
CS-294 and Stat-260: Spin Systems Spring 2003

Lecture 1: January 22

Lecturer: Fabio Martinelli Scribes: Gábor Pete

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

They may be distributed outside this class only with the permission of the Instructor.

1.1 Useful readings

On the course webpage you can find several resources. The main textbooks are the following:

1. Wei-Shih Yang: Mathematical Methods in Statistical mechanics. These are really condensed, and
useful in general.

2. Barry Simon: The statistical mechanics of lattice gases. Not an easy mathematics text, but also
contains good accounts of some nice combinatorial topics.

3. Frank Harary (Ed.): Graph Theory and Theoretical Physics. We will use Kasteleyn’s paper on planar
Ising models and counting matchings.

4. Fabio Martinelli: Lectures on Glauber Dynamics for discrete spin models. This is for the MCMC
approach. Can be found on the web.

1.2 The Ising model

The Ising model is the simplest and most famous spin system model to study phase transitions. It was
introduced in 1925 by Ernst Ising in his Ph.D. thesis. He solved the model completely for Z, and found that
no phase transition occurs. He concluded that this should be the case for all dimensions — a fatal mistake.
Inspite of this, the model was renamed after him, but English speakers usually mispronounce his name — a
revenge of history.

1.2.1 Basic definitions

Let G = (V, E) be a finite graph, and call Ω = {−1, +1}V the state space, with elements σ = {σx}x∈V .
The variable σx ∈ {−1, +1} is called the spin at vertex x. This is a spin system. Sometimes the variables
ρx ∈ {0, 1} are used: in this case ρx = 1 interpreted as having a particle at the site x, and ρx = 0 means a
vacant site. Then the system is called a lattice gas model.

There is an energy functional defined on Ω. For the Ising model this functional is defined as

H(σ) = −JΣ(x,y)∈Eσxσy, (1.1)

where J is a real constant, the interaction strength. Note that H(σ) is built up from the local energy
terms −Jσxσy, i.e. our model is defined by nearest-neighbour interactions. Now we introduce the inverse
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temperature parameter β ∼ 1/T , and consider the following probability measure on Ω:

µ(σ) =
e−βH(σ)

Zβ

, Zβ =
∑

σ∈Ω

e−βH(σ). (1.2)

This Zβ is called the partition function, and, as usually generating functions do, contains basically all
information about the system. Clearly, the main problem we are interested in is to understand µ = µβ ,
called the Gibbs measure (we will see later what “Gibbsian” means). First of all note that for J > 0,
which is called the ferromagnetic case, the minimum of H(σ) and so the maximum of µ(σ) are attained at
σ ≡ const. More generally, spins like to agree along edges, and for β → ∞ the measure concentrates on the
two constant configurations. The antiferromagnetic case J < 0, where neighbouring spins like to differ,
is much harder, and we will not consider it on this course.

For any function f : Ω −→ R, we can consider the expectation and the variance:

µ(f) = 〈f〉 =
∑

σ∈Ω

µ(σ)f(σ), Var(f) = µ(f2) − µ(f)2. (1.3)

1.2.2 Thermodynamical objects

We are going to define some physics-inspired quantities, which also have clear mathematical importance.

Free energy : F (β) = −
1

β
log Zβ . (1.4)

Note that Zβ = e−βF (β) and d
dβ

F (β) = µ(H).

Specific heat : C(β) =
d

d(1/β)
µ(H) = −β2 d2

dβ2
F (β). (1.5)

The “specific heat” is the amount of heat you have to provide to increase the temperature of one kg of
material by 1 Celsius degree. In our case it is related to the fluctuation of the system: C(β) = β2Var(H).

Now we modify our H(σ) by introducing an external magnetic field:

H(σ, h) = −J
∑

(x,y)∈E

σxσy −
∑

x∈V

hxσx, (1.6)

where hx ∈ R; sometimes hx ≡ h constant. If h > 0, then H(σ) has a unique minimum at σ ≡ +1. A very
difficult famous problem is the case when the hx’s are i.i.d. random variables.

