Stochastic Differential Equations Problem set No 5 - April 3, 2012

Exercise 1. Find the generator of the following Itô diffusions:
(a) $d X_{t}=r d t+\alpha X_{t} d B_{t}$.
(b) $d Y_{t}=\binom{d t}{d X_{t}}$, where $d X_{t}=\gamma X_{t} d t+\sigma d B_{t}$ is an Ornstein-Uhlenbeck process.
(c) $\binom{d X_{1}}{d X_{2}}=\binom{1}{X_{2}} d t+\binom{0}{e^{X_{1}}} d B_{t}$.
(d) $\binom{d X_{1}}{d X_{2}}=\binom{1}{0} d t+\left(\begin{array}{cc}1 & 0 \\ 0 & X_{1}\end{array}\right)\binom{d B_{1}}{d B_{2}}$.

Exercise 2. Find an Itô diffusion (i.e., write down the SDE for it) whose generator is the following:
(a) $A f(x)=f^{\prime}(x)+f^{\prime \prime}(x), f \in C_{0}^{2}(\mathbb{R})$.
(b) $A f(t, x)=\frac{\partial f}{\partial t}+c x \frac{\partial f}{\partial x}+\frac{1}{2} \alpha^{2} x^{2} \frac{\partial^{2} f}{\partial x^{2}}, f \in C_{0}^{2}\left(\mathbb{R}^{2}\right)$.

\triangleright Exercise 3.

(a) Let B_{t} be 1-dimensional BM, with $B_{0}=x>0$, and let $\tau:=\inf \left\{t: B_{t}=0\right\}$. Using Dynkin's formula, show that $\tau<\infty$ a.s., but $\mathbf{E} \tau=\infty$.
(b) Let X_{t} be a geometric BM, i.e.,

$$
d X_{t}=r X_{t} d t+\alpha X_{t} d B_{t}, \quad X_{0}=x>0
$$

Find the generator A of X_{t} and compute $A f(x)$ when $f(x)=x^{\gamma}, x>0, \gamma$ constant.
(c) Recall that if $r<\alpha^{2} / 2$, then $X_{t} \rightarrow 0$ a.s., as $t \rightarrow \infty$. For $R>x$, using Dynkin's formula with $f(x)=x^{\gamma_{1}}, \gamma_{1}=1-2 r / \alpha^{2}$, prove that

$$
\mathbf{P}_{x}\left[X_{t} \text { ever hits } R\right]=\left(\frac{x}{R}\right)^{\gamma_{1}}
$$

\triangleright Exercise 4.

(a) Find the generator of the d-dimensional Bessel process $d X_{t}=\frac{d-1}{2 X_{t}} d t+d B_{t}$ on \mathbb{R}.
(b) Using Dynkin's formula, show that the $\operatorname{Bessel}(d)$ process is transient iff $d>2$.
(c) (Bonus) Show that the $\operatorname{Bessel}(d)$ process is recurrent for $0<d<2$ in the sense that all points (including zero) are visited infinitely often. (Clear for strictly positive points and $d>2 \geq 1$, when the drift is non-negative.) For $d \leq 0$, the point 0 is absorbing.
\triangleright Exercise 5. Let $C(\mathbb{N}):=\left\{f: \mathbb{N} \longrightarrow \mathbb{R}\right.$ such that $\left.\lim _{x \rightarrow \infty} f(x)=0\right\}$ with norm $\|f\|:=\sup _{x \in \mathbb{N}} f(x)$. Give examples of continuous time Markov chains P_{t} on \mathbb{N} with the following properties:
(a) it is not a contraction semigroup from $C(\mathbb{N})$ into $C(\mathbb{N})$.
(b) it is a contraction semigroup on $C(\mathbb{N})$, whose generator is defined on the entire $C(\mathbb{N})$ but is not bounded there.
(c) (Bonus) If P_{t} is a contraction semigroup on $C(\mathbb{N})$, is it necessarily strongly continuous? What about $C\left(\mathbb{N}^{*}\right)$, where $\mathbb{N}^{*}=\mathbb{N} \cup\{\infty\}$? (This allows the Markov chain to make infinitely many jumps in finite time and then stay at ∞ forever.) And what if P_{t} is a contraction semigroup on $C(\mathbb{Q})$?
\triangleright Exercise 6. Show that the solution $u(t, x)$ of the initial value problem

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{1}{2} \beta^{2} x^{2} \frac{\partial^{2} u}{\partial x^{2}}+\alpha x \frac{\partial u}{\partial x}, \quad t>0, x \in \mathbb{R} \\
u(0, x)=f(x), \quad\left(f \in C_{0}^{2}(\mathbb{R}) \text { given }\right)
\end{gathered}
$$

can be expressed as follows:

$$
\begin{aligned}
u(t, x) & =\mathbf{E}\left[f\left(x \exp \left\{\beta B_{t}+\left(\alpha-\beta^{2} / 2\right) t\right\}\right)\right] \\
& =\frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} f\left(x \exp \left\{\beta y+\left(\alpha-\beta^{2} / 2\right) t\right\}\right) \exp \left(-\frac{y^{2}}{2 t}\right) d y, \quad t>0
\end{aligned}
$$

