Corner, trixor, odd-trixor, quaxor:
Linear entropy planar percolation models without and with (conjectured) conformal invariance

Gábor Pete, Microsoft Research

With important contributions from: Omer Angel (Toronto) Itai Benjamini (Weizmann Institute)
Mark Braverman (Toronto)
Oded Schramm (MSR).

July 9, 2007, Park City

Corner percolation is a strongly dependent 4 -vertex model due to Bálint Tóth.

Theorem (P., 2005). Almost surely, all components are finite, and each vertex is surrounded by infinitely many cycles. The exponents
$\mathbb{P}($ the diameter of the cycle of the origin $>n) \approx n^{-\gamma}$,
$\mathbb{E}($ length of a typical cycle with diameter $n) \approx n^{\delta}$
exist, with values $\gamma=(5-\sqrt{17}) / 4=0.219 \ldots$ and $\delta=(\sqrt{17}+1) / 4=1.28 \ldots$.
$\gamma+\delta=3 / 2$ corresponds to having a height function in the model, with scaling limit $\mathcal{H}(t, s)=W_{t}+W_{s}^{\prime}$, the Additive Brownian Motion, whose level sets have dim=3/2.

Colour-coded height function for corner percolation.

$$
H(n, m)=\left\lceil\frac{X_{n}+Y_{m}}{2}\right\rceil
$$

where
$\left\{X_{n}\right\}_{-\infty}^{+\infty}$ and $\left\{Y_{m}\right\}_{-\infty}^{+\infty}$ are two independent SRWs on \mathbb{Z}.

A universality class for linear entropy percolation?

Winkler's percolation:
k letters $\{1,2, \ldots, k\}$ uniformly i.i.d.
[Winkler, Balister-Bollobás-Stacey, 2000]
Cannot get out for $k \leq 3$, but yes for $k \geq 4$.

This model, and also Benjamini's 2-wise independent bond percolation on \mathbb{Z}^{2}, can be reduced to corner - not real universality.

Trixor (even-trixor) [Benjamini, Angel, Schramm]

Def 1: Spin of vertex $v=(k, \ell, j)$: $\tau(v):=\xi(k) \cdot \eta(\ell) \cdot \zeta(j)$.

Def 2: Uniform B/W colouring, each vertex having an even number of neighbours of either color.

Def 3: Height function $H(v):=X(k)+$ $Y(\ell)+Z(j)$, with three indept. SRW's.

Level curves of "dimension"
$\delta=(\sqrt{17}+1) / 4=1.28 \ldots$ in corner, but seemingly $\delta_{3} \in(1.3,1.35)$ in trixor. Probably $\gamma_{3}+\delta_{3}=3 / 2$, again.

Neighbouring clusters in trixor

Neighbouring clusters in tri-majority

k-xor models

Reasonable conjecture: Exponents γ_{k} and δ_{k}, as $k \rightarrow \infty$, converge to $\operatorname{SLE}(6)$ exponents $5 / 48$ and $7 / 4$.

Amazing reality: Already for $k=4$, quaxor seems to have SLE(6) scaling limit! (With a suitable embedding.)

Obvious difficulty: No height function any more.

From even- to odd-trixor, deterministically [Omer Angel]

Neighbouring clusters in odd-trixor and ordinary percolation

Open problems

- Quaxor and odd-trixor: Finite clusters only. Scaling to SLE(6) (=conf. inv.+locality).
- Corner seems noise- and dynamically stable, unlike ordinary percolation [Benjamini-Kalai-Schramm, Schramm-Steif] or 2-dim SRW [Hoffman]. Quaxor and odd-trixor?
- Nodal lines of random Gaussian plane waves? [Bogomolny-Schmit 2002]
- For p-biased corner, \mathbb{P}_{p} (contour of origin is infinite) $=(p-1 / 2)^{\beta+o(1)}$? In Bernoulli, $5 / 48=\gamma=3 / 4 \cdot \beta$, where $3 / 4$ governs noise-sensitivity [Garban-P-Schramm].
- Compute the exponents γ_{3}, δ_{3} for trixor.
- Interpolation between Additive Brownian Motion and Gaussian Free Field?
- Scaling of large corner cycles to the [Dalang-Mountford] Jordan-curve?
- $\{\xi(n)\} \in\{ \pm 1\}^{\mathbb{Z}}$ is hospitable if, for $\left\{X_{j}\right\}_{j=0}^{\infty}$ SRW on \mathbb{Z} and $S_{k}:=\sum_{j=0}^{k-1} \xi\left(X_{j}\right)$, $\left(X_{k}, S_{k}\right)=(0,0)$ inf. often a.s. Otherwise, hostile. E.g., periodic sequence with same number of ± 1 's is hospitable, while $\xi(n):=\operatorname{sgn}(n)$ is hostile. l.i.d. $\mathbb{P}(\xi(n)=1)=1 / 2$ is hostile a.s. [Campanino-Petritis]: Is hospitality invariant under finite permutations?

