STOCHASTIC DIFFERENTIAL EQUATIONS Problem set No 5 — April 3, 2012

▷ **Exercise 1.** Find the generator of the following Itô diffusions:

(a)
$$dX_t = r \, dt + \alpha \, X_t \, dB_t.$$

(b) $dY_t = \begin{pmatrix} dt \\ dX_t \end{pmatrix}$, where $dX_t = \gamma \, X_t \, dt + \sigma \, dB_t$ is an Ornstein-Uhlenbeck process.
(c) $\begin{pmatrix} dX_1 \\ dX_2 \end{pmatrix} = \begin{pmatrix} 1 \\ X_2 \end{pmatrix} dt + \begin{pmatrix} 0 \\ e^{X_1} \end{pmatrix} dB_t.$
(d) $\begin{pmatrix} dX_1 \\ dX_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} dt + \begin{pmatrix} 1 & 0 \\ 0 & X_1 \end{pmatrix} \begin{pmatrix} dB_1 \\ dB_2 \end{pmatrix}.$

▷ **Exercise 2.** Find an Itô diffusion (i.e., write down the SDE for it) whose generator is the following:

(a)
$$Af(x) = f'(x) + f''(x), f \in C_0^2(\mathbb{R}).$$

(b) $Af(t,x) = \frac{\partial f}{\partial t} + cx\frac{\partial f}{\partial x} + \frac{1}{2}\alpha^2 x^2 \frac{\partial^2 f}{\partial x^2}, f \in C_0^2(\mathbb{R}^2).$

\triangleright Exercise 3.

- (a) Let B_t be 1-dimensional BM, with $B_0 = x > 0$, and let $\tau := \inf\{t : B_t = 0\}$. Using Dynkin's formula, show that $\tau < \infty$ a.s., but $\mathbf{E}\tau = \infty$.
- (b) Let X_t be a geometric BM, i.e.,

$$dX_t = r X_t dt + \alpha X_t dB_t, \qquad X_0 = x > 0.$$

Find the generator A of X_t and compute Af(x) when $f(x) = x^{\gamma}$, x > 0, γ constant.

(c) Recall that if $r < \alpha^2/2$, then $X_t \to 0$ a.s., as $t \to \infty$. For R > x, using Dynkin's formula with $f(x) = x^{\gamma_1}, \gamma_1 = 1 - 2r/\alpha^2$, prove that

$$\mathbf{P}_x[X_t \text{ ever hits } R] = \left(\frac{x}{R}\right)^{\gamma_1}$$

\triangleright Exercise 4.

- (a) Find the generator of the *d*-dimensional Bessel process $dX_t = \frac{d-1}{2X_t} dt + dB_t$ on \mathbb{R} .
- (b) Using Dynkin's formula, show that the Bessel(d) process is transient iff d > 2.
- (c) (Bonus) Show that the Bessel(d) process is recurrent for 0 < d < 2 in the sense that all points (including zero) are visited infinitely often. (Clear for strictly positive points and $d > 2 \ge 1$, when the drift is non-negative.) For $d \le 0$, the point 0 is absorbing.
- ▷ Exercise 5. Let $C(\mathbb{N}) := \{f : \mathbb{N} \longrightarrow \mathbb{R} \text{ such that } \lim_{x \to \infty} f(x) = 0\}$ with norm $||f|| := \sup_{x \in \mathbb{N}} f(x)$. Give examples of continuous time Markov chains P_t on \mathbb{N} with the following properties:
 - (a) it is not a contraction semigroup from $C(\mathbb{N})$ into $C(\mathbb{N})$.
 - (b) it is a contraction semigroup on $C(\mathbb{N})$, whose generator is defined on the entire $C(\mathbb{N})$ but is not bounded there.
 - (c) (Bonus) If P_t is a contraction semigroup on $C(\mathbb{N})$, is it necessarily strongly continuous? What about $C(\mathbb{N}^*)$, where $\mathbb{N}^* = \mathbb{N} \cup \{\infty\}$? (This allows the Markov chain to make infinitely many jumps in finite time and then stay at ∞ forever.) And what if P_t is a contraction semigroup on $C(\mathbb{Q})$?
- \triangleright **Exercise 6.** Show that the solution u(t, x) of the initial value problem

$$\begin{split} \frac{\partial u}{\partial t} &= \frac{1}{2}\beta^2 x^2 \frac{\partial^2 u}{\partial x^2} + \alpha \, x \, \frac{\partial u}{\partial x} \,, \qquad t > 0, \, \, x \in \mathbb{R} \,, \\ u(0,x) &= f(x) \,, \qquad (f \in C_0^2(\mathbb{R}) \text{ given}) \end{split}$$

can be expressed as follows:

$$u(t,x) = \mathbf{E}\left[f\left(x \exp\left\{\beta B_t + (\alpha - \beta^2/2)t\right\}\right)\right]$$
$$= \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} f\left(x \exp\left\{\beta y + (\alpha - \beta^2/2)t\right\}\right) \exp\left(-\frac{y^2}{2t}\right) dy, \qquad t > 0$$