
Group-invariant percolation models — August 3, 2015
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The first two pages have almost no probability content, only coarse geometry and graph theory. Then

we start percolation.

Exercise⊲ 1. Consider the standard hexagonal lattice. Show that if you are given a bound B < ∞, and can

group the hexagons into countries, each being a connected set of at most B hexagons, then it is not possible

to have at least 7 neighbours for each country.

Figure 1: Trying to create at least 7 neighbours for each country.

Exercise⊲ 2. Recall that being non-amenable means satisfying the strong isoperimetric inequality IP∞.

(a) Show that a bounded degree tree without leaves is amenable iff there is no bound on the length of

“hanging chains”, i.e., chains of vertices with degree 2. (Consequently, for trees, IP1+ǫ implies IP∞.)

(b) Give an example of a bounded degree tree of exponential volume growth that satisfies no IP1+ǫ,

recurrent for the simple random walk on it, and has pc = 1.

Exercise⊲ 3. Show that a bounded degree graph G(V,E) is nonamenable if and only if it has a wobbling

paradoxical decomposition: two injective maps α, β : V −→ V such that α(V ) ⊔ β(V ) = V is a disjoint

union, and both maps are at a bounded distance from the identity, or wobbling: supx∈V d(x, α(x)) < ∞.

(Hint: State and use the locally finite infinite bipartite graph version of the Hall marriage theorem, called

the Hall-Rado theorem.)

Exercise⊲ 4. Consider the outer vertex Cheeger constant hV := inf |∂out
V S|/|S|. Show that for any d-regular

non-amenable graph G and any ǫ > 0, there exists K < ∞ such that we can add edges connecting vertices

at distance at most K, such that the new graph G∗ will be d∗-regular, no multiple edges, and hV (G
∗)/d∗

will be larger than 1 − ǫ. (Hint: use the wobbling paradoxical decomposition from the previous exercise.

The Mass Transport Principle shows that this proof cannot work in a group-invariant way.)

Question. Is there any group Γ with a sequence of generating sets Sk such that the Cayley graphs Gk :=

G(Γ, Sk), with degree dk, satisfy hV (Gk)/dk → 1?
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Figure 2: The Cayley graph of the Heisenberg group with generators X,Y, Z.

The 3-dimensional discrete Heisenberg group is the matrix group

H3(Z) =

















1 x z

0 1 y

0 0 1






: x, y, z ∈ Z











.

If we denote by X,Y, Z the matrices given by the three permutations of the entries 1, 0, 0 for x, y, z, then

H3(Z) is given by the presentation

〈

X,Y, Z
∣

∣ [X,Z] = 1, [Y, Z] = 1, [X,Y ] = Z
〉

.

Exercise⊲ 5. Show that the discrete Heisenberg group has 4-dimensional volume growth.

Exercise⊲ 6.

(a) Show that the Diestel-Leader graph DL(k, ℓ) is amenable iff k = ℓ.

(b) Show that the Cayley graph of the lamplighter group Γ = Z2 ≀Z with generating set S = {R,Rs, L, sL}

is the Diestel-Leader graph DL(2, 2). How can we obtain DL(p, p) from Zp ≀ Z?

t

u u′

v

w

z

a a′

b b′

c

Figure 3: The Diestel-Leader graph DL(3, 2), with a path: (u, a), (v, b), (w, c), (v, b′), (u, a′), (t, z), (u′, a′).

Exercise⊲ 7. Show that amenable transitive graphs are unimodular (that is, they satisfy the Mass Transport

Principle).

Exercise⊲ 8. Why it is hard to construct large expanders:

(a) If G′ −→ G is a covering map of infinite graphs, then the spectral radii satisfy ρ(G′) ≤ ρ(G), i.e.,

the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then ρ(G) ≥

ρ(Tk) =
2
√
k−1
k

.

(b) If G′ −→ G is a covering map of finite graphs, then λ2(G
′) ≥ λ2(G), i.e., the larger graph is a worse

expander.
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Exercise⊲ 9. In case you have not seen this, prove that 1/3 ≤ pc(Z
2, bond) ≤ 2/3. (Hint: for the lower

bound, count self-avoiding open paths. For the upper bound, count closed contours in the dual lattice.)

Figure 4: Counting primal self-avoiding paths and dual circuits.

Exercise⊲ 10. Prove pc(Td) = 1/(d − 1), with the First and Second Moment Method applied to Zn, the

number of vertices connected to the root on level n:

(a) For p < 1/(d− 1), show that EZn → 0, and conclude that θ(p) = 0.

(b) For p > 1/(d − 1), show that there is some C = Cd < ∞ such that E[Z2
n ] < C (EZn)

2 for all n.

Conclude using Cauchy-Schwarz that θ(p) > 0.

(c) For p = 1/(d − 1), note that Zn is a non-negative martingale. Use the MG Convergence Theorem to

show that Zn = 0 eventually, hence θ(p) = 0.

Exercise⊲ 11. Assume that π : G′ −→ G is a topological covering between infinite graphs, or in other words,

G is a factor graph of G′. Show that pc(G
′) ≤ pc(G).

Exercise⊲ 12. Prove the Bollobás-Thomason threshold theorem: for any sequence monotone eventsA = An

and any ǫ there is Cǫ < ∞ such that
∣

∣pA1−ǫ(n) − pAǫ (n)
∣

∣ < Cǫ

(

pAǫ (n) ∧ (1 − pA1−ǫ(n))
)

. (Hint: take many

independent copies of low density to get success with good probability at a larger density.)

Exercise⊲ 13 (for Vincent Tassion’s course). Prove that having φp(S) < 1 for some S implies finite ex-

pectation of Co. (Hint: quite similarly to the proof of exponential decay, write a recursive inequality for

un = maxx∈Bn(o) Ep|C
n
x |, where C n

x is the cluster of x in the configuration restricted to the ball Bn(o).)

Exercise⊲ 14.

(a) Give a translation invariant and ergodic percolation on Z
2 with infinitely many ∞ clusters.

(b) Give a translation invariant and ergodic percolation on Z
2 with exactly two ∞ clusters.

Exercise⊲ 15. As in the lecture, a furcation point of an infinite cluster is a vertex whose removal breaks the

cluster into at least 3 infinite components. Show carefully the claim we used in the Burton-Keane theorem:

if C∞ denotes the union of all the infinite clusters in some percolation on G, and U ⊂ V (G) is finite, then

the size of C∞ ∩ ∂out
V U is at least the number of trifurcation points of C∞ in U , plus 2.

Exercise⊲ 16.

(a) In an invariant percolation process on a unimodular transitive graph G, show that almost surely the

number of ends of each infinite cluster is 1 or 2 or continuum.

(b) Give an invariant percolation on a non-unimodular transitive graph that has infinite clusters with more

than two but finitely many ends.

Exercise⊲ 17. Consider the graph G with 6 vertices and 7 edges that looks like a figure 8 on a digital display.

Consider the uniform measure on the 15 spanning trees of G, denoted by UST, and the uniform measure

on the 7 connected subgraphs with 6 edges (one more than a spanning tree), denoted by UST+ 1. Find an

explicit monotone coupling between the two measures (i.e., with UST ⊂ UST+ 1).

Question. Is there such a monotone coupling for every finite graph?
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