}-\sigma^{2} t / 2}$ is a martingale).
\triangleright Exercise 10 (Bessel(d) processes).
(a) Show that if X_{t} is an Itô process $d X_{t}(\omega)=\sum_{i=1}^{d} v_{i}(t, \omega) d B_{i}(t, \omega)$, then, in distribution, $d X_{t}=\left(\sum_{i=1}^{d} v_{i}(t)^{2}\right)^{1 / 2} d B(t)$.
(b) The previous was used in one of the lectures to show that the d-dimensional Bessel-squared process $Z(t)=\sum_{i=1}^{d} B_{i}(t)^{2} / 2$ satisfies the equation $d Z(t)=\frac{d}{2} d t+\sqrt{2 Z(t)} d B(t)$. From this, conclude that the $\operatorname{Bessel}(d)$ process $Y(t)=\sqrt{2 Z(t)}$ satisfies $d Y(t)=\frac{d-1}{2 Y(t)}+d B(t)$.
(c) Show that d-dimensional Brownian motion is not recurrent for $d \geq 2$, while neighbourhoodrecurrent for $d=2$ and transient for $d \geq 3$. (Therefore, at least for $d=2,3, \ldots$, our equation makes sense for $Y(t)$ started at $Y(0)=0$.)
\triangleright Exercise 11 (Bonus on Bessel(3)).
(a) Consider simple random walk $\left\{X_{t}\right\}_{t \in \mathbb{N}}$ on $\{0,1, \ldots, n\}$, started at $X_{0}=i>0$, conditioned to hit n before 0 , stopped at n. Show that this is a Markov chain. Denote it by Y_{t}^{n}.
(b) Show that Y_{t}^{n} has a limit process Y_{t} as $n \rightarrow \infty$, a Markov chain on the state space \mathbb{N}. Show that this Y_{t} is transient. It may be called SRW on \mathbb{N} conditioned on never hitting zero.
(c) What does Y_{t} have to do with the 3-dimensional Bessel process?

