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To clarify what the measurability of having an infinite cluster means:

Exercise⊲ 1. Let Γ(V, E) be any bounded degree infinite graph, and Sn ր V an exhaustion by finite

connected subsets. Is it true that, for p > pc(Γ), we have

lim
n→∞

Pp[ largest cluster for percolation inside Sn is the subset of an infinite cluster ] = 1 ?

Exercise⊲ 2.

(a) Find the edge Cheeger constant of the infinite binary tree.

(b) Show that a bounded degree tree is amenable iff there is no bound on the length of “hanging

chains”, i.e., chains of vertices with degree 2.

(c) Construct a bounded degree infinite tree with exponential growth that does not satisfy IP1+ǫ for

any ǫ > 0, moreover, it is recurrent for simple random walk and has pc = 1.

The archetypical examples for the difference between amenable and non-amenable graphs are

the Euclidean versus hyperbolic lattices, e.g., tilings in the Euclidean versus hyperbolic plane. The

notions “non-amenable”, “hyperbolic”, “negative curvature” are very much related to each other,

but there are also important differences. Here is a down-to-earth exercise to practice these notions;

it might not be obvious at first sight, but part (a) is a special case of part (b).

Exercise⊲ 3.

(a) Consider the standard hexagonal lattice. Show that if you are given a bound B < ∞, and can

group the hexagons into countries, each being a connected set of at most B hexagons, then it is not

possible to have at least 7 neighbours for each country.

(b) In a locally finite planar graph Γ, define the combinatorial curvature at a vertex x by

curvΓ(x) := 2π −
∑

i

(Li − 2)π

Li
,
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Figure 1: Trying to create at least 7 neighbours for each country.

where the sum runs over the faces adjacent to x, and Li is the number of sides of the ith face. Show

that if there exists some δ > 0 such that curvature is less than −δπ at each vertex, then it is not

possible that both Γ and its planar dual Γ∗ are edge-amenable.

The following exercise is used in my PGG notes to prove that the Følner nonamenability of a

Cayley graph implies that the group is nonamenable in von Neumann’s sense:

Exercise⊲ 4. * Let X be a metric space. ϕ : X → X is wobbling if supx d(X, ϕ(x)) < K. Further,

if Γ = (V, E) is a graph, then the maps α and β are a paradoxical decomposition of Γ if they are

wobbling injections such that α(V ) ⊔ β(V ) = V .

Show that a bounded degree graph is nonamenable if and only if there exists a wobbling paradoxical

decomposition. (Hint: State, prove and use the locally finite infinite bipartite graph version of the

Hall marriage theorem, called the Hall-Rado theorem.)

Recall that there is a topological space of ends of a graph, and that any quasi-isometry of

graphs induces naturally a homeomorphism of their spaces of ends. In particular, the number of

ends is a quasi-isometry invariant of the graph, and we can define the space of ends of a finitely

generated group to be the space of ends of any of its Cayley graphs.

Exercise⊲ 5. Show that a group has two ends iff it has Z as a finite index subgroup.

Exercise⊲ 6.

(a) Show that if Γ1, Γ2 are two infinite graphs, then the direct product graph Γ1 × Γ2 has one end.

(b) Show that if |G1| ≥ 2 and |G2| ≥ 3 are two finitely generated groups, then the free product

G1 ∗G2 has a continuum number of ends.

Exercise⊲ 7. Show that a finitely generated group with at least 3 ends must in fact have a continuum

number of ends, and it must be non-amenable.

Exercise⊲ 8.

(a) Assume that for some H ⊳G, both H and G/H are finitely presented. Show that G is also finitely

presented.

(b) Show that any finitely generated almost-nilpotent group is finitely presented.
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Exercise⊲ 9. * Show that the Cayley graph of the lamplighter group G = Z2 ≀ Z with generating

set S = {R, Rs, L, sL} is isomorphic to the Diestel-Leader graph DL(2, 2), see Example 7.2 in the

Lyons-Peres book, and satisfies CutConΓ(G,S) =∞.