Now F (β, h) = − 1
β

log Z(β, h). This is a nice smooth function for any finite graph G. And we can consider

Magnetization : M(β, h) =
1

|V |

∑

x∈V

µ(σx) = −
1

|V |

∂

∂h
F (β, h). (1.7)

Furthermore,

1

β|V |

∂

∂h
M(β, h) = Var

(

1

|V |

∑

x∈V

σx

)

. (1.8)

For h = 0 we have µ(σx) = 0 for all x ∈ V , by symmetry between the spins ±1, so M(β, 0) = 0. Clearly,
M(β, h) is monotone increasing in h, and M(β, h) → sgn(h) as β → ∞, i.e. as the interactions are getting
infinitely strong.
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1.2.3 Is there a phase transition?

Now the main question of the field is if the above discontinuity can happen already for finite β if the
underlying graph G is infinite. More precisely, take an infinite graph, and a “nice” exhaustion of it by finite
subgraphs, for example V` = {x ∈ Zν , |xi| ≤ `}, ` → ∞. Is there a finite β for which

lim
h→0−

lim
`→∞

M`(β, h) < 0 < lim
h→0+

lim
`→∞

M`(β, h)? (1.9)

The implication of such a discontinuity (a first order phase transition) for the infinite graph would be
the following. The sequence of probability measures µ`(β) has of course some accumulation points. For
h 6= 0 there should always be only one accumulation point, with sgn(M(β, h)) = sgn(h). But for h = 0 it
might happen that we have a limit measure with M+(β, 0) > 0 and another with M−(β, 0) < 0. That is, we
might have multiple “equilibrium measures”, and spontaneous magnetization happens. We will prove
that for ν ≥ 2 there exists 0 < βc(Z

ν) < ∞ such that this happens for all β > βc, and doesn’t happen for
β < βc(Z

ν).

1.2.4 Translation to the Lattice Gas Model

Recall we have ρx ∈ {0, 1}. Now the energy function is

H(ρ, λ) = K
∑

(x,y)∈E

ρxρy − λ
∑

x∈V

ρx, (1.10)

with K > 0, and where λ ∈ R is called the chemical potential. The partition function Z(β, λ) is defined
appropriately. Substituting σx = 2ρx − 1 we get

H(ρ) = −J
∑

(x,y)∈E

σxσy −
∑

x∈V

hxσx + C, (1.11)

with J = K/4, hx = λ
2 + K

4 deg(x). So we get the Ising model with magnetic field hx; moreover, for a regular
graph G we have hx ≡ const.

1.2.5 High level problems

The main questions to be answered are the following.

1. Try to compute Z(β, h). Then we have F (β, h) and M(β, h), so we have basically everything. This is
possible only for subgraphs of Z, and for planar graphs with h = 0 — we will see the nice combinatorial
approach of Kasteleyn.

2. When there is no explicit computation: try to approximate Z(β, h), e.g. by a power series expansion.

3. MCMC sampling from the Gibbs measure µ, to understand the measure.

Answering these questions would of course also provide different approaches to understand phase transition
phenomena. For example, what is the physical relevance of different mixing times of the Gibbs sampler
Markov chain for different β values?
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1.2.6 Some related areas

The first application is to image reconstrucion. Consider a black-and-white “true image”, with pixels
{σx}x∈V . But we have an “actual image” ηx = σx + ξx with noises ξx i.i.d. Normal(0, δ2) random variables.
Assume that the true image is coming from a measure of the form µ(σ) = 1

Z
e−βH(σ). The energy function

H(σ) can be the one corresponding to the Ising model, but one can also cook more realistic ones, e.g. favouring
straight lines in the image. Now we want to compute

Pr(σ|η) ∼ e−βH(σ)+δ−2
∑

x

ηxδx . (1.12)

Note that δ → 0 yields Pr(σ|η) → µ(σ).

Another related area of research is called broadcasting over a noisy channel in a tree network. Given
the original information σr ∈ {±1} at the root r of a tree T , we broadcast spins through edges with a flipping
probability ε ∈ [0, 1/2). A brief computation shows that the random configuration of spins at all the vertices
of the tree is just the Ising model with

ε

1 − ε
= e−2βJ . (1.13)

The phase transition question here is the following: given the tree T , how large ε can be that still allows us
to reconstruct σr with probability bigger than the trivial 1/2, if we can see the spins only at the leaves? We
will see similar decay of information questions later on the course.


