Stochastic Differential Equations
 Problem set No 4 - March 20, 2012

\triangleright Exercise 1. Check that the following processes solve the corresponding SDE's, where B_{t} is 1dimensional Brownian motion:
(a) $X_{t}=e^{B_{t}}$ solves $d X_{t}=\frac{1}{2} X_{t} d t+X_{t} d B_{t}$.
(b) $X_{t}=\frac{B_{t}}{1+t}$, with $B_{0}=0$, solves

$$
d X_{t}=\frac{-X_{t}}{1+t} d t+\frac{1}{1+t} d B_{t}, \quad X_{0}=0
$$

(c) $X_{t}=\sin \left(B_{t}\right)$, with $B_{0}=a \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, solves

$$
d X_{t}=-\frac{1}{2} X_{t} d t+\sqrt{1-X_{t}^{2}} d B_{t}, \quad t<\inf \left\{s>0: B_{s} \notin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right\}
$$

(d) $\left(X_{1}(t), X_{2}(t)\right)=\left(\cosh \left(B_{t}\right), \sinh \left(B_{t}\right)\right)$ solves

$$
\binom{d X_{1}}{d X_{2}}=\frac{1}{2}\binom{X_{1}}{X_{2}} d t+\binom{X_{2}}{X_{1}} d B_{t}
$$

\triangleright Exercise 2. Solve the following two-dimensional SDE for $X_{t}=\left(U_{t}, V_{t}\right)$, driven by a one-dimensional Brownian motion B_{t} :

$$
\begin{aligned}
d U_{t} & =-\frac{1}{2} U_{t} d t-V_{t} d B_{t} \\
d V_{t} & =-\frac{1}{2} V_{t} d t+U_{t} d B_{t}
\end{aligned}
$$

or in vector notation,

$$
d X_{t}=-\frac{1}{2} X_{t} d t+K X_{t} d B_{t}, \quad \text { where } K=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

and observe that it is Brownian motion on a circle in \mathbb{R}^{2}. (Hint: observe the similarity of the equation with the one for geometric Brownian motion, hence try $Z_{t}:=U_{t}+i V_{t}$.)
\triangleright Exercise 3. The mean-reverting Ornstein-Uhlenbeck process is the solution of the SDE

$$
d X_{t}=\left(\mu-X_{t}\right) d t+\sigma d B_{t}
$$

with $\mu, \sigma \in \mathbb{R}$ constants and $B_{t} 1$-dim BM. (We saw this in the special case of $\mu=0$.)
(a) Solve the equation.
(b) Find $\mathbf{E}\left[X_{t}\right]$ and $\operatorname{Var}\left[X_{t}\right]$.
(c) Let $\left\{X_{i}\right\}_{i \geq 0}$ be SRW on the hypercube $\{0,1\}^{n}$, and let $\left|X_{i}\right|$ be the number of 1 's among the coordinates. What does

$$
\frac{\left|X_{\lfloor n t\rfloor}\right|-n / 2}{\sqrt{n}}, \quad t \geq 0
$$

have to do with the Ornstein-Uhlenbeck process?
\triangleright Exercise 4. Solve the following SDE's, where B_{t} is 1-dimensional Brownian motion:
(a) $d X_{t}=-X_{t} d t+e^{-t} d B_{t}$.
(b) $d X_{t}=r d t+\alpha X_{t} d B_{t}$, with $r, \alpha \in \mathbb{R}$ constants. (Hint: multiply by $\exp \left(-\alpha B_{t}+\frac{\alpha^{2}}{2} t\right)$.)
(c) With $X(t)=\left(X_{1}(t), X_{2}(t)\right)$, and a two-dimensional Brownian motion $B(t)=\left(B_{1}(t), B_{2}(t)\right)$,

$$
\begin{aligned}
& d X_{1}(t)=X_{2}(t) d t+\alpha d B_{1}(t) \\
& d X_{2}(t)=-X_{1}(t) d t+\beta d B_{2}(t)
\end{aligned}
$$

or in vector notation,

$$
d X(t)=J X(t) d t+A d B(t), \quad \text { where } J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad A=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right)
$$

