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The existence of expanders, which are sparse graphs with good connectivity properties,
follows easily from the probabilistic method of combinatorics. However, constructing them ex-
plicitly, especially Ramanujan graphs, which are the optimal ones from some point of view, is
an extremely difficult and interesting problem that was solved by Lubotzky-Phillips-Sarnak and
Margulis in 1988. The problem comes from combinatorics and information theory, but it has
turned out to be a meeting point of Lie-groups, representation theory, geometry and number
theory. Moreover, there are real-life applications to network-designs, complexity theory, deran-
domization, coding theory and cryptography. The present wonderful book gives an elementary
and self-contained treatment of constructing almost-optimal examples, and thus is intended for
a general mathematical audience. In particular, for adventurous undergraduates this book can
be an excellent introduction to major modern subjects, by showing how such deep theories are
synthesized to solve an easily understandable problem.

For a fixed integer k > 3 and ¢ > 0 small, a k-regular graph X (V, E) on n vertices is called
a (n, k, c)-expander, if for any subset of vertices U C V, there are many edges connecting

U with its complement: % > ¢. The minimum of these “boundary to volume” ratios

is called the isoperimetric or Cheeger constant h(X) of the graph. Most of mathematics
comes into play after noting that the largeness of h(X) is closely related to the largeness of the
so-called spectral gap of X. The adjacency matrix of X is symmetric, with n real eigenvalues
k=py>p > > pin_1 > —k. If the graph is connected, then k > p1, and p,—1 = —k
iff X is bipartite. Inspired by differential geometry, Alon-Milman and Dodziuk showed that
(k—11)/2 < h(X) < \/2k(k — p1). Thus, finding good expanders is almost the same as
maximizing the spectral gap. Alon-Boppana and Serre showed that for fixed k, any sequence
X, of k-regular connected graphs on n vertices has liminf,, u1(X,) > 2k — 1, and if the girth
sequence (the length of the shortest cycle) satisfies g(X,,) — oo, then also limsup,, ptn—1(X) <
—2+v'k — 1. This motivates the following definition: a finite connected k-regular graph is called
a Ramanujan graph if all eigenvalues with |u| < k satisfy |u| < 2vEk — 1.

The probabilistic method shows that for any £ > 3 and ¢ > 0 small enough, when n is large,
most k-regular graphs on n vertices are (n, k, ¢)-expanders. But the first explicit construction of
an infinite family of (k, ¢)-expanders by Margulis in 1973 used Kazhdan’s property (T), and the
original proof in 1988 that some well-chosen Cayley graphs of the groups PSLy(g) are Ramanu-
jan, make free use of the theory of algebraic groups, modular forms, theta correspondences,
and the Riemann hypothesis for curves over finite fields. In particular, the main ingredient was
Eichler’s 1954 proof of the Ramanujan conjecture about the order of magnitude of coefficients
of modular cusp forms in weight 2 — hence the name of these graphs. So it must be clear
how valuable an elementary approach is — even if the authors prove only that the constructed
Cayley graphs are expanders with a good ¢, and not that they are actually Ramanujan.

Chapter 1 of the book contains the graph theoretical background. It proves the basic facts
about the spectrum of the adjacency matrix; the Alon-Milman and Dodziuk inequalities; the
asymptotic optimality of 2v/k — 1 via Chebyshev polynomials; the fact that a k-regular Ra-
manujan graph has chromatic number at least 2\/% It also gives Erdés’ probabilistic proof
that there exist graphs with both arbitrary large girth and chromatic number.
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Chapter 2 is devoted to elementary number theory. Using the ring Z[i] of Gaussian integers,
it gives Legendre’s formula on the number of ways an integer can be written as a sum of two
squares. Then it proves the law of quadratic reciprocity, and Jacobi’s formula on the number of
ways an integer can be written as a sum of four squares (which is at least one for any positive
integer). Finally, we learn the algebraic structure underlying the representation as a sum of
four squares: the arithmetic of the quaternion ring H(Z).

Chapter 3 bears the title PSLa(g). Firstly, it shows that PSLa(g) is a simple group if ¢ > 3,
then it proves that any proper subgroup with more than 60 elements is metabelian. We are
introduced to the linear representation theory of finite groups in 17 pages, followed by Frobenius’
result that, for ¢ > 5, the degree of any non-trivial representation of PSLo(g) is at least %1.

Chapter 4 ties everything together. For p,q distinct odd primes, g large enough, X?? is a
(p + 1)-regular Cayley graph of PSLy(q), constructed via an isomorphism between H(F,) and
the algebra of 2 x 2 matrices over F,. This is the point where quaternionic number theory and
group theory merge. However, it is very hard to show that the (p + 1)-element set defining
the Cayley graph actually generates the whole group, and thus that X?:? is connected. Instead
of this, certain Cayley graphs YP¢ are constructed as quotients of the (p + 1)-regular tree.
These are obviously connected, but it is not clear if the vertex set is the whole of PSLy(q)
or only a subgroup. Here comes the result of Chapter 3: it is easy to show that Y?? does
not have small girth, while any Cayley graph of a metabelian group does. Therefore, we must
have XP9 = YP9. Then the earlier representation theory implies that the multiplicity of any
nontrivial eigenvalue of XP? is at least %. Using that this value is fairly large compared to
¢*, the approximate number of vertices, the authors deduce that there must be a spectral gap.

The book ends by indicating how Eichler’s theorem implies that the X9 are Ramanujan
graphs, and with an Appendix containing Margulis’ beautiful elementary construction of a
family of 4-regular graphs with almost optimally large girth. These are Cayley graphs of

To read the book, only basic knowledge of algebra and number theory is required as a
background, such as the mere definition of the matrix group GL2(q) — everything else is

developed quickly but clearly. It is very nice to see that this quickness never makes the proofs
rushed. Each section ends with several nice exercises, over 70 in total, which both deepen and
widen the reader’s understanding of the material. The notes on further results are helpful for
researchers. An undergraduate reader certainly has to be quite enthusiastic and committed to
master all of the book’s material; on the other hand, I can hardly imagine a better source to
help enthusiasm and maturity grow. This book will be an exciting reading and a pleasure for
anyone.



