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The first two pages have almost no probability content, only coarse geometry and graph theory. Then

we start percolation.
Exercise 1. Consider the standard hexagonal lattice. Show that if you are given a bound B < oo, and can

group the hexagons into countries, each being a connected set of at most B hexagons, then it is not possible

to have at least 7 neighbours for each country.

Figure 1: Trying to create at least 7 neighbours for each country.

Exercise 2. Recall that being non-amenable means satisfying the strong isoperimetric inequality I Po.
(a) Show that a bounded degree tree without leaves is amenable iff there is no bound on the length of
“hanging chains”, i.e., chains of vertices with degree 2. (Consequently, for trees, P4, implies [ P,,.)
(b) Give an example of a bounded degree tree of exponential volume growth that satisfies no TP,

recurrent for the simple random walk on it, and has p. = 1.

Exercise 3. Show that a bounded degree graph G(V, E) is nonamenable if and only if it has a wobbling
paradoxical decomposition: two injective maps a, 8 : V. — V such that a(V) U (V) = V is a disjoint
union, and both maps are at a bounded distance from the identity, or wobbling: sup,cy d(z, a(x)) < oo.
(Hint: State and use the locally finite infinite bipartite graph version of the Hall marriage theorem, called
the Hall-Rado theorem.)

Exercise 4. Consider the outer vertex Cheeger constant hy := inf |05"*S|/|S|. Show that for any d-regular
non-amenable graph G and any € > 0, there exists K < oo such that we can add edges connecting vertices
at distance at most K, such that the new graph G* will be d*-regular, no multiple edges, and hy (G*)/d*
will be larger than 1 —e. (Hint: use the wobbling paradoxical decomposition from the previous exercise.
The Mass Transport Principle shows that this proof cannot work in a group-invariant way.)

Question. Is there any group I' with a sequence of generating sets S such that the Cayley graphs Gy :=
G(T, Sk), with degree dy, satisty hy (Gy)/di — 17
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Figure 2: The Cayley graph of the Heisenberg group with generators X,Y, Z.

The 3-dimensional discrete Heisenberg group is the matrix group
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If we denote by X,Y, Z the matrices given by the three permutations of the entries 1,0,0 for z,y, z, then
Hs(Z) is given by the presentation

(XY, Z|[X,Z]=1,[Y,Z] =1,[X,Y] = Z).

Exercise 5. Show that the discrete Heisenberg group has 4-dimensional volume growth.

Exercise 6.
(a) Show that the Diestel-Leader graph DL(k, ¢) is amenable iff k = ¢.
(b) Show that the Cayley graph of the lamplighter group I' = Zy ! Z with generating set S = {R,Rs, L,sL}
is the Diestel-Leader graph DL(2,2). How can we obtain DL(p, p) from Z, Z?

Figure 3: The Diestel-Leader graph DL(3,2), with a path: (u,a), (v,b), (w,c), (v,b), (u,d’), (¢, z), (v',a’).

Exercise 7. Show that amenable transitive graphs are unimodular (that is, they satisfy the Mass Transport
Principle).
Exercise 8. Why it is hard to construct large expanders:

(a) If @ — G is a covering map of infinite graphs, then the spectral radii satisfy p(G’) < p(G), i.e.,
the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then p(G) >
p(Ty) = 201,

(b) If G’ — G is a covering map of finite graphs, then A2(G’) > A3(G), i.e., the larger graph is a worse

expander.



> Exercise 9. In case you have not seen this, prove that 1/3 < p.(Z? bond) < 2/3. (Hint: for the lower

bound, count self-avoiding open paths. For the upper bound, count closed contours in the dual lattice.)

A

Figure 4: Counting primal self-avoiding paths and dual circuits.

> Exercise 10. Prove p.(T;) = 1/(d — 1), with the First and Second Moment Method applied to Z,, the
number of vertices connected to the root on level n:
(a) For p < 1/(d—1), show that EZ,, — 0, and conclude that (p) = 0.
(b) For p > 1/(d — 1), show that there is some C' = Cy < oo such that E[Z2] < C(EZ,)? for all n.
Conclude using Cauchy-Schwarz that (p) > 0.
(c) For p=1/(d— 1), note that Z, is a non-negative martingale. Use the MG Convergence Theorem to
show that Z,, = 0 eventually, hence 0(p) = 0.

> Exercise 11. Assume that 7 : G’ — G is a topological covering between infinite graphs, or in other words,
G is a factor graph of G’. Show that p.(G') < p.(G).

> Exercise 12. Prove the Bollobds-Thomason threshold theorem: for any sequence monotone events A = A,
and any e there is C. < oo such that |pf*  (n) — p2A(n)| < Cec (p2(n) A (1 — pf.(n))). (Hint: take many
independent copies of low density to get success with good probability at a larger density.)

> Exercise 13 (for Vincent Tassion’s course). Prove that having ¢,(S) < 1 for some S implies finite ex-
pectation of €,. (Hint: quite similarly to the proof of exponential decay, write a recursive inequality for
Up = MaXye R, (o) Bp| €, |, where €' is the cluster of x in the configuration restricted to the ball By, (0).)

> Exercise 14.

(a) Give a translation invariant and ergodic percolation on Z? with infinitely many oo clusters.

(b) Give a translation invariant and ergodic percolation on Z? with exactly two oo clusters.

> Exercise 15. As in the lecture, a furcation point of an infinite cluster is a vertex whose removal breaks the
cluster into at least 3 infinite components. Show carefully the claim we used in the Burton-Keane theorem:
if € denotes the union of all the infinite clusters in some percolation on G, and U C V(G) is finite, then
the size of € N 8€,“tU is at least the number of trifurcation points of % in U, plus 2.
> Exercise 16.
(a) In an invariant percolation process on a unimodular transitive graph G, show that almost surely the
number of ends of each infinite cluster is 1 or 2 or continuum.
(b) Give an invariant percolation on a non-unimodular transitive graph that has infinite clusters with more
than two but finitely many ends.

> Exercise 17. Consider the graph G with 6 vertices and 7 edges that looks like a figure 8 on a digital display.
Consider the uniform measure on the 15 spanning trees of GG, denoted by UST, and the uniform measure
on the 7 connected subgraphs with 6 edges (one more than a spanning tree), denoted by UST + 1. Find an
explicit monotone coupling between the two measures (i.e., with UST € UST + 1).

Question. Is there such a monotone coupling for every finite graph?



