Percolation in the plane, on \mathbb{Z}^{d}, and beyond Homework problems

GÁbor Pete
University of Toronto
http://www.math.toronto.edu/~gabor

April 18, 2011
Constantly updated.

To clarify what the measurability of having an infinite cluster means:
\triangleright Exercise 1. Let $\Gamma(V, E)$ be any bounded degree infinite graph, and $S_{n} \nearrow V$ an exhaustion by finite connected subsets. Is it true that, for $p>p_{c}(\Gamma)$, we have
$\lim _{n \rightarrow \infty} \mathbf{P}_{p}\left[\right.$ largest cluster for percolation inside S_{n} is the subset of an infinite cluster $]=1 ?$

\triangleright Exercise 2.

(a) Find the edge Cheeger constant of the infinite binary tree.
(b) Show that a bounded degree tree is amenable iff there is no bound on the length of "hanging chains", i.e., chains of vertices with degree 2.
(c) Construct a bounded degree infinite tree with exponential growth that does not satisfy $I P_{1+\epsilon}$ for any $\epsilon>0$, moreover, it is recurrent for simple random walk and has $p_{c}=1$.

The archetypical examples for the difference between amenable and non-amenable graphs are the Euclidean versus hyperbolic lattices, e.g., tilings in the Euclidean versus hyperbolic plane. The notions "non-amenable", "hyperbolic", "negative curvature" are very much related to each other, but there are also important differences. Here is a down-to-earth exercise to practice these notions; it might not be obvious at first sight, but part (a) is a special case of part (b).

\triangleright Exercise 3.

(a) Consider the standard hexagonal lattice. Show that if you are given a bound $B<\infty$, and can group the hexagons into countries, each being a connected set of at most B hexagons, then it is not possible to have at least 7 neighbours for each country.
(b) In a locally finite planar graph Γ, define the combinatorial curvature at a vertex x by

$$
\operatorname{curv}_{\Gamma}(x):=2 \pi-\sum_{i} \frac{\left(L_{i}-2\right) \pi}{L_{i}}
$$

Figure 1: Trying to create at least 7 neighbours for each country.
where the sum runs over the faces adjacent to x, and L_{i} is the number of sides of the $i^{\text {th }}$ face. Show that if there exists some $\delta>0$ such that curvature is less than $-\delta \pi$ at each vertex, then it is not possible that both Γ and its planar dual Γ^{*} are edge-amenable.

The following exercise is used in my PGG notes to prove that the Følner nonamenability of a Cayley graph implies that the group is nonamenable in von Neumann's sense:
\triangleright Exercise 4.* Let X be a metric space. $\varphi: X \rightarrow X$ is wobbling if $\sup _{x} d(X, \varphi(x))<K$. Further, if $\Gamma=(V, E)$ is a graph, then the maps α and β are a paradoxical decomposition of Γ if they are wobbling injections such that $\alpha(V) \sqcup \beta(V)=V$.

Show that a bounded degree graph is nonamenable if and only if there exists a wobbling paradoxical decomposition. (Hint: State, prove and use the locally finite infinite bipartite graph version of the Hall marriage theorem, called the Hall-Rado theorem.)

Recall that there is a topological space of ends of a graph, and that any quasi-isometry of graphs induces naturally a homeomorphism of their spaces of ends. In particular, the number of ends is a quasi-isometry invariant of the graph, and we can define the space of ends of a finitely generated group to be the space of ends of any of its Cayley graphs.
\triangleright Exercise 5. Show that a group has two ends iff it has \mathbb{Z} as a finite index subgroup.

\triangleright Exercise 6.

(a) Show that if Γ_{1}, Γ_{2} are two infinite graphs, then the direct product graph $\Gamma_{1} \times \Gamma_{2}$ has one end.
(b) Show that if $\left|G_{1}\right| \geq 2$ and $\left|G_{2}\right| \geq 3$ are two finitely generated groups, then the free product $G_{1} * G_{2}$ has a continuum number of ends.
\triangleright Exercise 7. Show that a finitely generated group with at least 3 ends must in fact have a continuum number of ends, and it must be non-amenable.

