Gábor Pete

University of Toronto Scarborough

Why the attack on Vigenère works

First recall a result we had already used in the fancy version of the frequency analysis, basically the lemma of the 5 -year-old child:

Lemma 1. Let $\mathbf{A}_{0}=(.082, .015, .028, \ldots, .020, .001)$ be the frequencies of (a, b, c, \ldots, y, z) in English, and let \mathbf{A}_{i} be the same vector shifted cyclically by i entries to the right, for $i=0,1, \ldots, 25$. E.g., $\mathbf{A}_{1}=(.001, .082, .015, \ldots, .020)$. Then the dot product $\mathbf{A}_{i} \cdot \mathbf{A}_{j}$ depends only on $|i-j|$, and is maximized when $i=j$, with value .066 .

Consider a plaintext $x_{1} x_{2} x_{3} \ldots$, a key $k_{1} k_{2} k_{3} \ldots$ given by a keyword of length p, so that $k_{i}=k_{\ell+i}$ for all i, ℓ, and the resulting ciphertext $y_{1} y_{2} y_{3} \ldots$, with $y_{i}=x_{i}+k_{i}(\bmod 26)$.

Let's estimate the frequency of coincidences between $y_{1} y_{2} y_{3} \ldots$ and its displacement by t places, i.e., the fraction of places i with $y_{i}=y_{i-t}$. The two letters we see at a typical place i roughly follow the typical frequencies of English letters, except, of course, that y_{i} is like the typical x_{i} shifted by k_{i}, while y_{i-t} is like the also typical x_{i-t} shifted by k_{i-t}. That is, the frequency of the ciphertext letter $A=0$ as y_{i} has the English frequency of $0-k_{i}$, the frequency of $B=1$ has the English frequency $1-k_{i}$, and so on, i.e., the frequency vector for y_{i} is $\mathbf{A}_{k_{i}}$. Similarly, the frequency vector for y_{i-t} is $\mathbf{A}_{k_{i-t}}$.

Now, to get an agreement $y_{i}=y_{i-t}$, we can have two A 's or two B 's, and so on, so have to add up the frequencies for these 26 possible agreements. If the displacement t is large enough, say at least 3, then, for a typical i, the English plaintext letters x_{i} and x_{i-t} are quite independent, hence the frequency of a pair of letters as $\left(x_{i}, x_{i-t}\right)$ is roughly the product of the two frequencies. So, the frequency of agreements $y_{i}=y_{i-t}$ is roughly a sum of 26 pairwise products, namely, $\mathbf{A}_{k_{i}} \cdot \mathbf{A}_{k_{i-t}}$.

By the lemma, this is largest when $k_{i}=k_{i-t}$. Thus, we expect the largest frequency of coincidences when t is a multiple of the period p. So, if we see much more coincidences at displacements, say $t=4,8,12, \ldots$, than at other values, then our best guess for the keyword length is $p=4$.

This method is unsafe for displacements $t=1$ and 2 , because of the correlations between nearby letters in the English plaintext. However, if p is the real length, then $t=\ell p$ will give many coincidences for each $\ell=1,2, \ldots$. Therefore, many coincidences for displacement 2 , say, but only few for 4 , will mean that the length is probably not 2 .

Once you have the keyword length p, do frequency analysis on the ciphertext letters $y_{j}, y_{p+j}, y_{2 p+j}, \ldots$ to find the shift there, for each $j=1,2, \ldots, p$. Combine these shifts to get the keyword.

