STOCHASTIC DIFFERENTIAL EQUATIONS Problem set No 6 — April 24, 2012

▷ Exercise 1. Recall that we defined $A : \mathscr{C}(A) \longrightarrow \mathbf{B}$ to be dissipative, or -A to be accretive if $\mathscr{C}(A)$ is dense in \mathbf{B} and $\forall \varphi \in \mathscr{C}(A)$ exists a normalized tangent functional $\ell \in \mathbf{B}^*$ such that $\ell(-A\varphi) \ge 0$. We showed in class that this implies that

$$\|(\lambda - A)\varphi\| \ge \lambda \|\varphi\| \quad \text{for all } \lambda > 0, \qquad (1)$$

and, if A is the infinitesimal generator of a contraction semigroup, then also the other way around.

- (a) Show that (1) implies that A is closable in **B**.
- (b) Consider $Af = \frac{1}{2}f''$ on $\tilde{\mathscr{C}} = C_{\infty}[0,\infty) \cap C_{\infty}^{2}[0,\infty)$, a wannabe generator of reflecting BM on $[0,\infty)$. Show that A does not satisfy (1) on $\tilde{\mathscr{C}}$ and is not closable in $\mathbf{B} = C_{\infty}[0,\infty)$. On the other hand, it does satisfy (1) on $\mathscr{C} = C_{\infty}[0,\infty) \cap C_{\infty}^{2}[0,\infty) \cap \{f'(0) = 0\}$.
- ▷ Exercise 2. Young's inequality for convolutions says that if $1 \le p, q, r \le \infty$ satisfy $\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1$, then $||f * g||_r \le ||f||_p ||g||_q$. Using this, show that $e^{\Delta t}$ is a continuous L^p -contractive semigroup.
- ▷ Exercise 3 (Bonus). For Δ on $\mathbf{B} = C_{\infty}(\mathbb{R})$, we have seen that $\mathscr{D}(\Delta) = C_{\infty}(\mathbb{R}) \cap C_{\infty}^{2}(\mathbb{R})$, i.e., vanishing value and vanishing 2nd derivative at infinity. We have also seen that on \mathbb{R}^{d} , $d \geq 2$, the Schwarz space $\mathscr{S}(\mathbb{R}^{d})$ is a good core $\mathscr{C}(\Delta)$: the operator $-\Delta$ is accretive there, hence closable, and $\overline{\operatorname{Ran}(I - \Delta)} = C_{\infty}(\mathbb{R}^{d})$, and thus Δ is indeed an infinitesimal generator, as we already knew. But what is $\mathscr{D}(\Delta)$, i.e., what domain do we get when we close the operator from $\mathscr{S}(\Delta)$? It contains $C_{\infty}(\mathbb{R}) \cap C_{\infty}^{2}(\mathbb{R})$, but isn't it larger?

\triangleright Exercise 4.

(a) Let ψ be a bounded continuous function on \mathbb{R}^n , and $\alpha > 0$. Find a bounded solution u of the equation

$$\left(\alpha - \frac{1}{2}\Delta\right)u = \psi$$
 on \mathbb{R}^n .

Prove that the solution is unique.

- (b) Let B_t be *n*-dimensional Brownian motion $(n \ge 1)$ and let F be a Borel set in \mathbb{R}^n . Prove that the expected total length of times t that B_t stays in F is zero if and only if the Lebesgue measure of F is zero. (Hint: Consider the resolvent R_α for $\alpha > 0$ and then let $\alpha \to 0$.)
- \triangleright Exercise 5. In connection with the deduction of the Black-Scholes formula for the price of an option, the following partial differential equation appears for u = u(t, x):

$$\frac{\partial u}{\partial t} = -\rho \, u + \alpha \, x \, \frac{\partial u}{\partial x} + \frac{1}{2} \, \beta^2 \, x^2 \, \frac{\partial^2 u}{\partial x^2} \, ; \qquad t > 0, \ x \in \mathbb{R}$$
$$u(0, x) = (x - K)^+ \, ; \qquad x \in \mathbb{R} \, ,$$

where $\rho > 0$, α , β , K > 0 are constants. Use the Feynman-Kac formula to prove that the solution u of this equation is given by

$$u(t,x) = \frac{e^{-\rho t}}{\sqrt{2\pi t}} \int_{\mathbb{R}} \left(x \exp\left\{ (\alpha - \beta^2/2)t + \beta y \right\} - K \right)^+ \exp\left(-\frac{y^2}{2t} \right) \, dy \, ; \qquad t > 0 \, .$$

\triangleright Exercise 6.

(a) I have seen the following result called Feynman-Kac formula, e.g., by L. Craig Evans: the unique solution for the PDE

$$-\frac{1}{2}\Delta u + c \, u = f \qquad \text{in } U \subset \mathbb{R}^n \text{ bounded}$$
$$u = 0 \qquad \text{on } \partial U,$$

where c, f are smooth functions, $c \ge 0$, is given by

$$u(x) = \mathbf{E}_x \left[\int_0^\tau f(X_t) \, e^{-\int_0^t c(X_s) \, ds} dt \right] \qquad \text{for } x \in U \,,$$

where τ is the first hitting time of ∂U . Prove this formula.

(b) I have found the following exercise in the same source, but I haven't managed to do it in the way suggested by Craig Evans. Let f be a positive smooth function on \mathbb{R}^n . Use the above Feynman-Kac formula to prove that

$$M(t) := f(B_t) \exp\left\{-\frac{1}{2}\int_0^t \Delta f(B_s) \, ds\right\}$$

is a martingale.