(There used to be an exercise here saying that still pc(Γ) < 1 with some generating set, by finding

a Fibonacci subtree, but I’ve realized it’s also in Lyons-Peres, sorry.)

Exercise⊲ 10. *

(a) Let T be the infinite binary tree. Show that Aut(T ) is not finitely generated.

(b) Find a finitely generated non-amenable subgroup of Aut(T ).

That transitivity is needed for θ(pc)=0 can be seen from the case of general trees:

Exercise⊲ 11. Consider a spherically symmetric tree T where each vertex on the nth level Tn has

dn ∈ {k, k + 1} children, such that limn→∞ |Tn|
1/n = k, but

∑∞

n=0 kn/|Tn| < ∞. Using the second

moment method, show that pc = 1/k and θ(pc) > 0.

Exercise⊲ 12. Still with the first and second moment method, show that for Ber(p) percolation on a

d-regular tree T with d ≥ 3, the percolation probability is θ(pc + ǫ) ≍ ǫ as ǫց 0.

Two exercises about unimodularity:

Exercise⊲ 13.

(a) Give an example of a unimodular transitive graph Γ such that there exist neighbours x, y ∈ V (Γ)

such that there is no graph-automorphism interchanging them.

(b)* Can you give an example with a Cayley graph?

Exercise⊲ 14. Give an invariant percolation on a non-unimodular transitive graph with infinitely

many trifurcation points a.s., but only finitely many in each infinite cluster.

We had a characterization of amenability using high-marginal invariant percolation processes

without infinite clusters. The following exercise shows that the bound we had is tight:

Exercise⊲ 15. Show that for the set of invariant bond percolations on the 3-regular tree T3 without

an infinite cluster, the supremum of edge-marginals is 2/3. (Hint: the complement of a perfect

matching has density 2/3 and consists of Z components.)

A similar characterization of amenability is the following:

Exercise⊲ 16. Show that a Cayley graph Γ(G, S) is amenable iff it has a G-invariant random span-

ning Z subgraph. (Hint: for one direction, produce the invariant Z using the high-marginal construc-

tion; for the other direction, produce an invariant mean from the invariant Z.)

Recall that for a transitive d-regular graph Γ(V, E) and any o ∈ V , we defined

δerg(Γ) := sup

{

Eµ

∣

∣{(o, x) ∈ E : σ(x) = σ(o)}
∣

∣

dΓ
:

ergodic invariant measures µ on σ ∈ {±1}V

with Eµσ(o) = 0

}

,
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and mentioned the theorem of Glasner and Weiss that a f.g. group G is Kazhdan iff any (or one)

of its Cayley graphs Γ has δerg(Γ) < 1. We had a similar definition for tail-trivial measures, giving

δtt(Γ), and for factors of i.i.d. processes, giving δfiid(Γ). Clearly, δerg(Γ) ≥ δtt(Γ) ≥ δfiid(Γ).

Exercise⊲ 17. Show that δerg(T3) = 1. (Hint: free groups are not Kazhdan e.g. because they surject

onto Z.)

Exercise⊲ 18. ***

(a) Find the value of δfiid(T3).

(b) Show that δtt(T3) < 1.

Pak and Smirnova-Nagnibeda constructed a Cayley graph Γ(G, S) with pc(Γ) < pu(Γ) for each

nonamenable group G using that ιE(Γ(G, Sk)) → 1 as k → ∞, where Sk is the “k-ball with

multiplicities”. Can this be done without multiple edges? Consider the outer vertex Cheeger constant

hV := inf |∂out
V S|/|S| and note that |∂out

V S| ≤ |∂ES| ≤ (d− 1)|S| in a d-regular graph.

Exercise⊲ 19. Show that for any d-regular non-amenable graph Γ and any ǫ > 0, there exists K <∞

such that we can add edges connecting vertices at distance at most K, such that the new graph Γ∗

will be d∗-regular, no multiple edges, and ιV (Γ∗) := hV (Γ∗)/d∗ will be larger than 1− ǫ. (Hint: use

the wobbling paradoxical decomposition from Exercise 4. The Mass Transport Principle shows that

this proof cannot work in a group-invariant way.)

