STOCHASTIC DIFFERENTIAL EQUATIONS
Problem set No 6 — April 24, 2012

> Exercise 1. Recall that we defined A : ¥(A) — B to be dissipative, or —A to be accretive

it €(A) is dense in B and Vo € €(A) exists a normalized tangent functional £ € B* such that
(—Ap) > 0. We showed in class that this implies that

A=Al = Alell - for all A>0, (1)

and, if A is the infinitesimal generator of a contraction semigroup, then also the other way around.
(a) Show that () implies that A is closable in B.

(b) Consider Af = 1f” on % = Cso[0,00) N C2[0,00), a wannabe generator of reflecting BM on
[0,00). Show that A does not satisfy (@) on ¢ and is not closable in B = Cx[0,00). On the
other hand, it does satisfy () on ¢ = Cx[0,00) N C2 [0,00) N {f'(0) = 0}.

Exercise 2. Young’s inequality for convolutions says that if 1 < p,q,r < oo satisfy % + % = % + 1,

then ||f * g|l» < ||fllp lgllq- Using this, show that e®* is a continuous LP-contractive semigroup.

Exercise 3 (Bonus). For A on B = C(R), we have seen that 2(A) = Coo(R) N CZ (R), i.e.,
vanishing value and vanishing 2nd derivative at infinity. We have also seen that on R?, d > 2, the
Schwarz space .7 (R?) is a good core € (A): the operator —A is accretive there, hence closable, and
Ran(I — A) = Coo(RY), and thus A is indeed an infinitesimal generator, as we already knew. But

what is Z(A), i.e., what domain do we get when we close the operator from .(A)? It contains
Cx(R) N C2 (R), but isn’t it larger?

> Exercise 4.

(a) Let ¢ be a bounded continuous function on R", and « > 0. Find a bounded solution u of the
equation

(a—%A)uzw on R".

Prove that the solution is unique.



(b) Let B; be n-dimensional Brownian motion (n > 1) and let F' be a Borel set in R™. Prove
that the expected total length of times ¢t that B, stays in F' is zero if and only if the Lebesgue

measure of F' is zero. (Hint: Consider the resolvent R, for o > 0 and then let a — 0.)

> Exercise 5. In connection with the deduction of the Black-Scholes formula for the price of an

option, the following partial differential equation appears for u = u(t, z):

ou ou 1 _, ,9%
ot pu+ax8x+2ﬁ$8x2’ e
uw(0,z) = (z — K)T; zeR,

where p > 0, «, 8, K > 0 are constants. Use the Feynman-Kac formula to prove that the solution

u of this equation is given by
e—pt 2

u(t,:zc)z\/ﬁ R(xexp{(a—BQ/Q)t—l—ﬁy}—K)Jrexp(—%) dy; t>0.

> Exercise 6.

(a) I have seen the following result called Feynman-Kac formula, e.g., by L. Craig Evans: the

unique solution for the PDE

1
—§Au+cu:f in U € R™ bounded

u=0 on OU ,
where ¢, f are smooth functions, ¢ > 0, is given by
u(z) = E, {/ f(Xe)e™ Jo e(Xe) ds gy forz e U,
0

where 7 is the first hitting time of U. Prove this formula.

(b) T have found the following exercise in the same source, but I haven’t managed to do it in the
way suggested by Craig Evans. Let f be a positive smooth function on R™. Use the above

Feynman-Kac formula to prove that

M@= sy { -} [ Ars)as)

is a martingale.


http://www.math.berkeley.edu/~evans

