
Stochastic Differential Equations

Problem set No 6 — April 24, 2012

Exercise⊲ 1. Recall that we defined A : C (A) −→ B to be dissipative, or −A to be accretive

if C (A) is dense in B and ∀ϕ ∈ C (A) exists a normalized tangent functional ℓ ∈ B∗ such that

ℓ(−Aϕ) ≥ 0. We showed in class that this implies that

‖(λ−A)ϕ‖ ≥ λ‖ϕ‖ for all λ > 0 , (1)

and, if A is the infinitesimal generator of a contraction semigroup, then also the other way around.

(a) Show that (1) implies that A is closable in B.

(b) Consider Af = 1
2f

′′ on C̃ = C∞[0,∞) ∩ C2
∞

[0,∞), a wannabe generator of reflecting BM on

[0,∞). Show that A does not satisfy (1) on C̃ and is not closable in B = C∞[0,∞). On the

other hand, it does satisfy (1) on C = C∞[0,∞) ∩ C2
∞

[0,∞) ∩ {f ′(0) = 0}.

Exercise⊲ 2. Young’s inequality for convolutions says that if 1 ≤ p, q, r ≤ ∞ satisfy 1
p

+ 1
q

= 1
r

+ 1,

then ‖f ∗ g‖r ≤ ‖f‖p ‖g‖q. Using this, show that e∆t is a continuous Lp-contractive semigroup.

Exercise⊲ 3 (Bonus). For ∆ on B = C∞(R), we have seen that D(∆) = C∞(R) ∩ C2
∞

(R), i.e.,

vanishing value and vanishing 2nd derivative at infinity. We have also seen that on R
d, d ≥ 2, the

Schwarz space S (Rd) is a good core C (∆): the operator −∆ is accretive there, hence closable, and

Ran(I − ∆) = C∞(Rd), and thus ∆ is indeed an infinitesimal generator, as we already knew. But

what is D(∆), i.e., what domain do we get when we close the operator from S (∆)? It contains

C∞(R) ∩ C2
∞

(R), but isn’t it larger?

Exercise⊲ 4.

(a) Let ψ be a bounded continuous function on R
n, and α > 0. Find a bounded solution u of the

equation
(

α− 1

2
∆

)

u = ψ on R
n .

Prove that the solution is unique.
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(b) Let Bt be n-dimensional Brownian motion (n ≥ 1) and let F be a Borel set in R
n. Prove

that the expected total length of times t that Bt stays in F is zero if and only if the Lebesgue

measure of F is zero. (Hint: Consider the resolvent Rα for α > 0 and then let α→ 0.)

Exercise⊲ 5. In connection with the deduction of the Black-Scholes formula for the price of an

option, the following partial differential equation appears for u = u(t, x):

∂u

∂t
= −ρ u+ αx

∂u

∂x
+

1

2
β2 x2 ∂

2u

∂x2
; t > 0, x ∈ R

u(0, x) = (x−K)+ ; x ∈ R ,

where ρ > 0, α, β, K > 0 are constants. Use the Feynman-Kac formula to prove that the solution

u of this equation is given by

u(t, x) =
e−ρt

√
2πt

∫

R

(

x exp
{

(α− β2/2)t+ βy
}

−K
)+

exp

(

−y
2

2t

)

dy ; t > 0 .

Exercise⊲ 6.

(a) I have seen the following result called Feynman-Kac formula, e.g., by L. Craig Evans: the

unique solution for the PDE

−1

2
∆u+ c u = f in U ⊂ R

n bounded

u = 0 on ∂U ,

where c, f are smooth functions, c ≥ 0, is given by

u(x) = Ex

[
∫ τ

0

f(Xt) e
−

R

t

0
c(Xs) dsdt

]

for x ∈ U ,

where τ is the first hitting time of ∂U . Prove this formula.

(b) I have found the following exercise in the same source, but I haven’t managed to do it in the

way suggested by Craig Evans. Let f be a positive smooth function on R
n. Use the above

Feynman-Kac formula to prove that

M(t) := f(Bt) exp
{

− 1

2

∫ t

0

∆f(Bs) ds
}

is a martingale.
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http://www.math.berkeley.edu/~evans