\triangleright Exercise 8.

(a) Assume that for some $H \triangleleft G$, both H and G / H are finitely presented. Show that G is also finitely presented.
(b) Show that any finitely generated almost-nilpotent group is finitely presented.
\triangleright Exercise 9.* Show that the Cayley graph of the lamplighter group $G=\mathbb{Z}_{2} \backslash \mathbb{Z}$ with generating set $S=\{\mathrm{R}, \mathrm{Rs}, \mathrm{L}, \mathrm{sL}\}$ is isomorphic to the Diestel-Leader graph $\mathrm{DL}(2,2)$, see Example 7.2 in the Lyons-Peres book, and satisfies $\mathrm{CutCon}_{\Gamma(G, S)}=\infty$.
(There used to be an exercise here saying that still $p_{c}(\Gamma)<1$ with some generating set, by finding a Fibonacci subtree, but I've realized it's also in Lyons-Peres, sorry.)

\triangleright Exercise 10.*

(a) Let T be the infinite binary tree. Show that $\operatorname{Aut}(T)$ is not finitely generated.
(b) Find a finitely generated non-amenable subgroup of $\operatorname{Aut}(T)$.

That transitivity is needed for $\theta\left(p_{c}\right)=0$ can be seen from the case of general trees:
\triangleright Exercise 11. Consider a spherically symmetric tree T where each vertex on the $n^{\text {th }}$ level T_{n} has $d_{n} \in\{k, k+1\}$ children, such that $\lim _{n \rightarrow \infty}\left|T_{n}\right|^{1 / n}=k$, but $\sum_{n=0}^{\infty} k^{n} /\left|T_{n}\right|<\infty$. Using the second moment method, show that $p_{c}=1 / k$ and $\theta\left(p_{c}\right)>0$.
\triangleright Exercise 12. Still with the first and second moment method, show that for $\operatorname{Ber}(p)$ percolation on a d-regular tree T with $d \geq 3$, the percolation probability is $\theta\left(p_{c}+\epsilon\right) \asymp \epsilon$ as $\epsilon \searrow 0$.

Two exercises about unimodularity:

\triangleright Exercise 13.

(a) Give an example of a unimodular transitive graph Γ such that there exist neighbours $x, y \in V(\Gamma)$ such that there is no graph-automorphism interchanging them.
(b)* Can you give an example with a Cayley graph?
\triangleright Exercise 14. Give an invariant percolation on a non-unimodular transitive graph with infinitely many trifurcation points a.s., but only finitely many in each infinite cluster.

We had a characterization of amenability using high-marginal invariant percolation processes without infinite clusters. The following exercise shows that the bound we had is tight:
\triangleright Exercise 15. Show that for the set of invariant bond percolations on the 3-regular tree \mathbb{T}_{3} without an infinite cluster, the supremum of edge-marginals is 2/3. (Hint: the complement of a perfect matching has density $2 / 3$ and consists of \mathbb{Z} components.)

A similar characterization of amenability is the following:
\triangleright Exercise 16. Show that a Cayley graph $\Gamma(G, S)$ is amenable iff it has a G-invariant random spanning \mathbb{Z} subgraph. (Hint: for one direction, produce the invariant \mathbb{Z} using the high-marginal construction; for the other direction, produce an invariant mean from the invariant \mathbb{Z}.)

Recall that for a transitive d-regular graph $\Gamma(V, E)$ and any $o \in V$, we defined

$$
\delta^{\operatorname{erg}}(\Gamma):=\sup \left\{\frac{\mathbf{E}_{\mu}|\{(o, x) \in E: \sigma(x)=\sigma(o)\}|}{d_{\Gamma}}: \begin{array}{l}
\text { ergodic invariant measures } \mu \text { on } \sigma \in\{ \pm 1\}^{V} \\
\text { with } \mathbf{E}_{\mu} \sigma(o)=0
\end{array}\right\}
$$

