STOCHASTIC DIFFERENTIAL EQUATIONS Problem set No 3 — March 8, 2012

- \triangleright Exercise 1. Applying Itô's formula to a suitable function $g(t, B_t)$, show that
 - (a) $\int_0^t s \, dB_s = tB_t \int_0^t B_s \, ds;$
 - **(b)** $\int_0^t B_s \, dB_s = \frac{1}{2} B_t^2 \frac{1}{2} t;$
 - (c) $\int_0^t B_s^2 dB_s = \frac{1}{3}B_t^3 \int_0^t B_s ds$.
- \triangleright Exercise 2. Using Itô's formula, write X_t in the standard form of an Itô process, $dX_t = u(t, \omega) dt + v(t, \omega) dB_t(\omega)$:
 - (a) $X_t = 2 + t + e^{B_t}$;

(b)
$$X_t = (t_0 + t, B_t);$$

- (c) $X_t = (B_1(t) + B_2(t) + B_3(t), B_2^2(t) B_1(t)B_3(t))$, where $(B_1(t), B_2(t), B_3(t))$ is 3-dimensional Brownian motion.
- \triangleright **Exercise 3.** Let X_t, Y_t be Itô processes in \mathbb{R} . Prove that

$$d(X_t Y_t) = X_t \, dY_t + Y_t \, dX_t + dX_t \cdot dY_t \, .$$

Deduce the following *integration by parts* formula:

$$\int_0^t X_s \, dY_s = X_t Y_t - X_0 Y_0 - \int_0^t Y_s \, dX_s - \int_0^t dX_s \cdot dY_s \, .$$

In particular, if $X_t(\omega) = f(t, \omega)$, a function of bounded variation for a.a. ω , or in other words, $dX_t(\omega) = f'(t, \omega) dt$, and $dY_t = dB_t$, then

$$\int_0^t f(s) \, dB_s = f(t) \, B_t - \int_0^t B_s \, f'(s) \, ds \, .$$

- \triangleright Exercise 4. Using Itô's formula (in particular, the previous exercise), show that following processes are martingales w.r.t. $\mathcal{F}_t := \sigma\{B_s : s \leq t\}$:
 - (a) $X_t = e^{t/2} \cos B_t$;
 - (b) $X_t = e^{t/2} \sin B_t$;
 - (c) $X_t = (B_t + t) \exp(-B_t t/2)$.
- ▷ Exercise 5. Let X_t be a 1-dimensional Itô process $dX_t(\omega) = v(t, \omega)^{\mathsf{T}} dB_t(\omega)$, with $v(t, \omega), B_t \in \mathbb{R}^n$ and $v \in \mathcal{V}^n[0, T]$ bounded. Prove that

$$M_t := X_t^2 - \int_0^t \|v_s\|^2 \, ds$$

is a martingale. The process $\langle X, X \rangle_t := \int_0^t \|v_s\|^2 ds$ is the quadratic variation process of X_t or M_t .

 \triangleright Exercise 6. Let B_t be *n*-dimensional BM and let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be C^2 . Use Itô's formula to prove

$$f(B_t) - f(B_0) = \int_0^t \nabla f(B_s)^{\mathsf{T}} \, dB_s + \frac{1}{2} \int_0^t \Delta f(B_s) \, ds$$

▷ Exercise 7 (Exponential martingales). Let $\theta(t, \omega) = (\theta_1(t, \omega), \dots, \theta_n(t, \omega)) \in \mathbb{R}^n$ with $\theta_k(t, \omega) \in \mathcal{V}[0, T]$ for each k and some $T \leq \infty$, and let B(s) be Brownian motion in \mathbb{R}^n . Define

$$Z_t := \exp\left\{\int_0^t \theta(s,\omega)^\mathsf{T} \, dB(s) - \frac{1}{2}\int_0^t \|\theta(s,\omega)\|^2 \, ds\right\}; \qquad 0 \le t \le T.$$

- (a) Use Itô's formula for a suitable $g(t, Y_t)$ to prove that $dZ_t = Z_t \theta(t, \omega) dB(t)$.
- (b) Deduce that Z_t is a martingale for $t \leq T$, provided that $Z_t \theta_k(t, \omega) \in \mathcal{V}[0, T]$ for each k.

