
Stochastic Differential Equations

Problem set No 4 — March 20, 2012

Exercise⊲ 1. Check that the following processes solve the corresponding SDE’s, where Bt is 1-

dimensional Brownian motion:

(a) Xt = eBt solves dXt = 1
2 Xt dt + Xt dBt.

(b) Xt = Bt

1+t , with B0 = 0, solves

dXt =
−Xt

1 + t
dt +

1

1 + t
dBt , X0 = 0 .

(c) Xt = sin(Bt), with B0 = a ∈ (−π
2 , π

2 ), solves

dXt = −1

2
Xt dt +

√

1 − X2
t dBt , t < inf

{

s > 0 : Bs 6∈
[

− π

2
,
π

2

]

}

.

(d)
(

X1(t), X2(t)
)

=
(

cosh(Bt), sinh(Bt)
)

solves

(

dX1

dX2

)

=
1

2

(

X1

X2

)

dt +

(

X2

X1

)

dBt .

Exercise⊲ 2. Solve the following two-dimensional SDE for Xt = (Ut, Vt), driven by a one-dimensional

Brownian motion Bt:

dUt = −1

2
Ut dt − Vt dBt

dVt = −1

2
Vt dt + Ut dBt ,

or in vector notation,

dXt = −1

2
Xt dt + K Xt dBt , where K =

(

0 −1

1 0

)

,

and observe that it is Brownian motion on a circle in R
2. (Hint: observe the similarity of the

equation with the one for geometric Brownian motion, hence try Zt := Ut + iVt.)
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Exercise⊲ 3. The mean-reverting Ornstein-Uhlenbeck process is the solution of the SDE

dXt = (µ − Xt) dt + σ dBt ,

with µ, σ ∈ R constants and Bt 1-dim BM. (We saw this in the special case of µ = 0.)

(a) Solve the equation.

(b) Find E[Xt] and Var[Xt].

(c) Let {Xi}i≥0 be SRW on the hypercube {0, 1}n, and let |Xi| be the number of 1’s among the

coordinates. What does
|X⌊nt⌋| − n/2√

n
, t ≥ 0 ,

have to do with the Ornstein-Uhlenbeck process?

Exercise⊲ 4. Solve the following SDE’s, where Bt is 1-dimensional Brownian motion:

(a) dXt = −Xt dt + e−t dBt.

(b) dXt = r dt + α Xt dBt, with r, α ∈ R constants. (Hint: multiply by exp
(

− αBt + α2

2 t
)

.)

(c) With X(t) = (X1(t), X2(t)), and a two-dimensional Brownian motion B(t) = (B1(t), B2(t)),

dX1(t) = X2(t) dt + α dB1(t)

dX2(t) = −X1(t) dt + β dB2(t) ,

or in vector notation,

dX(t) = JX(t) dt + AdB(t) , where J =

(

0 1

−1 0

)

, A =

(

α 0

0 β

)

.

(Same hint again: multiply by e−Jt. Don’t leave the answer in matrix notation, but write out

the coordinates using simple 1-dimensional Itô-integrals.)
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Exercise⊲ 5. Recall that any continuous Gaussian process Xt is determined by its means EXt pair-

wise covariances cov(s, t) := E[ XsXt ] − EXs EXt. For a, b ∈ R, the one-dimensional Brownian

bridge from a to b is such a process for t ∈ [0, 1], with EXt = a(1− t)+ bt and cov(s, t) = s∧ t− st.

Prove that the law of this process is also given by any of the following definitions:

(a) Xt := a(1 − t) + bt + Bt − tB1 for t ∈ [0, 1], with BM started at B0 = 0.

(b) Xt := a(1− t) + bt + (1− t)Bt/(1−t). Note that it requires a tiny argument that this definition

makes sense at t = 1 and gives what we want.

(c) Xt := a(1 − t) + bt + (1 − t)
∫ t

0
1

1−s dBs. Note again that t = 1 requires care. (Hint for that:

use Doob’s martingale inequality to bound the probability that sup
{

(1 − t)
∫ t

0
1

1−s dBs : t ∈
[1 − 2−n, 1 − 2−n−1)

}

> ǫ.)

(d) Part (c) is in fact the strong solution of the SDE

dXt =
b − Xt

1 − t
dt + dBt , t ∈ [0, 1) , X0 = a .

Exercise⊲ 6 (Bonus on Tanaka). Recall that Tanaka’s SDE dXt = sign(Xt) dBt has a weak solution

but no strong solutions: Xt is a Brownian motion which cannot be measurable w.r.t. σ{Bs : 0 ≤
s ≤ t}. In the proof, we used two ingredients: Tanaka’s formula

|Bt| − |B0| =

∫ t

0

sign(Bs) dBs + L0(t) ,

and that the integral term on the right hand side, denoted by Yt from now on, is a Brownian motion.

(a) Prove that Yt is indeed a standard BM. (Hint: use the definition of Itô integrals and the fact

that the zero set of BM is closed with zero Lebesgue measure.)

(b) Using part (a), show Lévy’s theorem relating local time at zero and the maximum process

Mt := sup{Bs : 0 ≤ s ≤ t} to each other:

(

|Bt|, L0(t)
)

t≥0

d
=
(

Mt − Bt, Mt

)

t≥0
.

(c) Show the following discrete Tanaka formula for SRW Sn :=
∑n

j=1 Xj on Z:

|Sn| − |S0| =

n−1
∑

j=0

sign(Sj) (Sj+1 − Sj) + L0(n) ,

where L0(n) := |{0 ≤ j ≤ n − 1 : Sj = 0}|.
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