and mentioned the theorem of Glasner and Weiss that a f.g. group G is Kazhdan iff any (or one) of its Cayley graphs Γ has $\delta^{\operatorname{erg}}(\Gamma)<1$. We had a similar definition for tail-trivial measures, giving $\delta^{\mathrm{tt}}(\Gamma)$, and for factors of i.i.d. processes, giving $\delta^{\text {fiid }}(\Gamma)$. Clearly, $\delta^{\operatorname{erg}}(\Gamma) \geq \delta^{\mathrm{tt}}(\Gamma) \geq \delta^{\text {fiid }}(\Gamma)$.
\triangleright Exercise 17. Show that $\delta^{\operatorname{erg}}\left(\mathbb{T}_{3}\right)=1$. (Hint: free groups are not Kazhdan e.g. because they surject onto \mathbb{Z}.)

\triangleright Exercise 18. ${ }^{* * *}$

(a) Find the value of $\delta^{\text {fiid }}\left(\mathbb{T}_{3}\right)$.
(b) Show that $\delta^{\mathrm{tt}}\left(\mathbb{T}_{3}\right)<1$.

Pak and Smirnova-Nagnibeda constructed a Cayley graph $\Gamma(G, S)$ with $p_{c}(\Gamma)<p_{u}(\Gamma)$ for each nonamenable group G using that $\iota_{E}\left(\Gamma\left(G, S^{k}\right)\right) \rightarrow 1$ as $k \rightarrow \infty$, where S^{k} is the " k-ball with multiplicities". Can this be done without multiple edges? Consider the outer vertex Cheeger constant $h_{V}:=\inf \left|\partial_{V}^{\text {out }} S\right| /|S|$ and note that $\left|\partial_{V}^{\text {out }} S\right| \leq\left|\partial_{E} S\right| \leq(d-1)|S|$ in a d-regular graph.
\triangleright Exercise 19. Show that for any d-regular non-amenable graph Γ and any $\epsilon>0$, there exists $K<\infty$ such that we can add edges connecting vertices at distance at most K, such that the new graph Γ^{*} will be d^{*}-regular, no multiple edges, and $\iota_{V}\left(\Gamma^{*}\right):=h_{V}\left(\Gamma^{*}\right) / d^{*}$ will be larger than $1-\epsilon$. (Hint: use the wobbling paradoxical decomposition from Exercise 4. The Mass Transport Principle shows that this proof cannot work in a group-invariant way.)

\triangleright Exercise 20. ${ }^{* * *}$

(a) Is it true that $\iota_{E}\left(\Gamma\left(G, B_{k}^{S}\right)\right) /\left|B_{k}^{S}\right| \rightarrow 1$ as $k \rightarrow \infty$ for any nonamenable group G and the ball of radius k in any finite generating set S ?
(b) Is it true that $\iota_{V}\left(\Gamma\left(G, B_{k}^{S}\right)\right) /\left|B_{k}^{S}\right| \nrightarrow 1$ for any group G and any finite generating set S ?

Regarding the characterization of uniqueness of infinite clusters in an invariant percolation ω via $\inf _{x, y \in V(\Gamma)} \mathbf{P}[x \underset{\longleftrightarrow}{\stackrel{\omega}{\longleftrightarrow}} y]>0$, here are two exercises:
\triangleright Exercise 21. Give an example of a $\operatorname{Ber}(p)$ percolation on a Cayley graph Γ that has non-uniqueness, but there is a sequence $x_{n} \in V(\Gamma)$ with $\operatorname{dist}\left(x_{0}, x_{n}\right) \rightarrow \infty$ and $\inf _{n} \mathbf{P}_{p}\left[x_{0} \longleftrightarrow x_{n}\right]>0$.
\triangleright Exercise 22.* Give an example of an ergodic uniformly insertion tolerant invariant percolation on \mathbb{Z}^{2} with a unique infinite cluster but $\inf _{x, y \in \mathbb{Z}^{2}} \mathbf{P}[x \stackrel{\omega}{\longleftrightarrow} y]=0$. (Hint: you can use the ideas of arXiv:1011. 2872 [math.PR].)
\triangleright Exercise 23. Fill in the missing details in either proof sketches in $P G G$ for $p_{u}<1$ for Kazhdan groups.
\triangleright Exercise 24. ${ }^{* * *}$ Prove $p_{c}<p_{u}$ for Kazhdan groups by finding an appropriate representation.
\triangleright Exercise 25. Show that in Schramm's proof of $\mathbf{P}\left[X_{0} \stackrel{p_{c}}{\longleftrightarrow} X_{n}\right] \leq 2 \rho^{n}$ for unimodular non-amenable graphs, the auxiliary percolation process ξ on the tree \mathbb{T}_{m+1} indexing the branching random walk is Aut $\left(\mathbb{T}_{m+1}\right)$-invariant.