Remark 1. A sufficient condition that Z_t be a martingale is the *Kazamaki condition*

$$\mathbf{E}\Big[\exp\Big(\frac{1}{2}\int_0^t \theta(s,\omega)^{\mathsf{T}} \, dB(s)\Big)\Big] < \infty \qquad \text{for all } t \le T$$

This, in turn, is implied by the stronger Novikov condition

$$\mathbf{E}\Big[\exp\left(\frac{1}{2}\int_0^T \|\theta(s,\omega)\|^2 \, ds\right)\Big] < \infty \, .$$

Remark 2. The simplest discrete analogue of these exponential martingales is

$$M_n := 1 - \prod_{i=1}^n (1 - X_i), \qquad M_0 = 0,$$

where the $X_i \in \{-1, 1\}$ are i.i.d. fair coin flips. This describes the *double the stake until you win* strategy, which almost certainly earns you money in a fair game, provided you have an unbounded credit.

▷ Exercise 8. In each of the cases below, find the process $f(t, \omega) \in \mathcal{V}[0, T]$ for Itô's representation, i.e., such that

$$F(\omega) = \mathbf{E}[F] + \int_0^T f(t,\omega) \, dB_t(\omega) \, .$$
(a) $F(\omega) = B_T(\omega)$;
(b) $F(\omega) = B_T(\omega)^2$;
(c) $F(\omega) = \int_0^T B_t(\omega) \, dt$;
(d) $F(\omega) = \sin B_T(\omega) \, .$

▷ Exercise 9. Given an \mathcal{F}_T -measurable variable Y with $\mathbf{E}[Y^2] < \infty$, consider the martingale $M_t = \mathbf{E}[Y \mid \mathcal{F}_t]$ for $t \in [0, T]$. According to the martingale representation theorem, there exists a unique process $g(t, \omega) \in \mathcal{V}[0, T]$ such that

$$M_t = M_0 + \int_0^t g(s, \omega) \, dB(s) \,, \qquad t \in [0, T] \,.$$

Find g in the following cases:

(a) $Y = B_T^2$; (b) $Y = B_T^3$; (c) $Y = e^{\sigma B_T}$ (hint: use that $e^{\sigma B_t - \sigma^2 t/2}$ is a martingale).

- \triangleright Exercise 10 (Bessel(d) processes).
 - (a) Show that if X_t is an Itô process $dX_t(\omega) = \sum_{i=1}^d v_i(t,\omega) dB_i(t,\omega)$, then, in distribution, $dX_t = \left(\sum_{i=1}^d v_i(t)^2\right)^{1/2} dB(t).$
 - (b) The previous was used in one of the lectures to show that the d-dimensional Bessel-squared process $Z(t) = \sum_{i=1}^{d} B_i(t)^2/2$ satisfies the equation $dZ(t) = \frac{d}{2}dt + \sqrt{2Z(t)} dB(t)$. From this, conclude that the Bessel(d) process $Y(t) = \sqrt{2Z(t)}$ satisfies $dY(t) = \frac{d-1}{2Y(t)} + dB(t)$.
 - (c) Show that d-dimensional Brownian motion is not recurrent for $d \ge 2$, while neighbourhoodrecurrent for d = 2 and transient for $d \ge 3$. (Therefore, at least for d = 2, 3, ..., our equation makes sense for Y(t) started at Y(0) = 0.)
- \triangleright Exercise 11 (Bonus on Bessel(3)).
 - (a) Consider simple random walk $\{X_t\}_{t\in\mathbb{N}}$ on $\{0, 1, \ldots, n\}$, started at $X_0 = i > 0$, conditioned to hit *n* before 0, stopped at *n*. Show that this is a Markov chain. Denote it by Y_t^n .
 - (b) Show that Y_t^n has a limit process Y_t as $n \to \infty$, a Markov chain on the state space \mathbb{N} . Show that this Y_t is transient. It may be called SRW on \mathbb{N} conditioned on never hitting zero.
 - (c) What does Y_t have to do with the 3-dimensional Bessel process?