MAXIMAL TORI OF COMPACT LIE GROUPS

Gábor Pete 7. Dec. 1998.

In this short note we sketch a generalization of the fact that any unitary matrix $A \in U(n)$ is diagonalizable. The group U(n) will be replaced by an arbitrary compact connected Lie group, and the subgroup of diagonal matrices by maximal tori.

1. The exponential map of (Abelian) Lie Groups

A Lie group G is a real or complex differentiable manifold together with a group structure, where the group operations (multiplication and inverse) are differentiable. E.g., $U(n) = \{A \in GL(n, \mathbb{C}) \mid A^{-1} = A^*\}$ is a real (and not complex!) Lie group.

The tangent space T_eG at the unit element e of G reflects the structure of the Lie group through the derivative of the so-called *adjoint representation* (not defined here), giving rise to the Lie bracket $[\cdot, \cdot]$, a bilinear anti-commutative form on T_eG , satisfying the Jacobi identity. A vector space T_eG together with this bracket is the Lie algebra \mathfrak{g} of G. If $X \in T_eG$ then it can be extended to a vector field $X(g) := (\mathrm{d}m_g)_e X$ through the left multiplication $m_g : G \longrightarrow G$. With this extension we can describe the Lie bracket as the Poisson bracket [X, Y]f = X(Y(f)) - Y(X(f)), where f is the germ of a function on G.

If $X \in T_e G$ and X(g) is its extended vector field, then we have a one-parameter subgroup $\varphi_X : \mathbb{R} \longrightarrow G$ satisfying $\varphi'_X(t) = X(\varphi_X(t)), \ \varphi_X(0) = e$. So $\varphi'_X(0) = X$. Now we define the *exponential map* exp : $\mathfrak{g} \longrightarrow G$ by $\exp(X) := \varphi_X(1)$. The main point of the whole construction is the following:

Proposition 1.1. If $f: G \longrightarrow H$ is a Lie group homomorphism, then its derivative $(df)_e: \mathfrak{g} \longrightarrow \mathfrak{h}$ is a Lie algebra homomorphism, and $\exp((df)_e(X)) = f(\exp(X))$. Moreover, a linear map $\mathfrak{g} \longrightarrow \mathfrak{h}$ is the derivative of a Lie group homomorphism iff it is a Lie algebra homomorphism, and a group homomorphism is uniquely determined by its derivative.

The derivative of the exponential map at the origin is $\mathrm{Id}_{\mathfrak{g}}$, so it is a local bijection between some neigbourhoods of $0 \in \mathfrak{g}$ and $e \in G$. If G is Abelian then the multiplication $\mu : G \times G \longrightarrow G$ is a homomorphism, and considering its derivative $\mathfrak{g} \oplus \mathfrak{g} \longrightarrow \mathfrak{g} : (\mathrm{d}\mu)_e(X,Y) = X + Y$, we get by Proposition 1.1 that the exponential map is a homomorphism $\exp(X + Y) = \exp(X)\exp(Y)$, so we get not only a nbhd of $e \in G$ but the whole generatum of it, that is the connected component of $e \in G$. Thus exp is *surjective* in the case of a connected Abelian group. Its kernel is a discrete subgroup in \mathfrak{g} because it is locally bijective, so it is a lattice isomorphic to \mathbb{Z}^k for some k. Thus, writing $\mathfrak{g} \simeq \mathbb{R}^n$, we have proved:

Theorem 1. Any connected Abelian Lie group is the product of a torus $\mathbb{T}^k \simeq \mathbb{R}^k/\mathbb{Z}^k$ and a vectorspace \mathbb{R}^{n-k} . \Box

If G is a subgroup of GL(V), then \mathfrak{g} is a subalgebra of gl(V), and the Lie bracket is simply the commutator of matrices, and $\exp(X) = \sum_{k=0}^{\infty} \frac{1}{k!} X^k$.

For a closed (and so compact) subgroup G of U(n) we can define a real inner product on \mathfrak{g} as $(X, Y) := \mathfrak{R}\mathrm{Tr}(XY^*)$, which is invariant under conjugation by the elements of G, and so invariant under the Lie bracket of \mathfrak{g} in the sense that ([X,Y],Z) + (Y,[X,Z]) = 0. It is easy to see that the orthogonal complement of an ideal \mathfrak{b} of \mathfrak{g} w.r.t. this inner product is also an ideal.

2. The Kronecker-Weyl equidistribution theorem

In this section we'd like to generalize and strengthen the well-known statement that for any irrational real number α the set $\{n\alpha - \lfloor n\alpha \rfloor \mid n \in \mathbb{Z}\}$ is dense in the unit interval.

It is easy to see that every continuous homomorphism $\mathbb{T}^1 \longrightarrow S^1$ is of the form $x \mapsto \exp(2\pi i x k), k \in \mathbb{Z}$, just look at its closed kernel. For \mathbb{T}^1 we use the additive, for S^1 the multiplicative notation. Then it is not difficult to prove:

Proposition 2.1. The character group of \mathbb{T}^n consisting of all continuous homomorphisms $\mathbb{T}^n \longrightarrow S^1$ is \mathbb{Z}^n .

