MAXIMAL TORI OF COMPACT LIE GROUPS
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In this short note we sketch a generalization of the fact that any unitary matrix A € U(n) is
diagonalizable. The group U(n) will be replaced by an arbitrary compact connected Lie group,

and the subgroup of diagonal matrices by maximal tori.

1. The exponential map of (Abelian) Lie Groups

A Lie group G is a real or complex differentiable manifold together with a group
structure, where the group operations (multiplication and inverse) are differentiable.
E.g.,U(n) ={A € GL(n,C) | A~! = A*} is a real (and not complex!) Lie group.

The tangent space T.G at the unit element e of G reflects the structure of the
Lie group through the derivative of the so-called adjoint representation (not defined
here), giving rise to the Lie bracket [, -], a bilinear anti-commutative form on 7. G,
satisfying the Jacobi identity. A vector space T.G together with this bracket is the
Lie algebra g of G. If X € T.G then it can be extended to a vector field X (g) :=
(dmy)X through the left multiplication m, : G — G. With this extension we
can describe the Lie bracket as the Poisson bracket [X,Y]f = X(Y(f)) - Y(X(f)),
where f is the germ of a function on G.

If X € T.G and X (g) is its extended vector field, then we have a one-parameter
subgroup px : R — G satisfying ¢'x (t) = X (px(1)), vx(0) = e. So ¢’x(0) = X.
Now we define the exponential map exp : g — G by exp(X) := ¢px(1). The main
point of the whole construction is the following:

Proposition 1.1. If f : G — H is a Lie group homomorphism, then its derivative
(df)e : 9 — b is a Lie algebra homomorphism, and exp((df).(X)) = f(exp(X)).
Moreover, a linear map g — b is the derivative of a Lie group homomorphism iff it
is a Lie algebra homomorphism, and a group homomorphism is uniquely determined
by its derivative.

The derivative of the exponential map at the origin is Idg, so it is a local bijec-
tion between some neigbourhoods of 0 € g and e € G. If G is Abelian then the
multiplication p : G X G — G is a homomorphism, and considering its derivative
gbg— g (du)e(X,Y)=X+Y, we get by Proposition 1.1 that the exponential
map is a homomorphism exp(X +Y') = exp(X)exp(Y’), so we get not only a nbhd
of e € GG but the whole generatum of it, that is the connected component of e € G.
Thus exp is surjective in the case of a connected Abelian group. Its kernel is a
discrete subgroup in g because it is locally bijective, so it is a lattice isomorphic to
ZF for some k. Thus, writing g ~ R", we have proved:

Theorem 1. Any connected Abelian Lie group is the product of a torus TF ~
R* /7% and a vectorspace R"~%. [

If G is a subgroup of GL(V'), then g is a subalgebra of gl(V'), and the Lie bracket
is simply the commutator of matrices, and exp(X) = >_/-, %X k.

For a closed (and so compact) subgroup G of U(n) we can define a real inner
product on g as (X,Y) := RTr(XY"), which is invariant under conjugation by
the elements of GG, and so invariant under the Lie bracket of g in the sense that
([X,Y],Z2) + (Y,[X, Z]) = 0. It is easy to see that the orthogonal complement of
an ideal b of g w.r.t. this inner product is also an ideal.
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2. The Kronecker-Weyl equidistribution theorem

In this section we’d like to generalize and strengthen the well-known statement
that for any irrational real number « the set {na — |na||n € Z} is dense in the
unit interval.

It is easy to see that every continuous homomorphism T! — S! is of the form
x — exp(2mizk), k € Z, just look at its closed kernel. For T! we use the additive,
for S' the multiplicative notation. Then it is not difficult to prove:

Proposition 2.1. The character group of T" consisting of all continuous homo-
morphisms T" — S is 7.

Proposition 2.2. All the continuous automorphisms of the torus T™ are of the
form x — Ax, where A € £SL(n,R).

We have the normalized Lebesgue measure p(T™) = 1. Then for any v € T™ the
translation T, (x) := x +  is measure preserving.

Theorem 2. If~y,...,7,,1 are rationally independent (so for almost all ), then
the orbit of T, is dense in T", moreover, T, is ergodic, i.e. every invariant subset
of T™ has measure 0 or 1.

Proof. Ergodicity is clearly more than the denseness of the orbit, because every
open subset has positive measure. Now let x be the characteristic function of an
invariant set. By the Stone-Weierstrass thm for the character group of T" we get
the following Fourier expansion:
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Now x(Tyx) = x(x) by the invariance of x, and comparing the Fourier coefficients,
which are unique, we get

Xki,...kn | 1 — €XD 27riz kv, =0
j=1
for all ky,...,ky,. So the condition of rationally independence implies x,,... %, =0
except for possibly k&1 = --- =k, = 0. Thus x = 0 or x = 1 almost everywhere,

and we are done. O

Thus we have a lot of x € T™ such that the orbit {k- x|k € Z} is dense in T".
We call such an element a topological generator of the torus.

The name “Equidistribution Theorem” is a consequence of the Birkhoff Er-
godic Theorem: If f: X — X is an egodic p-preserving transformation with
u(X) =1, and A C X is a measurable set, then for almost every point z € X we

have
n—1

lim = 3 I[f5(x) € A] = u(A).
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3. Maximal tori of compact Lie groups

Let G be a closed connected subgroup of U(n) (but could be any compact con-
nected Lie group), with the invariant inner product on g described in Section 1.
A maximal torus T of it is a connected closed Abelian subgroup, not contained
properly in any other such subgroup. It is easy to see that the subgroup T is a
maximal torus in G iff its Lie algebra b is a maximal Abelian subalgebra of g. From
Theorem 1 we know that 7'~ T* for some k.

Proposition 3.1. If T is a maximal torus with Lie algebra b, then g = Ugeg ghg™!.

Proof. Take X € g, and choose Y € h) such that exp(Y') is a topological generator
for T', known to exist by Theorem 2. Thus by the maximality of § the centralizer
of Y in g is h. Now consider the function f(g) = ||¢Xg~' — Y||? on G. By the
compactness of G it has a minimum at some g, and replacing X by goXg, b we
may assume that go = e. Fix any A € g, and take the derivative of the function
F(t) = f(exp(At)) for small t € R at t = 0. We have F’'(0) = 2([4, X],X—-Y) =0.
By [X, X] = 0 and the invariance of the inner product we get (A4, [X,Y]) = 0 for
all A;so [X,Y]=0,and X €. O

By similar but longer tricks one can get from the previous result the following

Theorem 3. For a maximal torus T' we have G = Uyeg gTg™ .

So any two maximal tori are conjugate, and every element of G is contained
in a maximal torus. Thus the exponential map g — G is surjective for compact
connected Lie groups. The centralizer of T" in G is T itself, and its Lie-algebra b is
a Cartan subalgebra of g.

If N(T) is the normalizer of T" in G then the Weyl group W := N(T)/T can
be naturally embedded into the discrete group Aut(7") = £SL(k,Z), so it is finite,
and two elements of T" are conjugate in G iff they are conjugate under the action
of W.

For U(n), the standard maximal torus is the subgroup of diagonal matrices,
isomorphic to T™. So Theorem 3 is the generalization of the fact that every matrix
in U(n) can be diagonalized. The Weyl group of U(n) and SU(n) is S,,.

The Weyl group plays a central role in representation theory.
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