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1 Introduction

This paper deals with Glauber dynamics for the Ising model on trees, with [5] as the primary
reference. As explained below, Ising model on trees has an interpretation in terms of information
flow along the edges, which makes it trivial to sample from the Gibbs distribution. Glauber
dynamics is studied, not for sampling purposes, but because similar results are expected to be
valid on other non-amenable graphs where there is no alternative interpretation. Indeed, some
results generalize (viz. polynomial mixing at all temperatures), whereas some are not known yet
(viz. existence of an intermediate phase in nonamenable transitive graphs)

1.1 Ising Model

For σ ∈ {+,−}V define

π(σ) = Z(β)−1 exp
(

β
∑

{v,w}∈Er

σvσw

)

An alternative description of Ising model on trees is as follows. Put +/- u.a.r at the root
of the tree. Then send it down the edges of the tree with a probability of error ε independently
for each edge. We get a configuration in {+,−}V . With ε = (1 + e2β)−1 we get the Ising model.

In this picture, the problem is to reconstruct the σρ, knowing the spins on ∂Tr (Tr is the
subtree of first r generations of T ). We say that reconstruction is possible if the probability of
correct reconstruction remains bounded away from 1/2 as r → ∞.

2 Phase Transitions

Henceforth we shall assume that T is a b-ary tree. All results stated here are valid for general
trees with bounded degree, with b replaced by the branching number of the tree.

In contrast to the situation in Zd [6], there are three distinct phases for the Ising model on
trees. Also in contrast to Zd (where the two sides of phase transition correspond to polynomial
v/s exponential mixing time), Glauber dynamics mixes in polynomial time at all temperatures.

High Temperature regime (1 − 2ε <
1

b
)

Relaxation time is linear; there is a unique Gibbs measure on the infinite tree; the expected
value of σρ, given any boundary conditions on ∂Tr, decays exponentially as r → ∞.

Intermediate Temperature regime ( 1

b
< 1 − 2ε <

1
√

b
)

Relaxation time is still linear; there are infinitely many Gibbs measures (three extremal ones)
on the infinite tree: the boundary conditions σ(∂Tr) = + and σ(∂Tr) = − induce bias in σρ, so
we get two different Gibbs measures in the limit, but for a typical boundary condition on ∂Tr

the expected value of σρ decays, which implies that the free Gibbs measure is also extremal [1].

Low Temperature regime ( 1
√

b
< 1 − 2ε)

Relaxation time is superlinear; there are infinitely many Gibbs distributions on the infinite
tree(two extremal ones) and the expected value of σρ remains bounded away from zero for
typical boundary conditions.



3 Results

Definition For a finite graph G = (V, E), the exposure E(G) is the smallest integer such that
there are atmost E(G) edges from {v1, . . . , vk} to {vk+1, . . . , vn}, for some ordering of vertices
v1, . . . , vn.

Proposition 3.1 Consider the Ising model on a finite graph G with n vertices and maximal
degree ∆. Then the relaxation time of the Glauber dynamics is at most n2e(4E(G)+2∆)β .

Theorem 3.2 Consider the Ising model on the b-ary tree Tr of height r. Let ε = (1 + e2β)−1.
The relaxation time τ2 for Glauber dynamics on Tr can be bounded as follows:

1. The relaxation time is polynomial at all temperatures: τ2 = n
O(log(1/ε))
r .

2. Low temperature regime.

(a) If 1 − 2ε ≥ 1/
√

b then the relaxation time is superlinear: τ2 = Ω(n
1+logb(b(1−2ε)2)
r ).

(b) Moreover, the degree of τ2 tends to infinity as ε tends to zero: τ2 = n
Ω(log(1/ε))
r .

3. Intermediate and high temperature regimes.
If 1 − 2ε < 1/

√
b then the relaxation time is linear: τ2 = O(nr).

Theorem 3.3 If G has bounded degree and the relaxation time of the Glauber dynamics satisfies
τ2(Gr) = O(nr), then the Gibbs distribution on Gr has the following property. For any fixed finite
set of vertices A, there exists cA > 0 such that for r large enough

Cov(f, g) ≤ e−cAr
√

Var(f)Var(g) ,

provided that f(σ) depends only on σA and g(σ) depends only on σr. Hence, reconstruction is
not possible.

4 Sketch of proofs

Proof of Proposition 3.1 The proof is by constructing a good flow f . Take the ordering
v1, . . . , vn which gives the exposure. Given two configurations σ and τ , send an amount π(σ)π(τ)
from σ to τ via the path obtained by altering the spins of the disagreeing vertices in the above
order. It is easy to bound ρ(f) above via the obvious bijection between the set of flow-carrying
paths containing a particular edge and the set of all configurations.

Proof of Theorem 3.2 Part 1 is a direct consequence of Proposition 3.1.
Part 2a and Part 2b: we have the variational principle

τ2 = sup

{

2
∑

σ π[σ](g(σ))2
∑

τ 6=σ π[σ]P[σ → τ ](g(σ) − g(τ))2
: π(g) = 0, g 6= const

}

,

For Part 2a close to 1√
b

we use ”Global Majority”:

g(σ) =
∑

v∈∂Tr

σv

For Part 2b we use ”Recursive Majority”: starting from ∂Tr, inductively define mv to be
the sum of the spins of v’s children. Let g(σ) = mρ (There is some subtlety in defining this
function when b is even.)

These functions give the lower bounds claimed.



