Corner, trixor, odd-trixor, quaxor: Linear entropy planar percolation models without and with (conjectured) conformal invariance

Gábor Pete, Microsoft Research

With important contributions from: Omer Angel (Toronto)

Itai Benjamini (Weizmann Institute)

Mark Braverman (Toronto)

Oded Schramm (MSR).

July 9, 2007, Park City

Corner percolation is a strongly dependent 4-vertex model due to Bálint Tóth.

Theorem (P., 2005). Almost surely, all components are finite, and each vertex is surrounded by infinitely many cycles. The exponents

 $\mathbb{P}(\text{the diameter of the cycle of the origin }>n)\approx n^{-\gamma},$ $\mathbb{E}(\text{length of a typical cycle with diameter }n)\approx n^{\delta}$ exist, with values $\gamma=(5-\sqrt{17})/4=0.219...$ and $\delta=(\sqrt{17}+1)/4=1.28....$

 $\gamma + \delta = 3/2$ corresponds to having a **height function** in the model, with scaling limit $\mathcal{H}(t,s) = W_t + W_s'$, the Additive Brownian Motion, whose **level sets** have dim=3/2.

Colour-coded height function for corner percolation.

 $H(n,m) = \lceil \frac{X_n + Y_m}{2} \rceil$, where $\{X_n\}_{-\infty}^{+\infty}$ and $\{Y_m\}_{-\infty}^{+\infty}$ are two independent SRWs on \mathbb{Z} .

A universality class for linear entropy percolation?

Winkler's percolation:

k letters $\{1, 2, \dots, k\}$ uniformly i.i.d.

[Winkler, Balister-Bollobás-Stacey, 2000] Cannot get out for $k \leq 3$, but yes for $k \geq 4$.

This model, and also Benjamini's **2-wise independent bond percolation** on \mathbb{Z}^2 , can be reduced to corner — not real universality.

Trixor (even-trixor) [Benjamini, Angel, Schramm]

Def 1: Spin of vertex $v = (k, \ell, j)$: $\tau(v) := \xi(k) \cdot \eta(\ell) \cdot \zeta(j)$.

Def 2: Uniform B/W colouring, each vertex having an even number of neighbours of either color.

Def 3: Height function $H(v) := X(k) + Y(\ell) + Z(j)$, with three indept. SRW's.

Level curves of "dimension" $\delta = (\sqrt{17} + 1)/4 = 1.28...$ in **corner**, but seemingly $\delta_3 \in (1.3, 1.35)$ in **trixor**. Probably $\gamma_3 + \delta_3 = 3/2$, again.

Neighbouring clusters in trixor

Neighbouring clusters in tri-majority

k-xor models

Reasonable conjecture: Exponents γ_k and δ_k , as $k \to \infty$, converge to SLE(6) exponents 5/48 and 7/4.

Amazing reality: Already for k=4, quaxor seems to have SLE(6) scaling limit! (With a suitable embedding.)

Obvious difficulty: No height function any more.

From even- to odd-trixor, deterministically [Omer Angel]

Neighbouring clusters in odd-trixor and ordinary percolation

Open problems

- Quaxor and odd-trixor: Finite clusters only. Scaling to SLE(6) (=conf. inv.+locality).
- Corner seems noise- and dynamically stable, unlike ordinary percolation [Benjamini-Kalai-Schramm, Schramm-Steif] or 2-dim SRW [Hoffman]. Quaxor and odd-trixor?
- Nodal lines of random Gaussian plane waves? [Bogomolny-Schmit 2002]
- For p-biased corner, $\mathbb{P}_p(\text{contour of origin is infinite}) = <math>(p-1/2)^{\beta+o(1)}$? In Bernoulli, $5/48 = \gamma = 3/4 \cdot \beta$, where 3/4 governs noise-sensitivity [Garban-P-Schramm].
- Compute the exponents γ_3, δ_3 for trixor.
- Interpolation between Additive Brownian Motion and Gaussian Free Field?
- Scaling of large corner cycles to the [Dalang-Mountford] Jordan-curve?
- $\{\xi(n)\}\in\{\pm 1\}^{\mathbb{Z}}$ is hospitable if, for $\{X_j\}_{j=0}^{\infty}$ SRW on \mathbb{Z} and $S_k:=\sum_{j=0}^{k-1}\xi(X_j)$, $(X_k,S_k)=(0,0)$ inf. often a.s. Otherwise, hostile. E.g., periodic sequence with same number of ± 1 's is hospitable, while $\xi(n):=\operatorname{sgn}(n)$ is hostile. I.i.d. $\mathbb{P}(\xi(n)=1)=1/2$ is hostile a.s. [Campanino-Petritis]: Is hospitality invariant under finite permutations?