Exercise⊲ 20. ***

(a) Is it true that ιE(Γ(G, BS
k ))/|BS

k | → 1 as k →∞ for any nonamenable group G and the ball of

radius k in any finite generating set S?

(b) Is it true that ιV (Γ(G, BS
k ))/|BS

k | 6→ 1 for any group G and any finite generating set S?

Regarding the characterization of uniqueness of infinite clusters in an invariant percolation ω via

infx,y∈V (Γ) P
[

x
ω
←→ y

]

> 0, here are two exercises:

Exercise⊲ 21. Give an example of a Ber(p) percolation on a Cayley graph Γ that has non-uniqueness,

but there is a sequence xn ∈ V (Γ) with dist(x0, xn)→∞ and infn Pp[ x0 ←→ xn ] > 0.

Exercise⊲ 22. * Give an example of an ergodic uniformly insertion tolerant invariant percolation

on Z
2 with a unique infinite cluster but infx,y∈Z2 P

[

x
ω
←→ y

]

= 0. (Hint: you can use the ideas of

arXiv:1011.2872 [math.PR].)

Exercise⊲ 23. Fill in the missing details in either proof sketches in PGG for pu < 1 for Kazhdan

groups.

Exercise⊲ 24. *** Prove pc < pu for Kazhdan groups by finding an appropriate representation.

Exercise⊲ 25. Show that in Schramm’s proof of P[X0
pc

←→Xn] ≤ 2ρn for unimodular non-amenable

graphs, the auxiliary percolation process ξ on the tree Tm+1 indexing the branching random walk is

Aut(Tm+1)-invariant.
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Starting percolation in the plane:

Exercise⊲ 26. Assuming the fact that at least one type of crossing is present in any two-colouring

of the n×n rhombus in the hexagonal grid, prove Brouwer’s fixed point theorem in two dimensions.

(Show, by the way, that Brouwer’s theorem needs the ball to be closed.)

Exercise⊲ 27. Assuming the main RSW inequality (12.13) in PGG, complete the proof of the full

RSW proposition, and explain what to change so that the proof works for bond percolation on Z
2.

Exercise⊲ 28. Assuming quasi-multiplicativity and the bounds

c (r/R)2−ǫ < α4(r, R) < C (r/R)1+ǫ

and

α+
2 (r, R) ≍ r/R , α+

3 (r, R) ≍ (r/R)2 ,

prove the second moment estimate E
[

|Piv(Qn)|2
]

≤ C
(

E|Piv(Qn)|
)2

for any piecewise smooth quad

Q, with C = CQ.

Exercise⊲ 29. Consider recursive 3-majority with depth h, with uniform distribution on the 3h in-

put variables. Show that the set of pivotals is the leaves of a GW tree with offspring distribution

P
[

π = 0
]

= 1/4 and P
[

π = 2
]

= 3/4, and the spectral sample is the leaves of a GW tree with

offspring distribution P
[

σ = 1
]

= 3/4 and P
[

σ = 3
]

= 1/4. Note that E[ π ] = E[ σ ] = 3/2 and

E[ π2 ] = E[ σ2 ] = 3, and hence E
[

|Pivh|
i
]

= E
[

|Spech|
i
]

for i = 1, 2.

Exercise⊲ 30. Show that the spectral result

P
[

0 < |Spec(fn)| < λE|Spec(fn)|
]

= λ2/3+o(1)

for the spectral sample of left-right crossing fn in the n × n square for critical percolation on the

triangular lattice implies the decorrelation

E
[

fn(ω0) fn(ωtǫ(n))
]

−E[ fn ]
2

= t−2/3+o(1)

as t→∞, uniformly in n, for ǫ(n) = 1/E|Spec(fn)| = 1/E|Piv(fn)| = n−3/4+o(1).
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