Part 3: First we show fast mixing (linear relaxation time) for the following block dynamics:
We view our tree Tr as part of a larger b-ary tree T∗ of height r +2h, where the root ρ of Tr

is at level h in T∗. For each vertex v of T∗, consider the subtree of height h rooted at v. A block

is by definition the intersection of Tr with such a subtree. In this way, each vertex of the tree Tr

is inside exactly h blocks. At each step of the block dynamics, we pick a block at random, erase
all the spins belonging to the block, and put new spins in, according to the Gibbs distribution
conditional on the spins in the rest of T .

Let us define a weighted Hamming metric on configurations,

d(σ, η) =
∑

v

λ|v|1(σv 6= ηv).

Let θ = 1 − 2ε and λ = 1/
√

b. Note that bλθ < 1 and θ < λ.
We will use path coupling: for every pair of configurations σ and η which differ by a

single spin, σv 6= ηv , d(σ, η) = λ|v|, we want to design a coupled updating (σ, η) 7→ (σ′, η′) such
that the expected distance reduces by a factor uniformly smaller than 1. Then the general path
coupling argument [2] gives a good coupling for each pair, and fast mixing will follow.

In the coupling we will always choose the same block B. There are four situations to
consider.
Case 1. If B contains neither v nor any vertex adjacent to v, then d(σ′, η′) = d(σ, η).
Case 2. If B contains v, then σ′ = η′ and d(σ′, η′) = 0 = d(σ, η)−λ|v|. There are h such blocks,
corresponding to the h ancestors of v at 1, 2, . . . , h generations above v.
Case 3. If B is rooted at one of v’s children, then the boundary of B in σ and η differ, but
only at one vertex, v. Lemma 4.1 below shows that forgetting about the agreeing spins in the
boundary condition can only increase the expectation of d(σ′, η′)− d(σ, η), so we may assume a
free boundary. But then we can use the broadcasting interpretation of the free Gibbs measure
[4]: along an edge downwards from v, keep the sign faithfully with probability θ, and update to
a uniform ± sign with probability 1 − θ. These updates can be coupled together, hence we will
have different spins in σ′ and η′ exactly along the θ-percolation connected cluster of v. Thus
the expectation of d(σ′, η′)− d(σ, η) is at most

∑

j λ|v|+jbjθj ≤ λ|v|/(1− bλθ). There are b such
blocks, corresponding to the b children of v.
Case 4. If B is rooted at v’s ancestor exactly h+1 generations above v, then there is a differing
spin at the lower boundary of B. Again by Lemma 4.1, the expected distance between σ′ and
η′ is dominated by the size of the θ-cluster of v. The expected weight of v’s cluster is bounded
by summing over the ancestors w of v:

∑

w θ|v|−|w| ∑
j λ|w|+jbjθj = λ|v|/

(

(1− θλ−1)(1− bλθ)
)

.
Over all four cases, the expected change in distance is

E(d(σ′, η′) − d(σ, η)) ≤
(

bλ|v|

1 − bλθ
+

λ|v|

(1 − θλ−1)(1 − bλθ)
− hλ|v|

)

1

n + h − 1
.

If the block height h is a sufficiently large constant, we get that for some positive constant c,

E(d(σ′, η′) − d(σ, η)) ≤ −cλ|v|

n
≤ −c

n
d(σ, η).

This implies a mixing time of at most O(n log n) and a relaxation time of at most O(n) for
the block dynamics — we don’t go into these standard arguments here. See [2] and [3].

Since each block update can be simulated by doing a constant number of single-site updates
inside the block, and each tree vertex belongs only to a bounded number of blocks, it follows
from proposition 3.4 of [6] that the relaxation time of the single-site Glauber dynamics is also
O(n).

Note that the similar transition from the mixing time of the block dynamics to that of the
single site dynamics is not automatic — see Open Problem 1.

Finally, we state the lemma which was used in the coupling analysis. The crucial importance
of this result will be explained at Open Problem 2.



Lemma 4.1 Let T be a finite tree and π a Gibbs measure for the Ising model on this tree. For
a fixed set of vertices A of T , v /∈ A, and some boundary conditions τ , we consider the following
conditional Gibbs expectations:

π+[σw] = E[σw |σv = +], π+,τ [σw] = E[σw |σv = +, σA = τ ]

for any w ∈ T . Similarly with the condition σv = −. Then

π+,τ [σw] − π−,τ [σw] ≤ π+[σw] − π−[σw].

5 Open questions and future directions

1. Is the mixing time O(n log n) at high and intermediate temperatures? (Affirmative for
1 − 2ε < 1

2
√

b
.)

2. Note that Lemma 4.1 is intuitively obvious even for an arbitrary finite graph G instead of T :
adding more boundary conditions makes the influence of one differing spin less significant. But
it is only a conjecture that the lemma holds for general graphs. For trees, it is proven by explicit
calculations, heavily using the simple tree structure.

Suppose one can prove the general lemma. The quantitative bounds in the four cases of the
path coupling argument seem to rely mainly on growth conditions for T , and not too much on the
tree structure, so linear relaxation time might follow for general nonamenable transitive graphs,
maybe already for intermediate temperatures. By Theorem 3.3, this would imply a double phase
transition for the number of extremal Gibbs measures on these graphs, a major open problem
in this field [8].
3. In the case of a binary symmetric channel dealt with above, reconstruction by Global majority
and general reconstruction have the same critical temperature. For a q-ary/asymmetric binary
channel this is false. Critical value for majority reconstruction is known but not that for general
reconstruction [7].
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