(Same hint again: multiply by $e^{-J t}$. Don't leave the answer in matrix notation, but write out the coordinates using simple 1-dimensional Itô-integrals.)
\triangleright Exercise 5. Recall that any continuous Gaussian process X_{t} is determined by its means $\mathbf{E} X_{t}$ pairwise covariances $\operatorname{cov}(s, t):=\mathbf{E}\left[X_{s} X_{t}\right]-\mathbf{E} X_{s} \mathbf{E} X_{t}$. For $a, b \in \mathbb{R}$, the one-dimensional Brownian bridge from a to b is such a process for $t \in[0,1]$, with $\mathbf{E} X_{t}=a(1-t)+b t$ and $\operatorname{cov}(s, t)=s \wedge t-s t$. Prove that the law of this process is also given by any of the following definitions:
(a) $X_{t}:=a(1-t)+b t+B_{t}-t B_{1}$ for $t \in[0,1]$, with BM started at $B_{0}=0$.
(b) $X_{t}:=a(1-t)+b t+(1-t) B_{t /(1-t)}$. Note that it requires a tiny argument that this definition makes sense at $t=1$ and gives what we want.
(c) $X_{t}:=a(1-t)+b t+(1-t) \int_{0}^{t} \frac{1}{1-s} d B_{s}$. Note again that $t=1$ requires care. (Hint for that: use Doob's martingale inequality to bound the probability that $\sup \left\{(1-t) \int_{0}^{t} \frac{1}{1-s} d B_{s}: t \in\right.$ $\left.\left[1-2^{-n}, 1-2^{-n-1}\right)\right\}>\epsilon$.)
(d) Part (c) is in fact the strong solution of the SDE

$$
d X_{t}=\frac{b-X_{t}}{1-t} d t+d B_{t}, \quad t \in[0,1), \quad X_{0}=a
$$

\triangleright Exercise 6 (Bonus on Tanaka). Recall that Tanaka's SDE $d X_{t}=\operatorname{sign}\left(X_{t}\right) d B_{t}$ has a weak solution but no strong solutions: X_{t} is a Brownian motion which cannot be measurable w.r.t. $\sigma\left\{B_{s}: 0 \leq\right.$ $s \leq t\}$. In the proof, we used two ingredients: Tanaka's formula

$$
\left|B_{t}\right|-\left|B_{0}\right|=\int_{0}^{t} \operatorname{sign}\left(B_{s}\right) d B_{s}+L_{0}(t)
$$

and that the integral term on the right hand side, denoted by Y_{t} from now on, is a Brownian motion.
(a) Prove that Y_{t} is indeed a standard BM. (Hint: use the definition of Itô integrals and the fact that the zero set of BM is closed with zero Lebesgue measure.)
(b) Using part (a), show Lévy's theorem relating local time at zero and the maximum process $M_{t}:=\sup \left\{B_{s}: 0 \leq s \leq t\right\}$ to each other:

$$
\left(\left|B_{t}\right|, L_{0}(t)\right)_{t \geq 0} \stackrel{d}{=}\left(M_{t}-B_{t}, M_{t}\right)_{t \geq 0}
$$

(c) Show the following discrete Tanaka formula for SRW $S_{n}:=\sum_{j=1}^{n} X_{j}$ on \mathbb{Z} :

$$
\left|S_{n}\right|-\left|S_{0}\right|=\sum_{j=0}^{n-1} \operatorname{sign}\left(S_{j}\right)\left(S_{j+1}-S_{j}\right)+L_{0}(n)
$$

where $L_{0}(n):=\left|\left\{0 \leq j \leq n-1: S_{j}=0\right\}\right|$.