Starting percolation in the plane:
\triangleright Exercise 26. Assuming the fact that at least one type of crossing is present in any two-colouring of the $n \times n$ rhombus in the hexagonal grid, prove Brouwer's fixed point theorem in two dimensions. (Show, by the way, that Brouwer's theorem needs the ball to be closed.)
\triangleright Exercise 27. Assuming the main $R S W$ inequality (12.13) in $P G G$, complete the proof of the full $R S W$ proposition, and explain what to change so that the proof works for bond percolation on \mathbb{Z}^{2}.
\triangleright Exercise 28. Assuming quasi-multiplicativity and the bounds

$$
c(r / R)^{2-\epsilon}<\alpha_{4}(r, R)<C(r / R)^{1+\epsilon}
$$

and

$$
\alpha_{2}^{+}(r, R) \asymp r / R, \quad \alpha_{3}^{+}(r, R) \asymp(r / R)^{2}
$$

prove the second moment estimate $\mathbf{E}\left[\left|\operatorname{Piv}\left(\mathcal{Q}_{n}\right)\right|^{2}\right] \leq C\left(\mathbf{E}\left|\operatorname{Piv}\left(\mathcal{Q}_{n}\right)\right|\right)^{2}$ for any piecewise smooth quad \mathcal{Q}, with $C=C_{\mathcal{Q}}$.
\triangleright Exercise 29. Consider recursive 3-majority with depth h, with uniform distribution on the 3^{h} input variables. Show that the set of pivotals is the leaves of a $G W$ tree with offspring distribution $\mathbf{P}[\pi=0]=1 / 4$ and $\mathbf{P}[\pi=2]=3 / 4$, and the spectral sample is the leaves of a $G W$ tree with offspring distribution $\mathbf{P}[\sigma=1]=3 / 4$ and $\mathbf{P}[\sigma=3]=1 / 4$. Note that $\mathbf{E}[\pi]=\mathbf{E}[\sigma]=3 / 2$ and $\mathbf{E}\left[\pi^{2}\right]=\mathbf{E}\left[\sigma^{2}\right]=3$, and hence $\mathbf{E}\left[\left|\mathrm{Piv}_{h}\right|^{i}\right]=\mathbf{E}\left[\left|\operatorname{Spec}_{h}\right|^{i}\right]$ for $i=1,2$.
\triangleright Exercise 30. Show that the spectral result

$$
\mathbf{P}\left[0<\left|\operatorname{Spec}\left(f_{n}\right)\right|<\lambda \mathbf{E}\left|\operatorname{Spec}\left(f_{n}\right)\right|\right]=\lambda^{2 / 3+o(1)}
$$

for the spectral sample of left-right crossing f_{n} in the $n \times n$ square for critical percolation on the triangular lattice implies the decorrelation

$$
\mathbf{E}\left[f_{n}\left(\omega_{0}\right) f_{n}\left(\omega_{t \epsilon(n)}\right)\right]-\mathbf{E}\left[f_{n}\right]^{2}=t^{-2 / 3+o(1)}
$$

as $t \rightarrow \infty$, uniformly in n, for $\epsilon(n)=1 / \mathbf{E}\left|\operatorname{Spec}\left(f_{n}\right)\right|=1 / \mathbf{E}\left|\operatorname{Piv}\left(f_{n}\right)\right|=n^{-3 / 4+o(1)}$.