Proposition 2.2. All the continuous automorphisms of the torus \mathbb{T}^n are of the form $x \mapsto Ax$, where $A \in \pm SL(n, \mathbb{R})$.

We have the normalized Lebesgue measure $\mu(\mathbb{T}^n) = 1$. Then for any $\gamma \in \mathbb{T}^n$ the translation $T_{\gamma}(x) := x + \gamma$ is measure preserving.

Theorem 2. If $\gamma_1, \ldots, \gamma_n, 1$ are rationally independent (so for almost all γ), then the orbit of T_{γ} is dense in \mathbb{T}^n , moreover, T_{γ} is ergodic, i.e. every invariant subset of \mathbb{T}^n has measure 0 or 1.

Proof. Ergodicity is clearly more than the denseness of the orbit, because every open subset has positive measure. Now let χ be the characteristic function of an invariant set. By the Stone-Weierstrass thm for the character group of \mathbb{T}^n we get the following Fourier expansion:

$$\chi(x_1,\ldots,x_n) = \sum_{(k_1,\ldots,k_n)\in\mathbb{Z}^n} \chi_{k_1,\ldots,k_n} \exp\left(2\pi i \sum_{j=1}^n k_j x_j\right).$$

Now $\chi(T_{\gamma}x) = \chi(x)$ by the invariance of χ , and comparing the Fourier coefficients, which are unique, we get

$$\chi_{k_1,\dots,k_n}\left(1-\exp\left(2\pi i\sum_{j=1}^n k_j\gamma_j\right)\right)=0$$

for all k_1, \ldots, k_n . So the condition of rationally independence implies $\chi_{k_1,\ldots,k_n} = 0$ except for possibly $k_1 = \cdots = k_n = 0$. Thus $\chi = 0$ or $\chi = 1$ almost everywhere, and we are done. \Box

Thus we have a lot of $x \in \mathbb{T}^n$ such that the orbit $\{k \cdot x \mid k \in \mathbb{Z}\}$ is dense in \mathbb{T}^n . We call such an element a *topological generator* of the torus.

The name "Equidistribution Theorem" is a consequence of the **Birkhoff Er**godic Theorem: If $f : X \longrightarrow X$ is an egodic μ -preserving transformation with $\mu(X) = 1$, and $A \subseteq X$ is a measurable set, then for almost every point $x \in X$ we have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{I}[f^k(x) \in A] = \mu(A).$$

3. Maximal tori of compact Lie groups

Let G be a closed connected subgroup of U(n) (but could be any compact connected Lie group), with the invariant inner product on \mathfrak{g} described in Section 1. A maximal torus T of it is a connected closed Abelian subgroup, not contained properly in any other such subgroup. It is easy to see that the subgroup T is a maximal torus in G iff its Lie algebra \mathfrak{h} is a maximal Abelian subalgebra of \mathfrak{g} . From Theorem 1 we know that $T \simeq \mathbb{T}^k$ for some k.

Proposition 3.1. If T is a maximal torus with Lie algebra \mathfrak{h} , then $\mathfrak{g} = \bigcup_{g \in G} g\mathfrak{h}g^{-1}$.

Proof. Take $X \in \mathfrak{g}$, and choose $Y \in \mathfrak{h}$ such that $\exp(Y)$ is a topological generator for T, known to exist by Theorem 2. Thus by the maximality of \mathfrak{h} the centralizer of Y in \mathfrak{g} is \mathfrak{h} . Now consider the function $f(g) = ||gXg^{-1} - Y||^2$ on G. By the compactness of G it has a minimum at some g_0 , and replacing X by $g_0Xg_0^{-1}$ we may assume that $g_0 = e$. Fix any $A \in \mathfrak{g}$, and take the derivative of the function $F(t) = f(\exp(At))$ for small $t \in \mathbb{R}$ at t = 0. We have F'(0) = 2([A, X], X - Y) = 0. By [X, X] = 0 and the invariance of the inner product we get (A, [X, Y]) = 0 for all A, so [X, Y] = 0, and $X \in \mathfrak{h}$. \Box

By similar but longer tricks one can get from the previous result the following

Theorem 3. For a maximal torus T we have $G = \bigcup_{q \in G} gTg^{-1}$.

So any two maximal tori are conjugate, and every element of G is contained in a maximal torus. Thus the exponential map $\mathfrak{g} \longrightarrow G$ is surjective for compact connected Lie groups. The centralizer of T in G is T itself, and its Lie-algebra \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} .

If N(T) is the normalizer of T in G then the Weyl group W := N(T)/T can be naturally embedded into the discrete group $\operatorname{Aut}(T) = \pm SL(k,\mathbb{Z})$, so it is finite, and two elements of T are conjugate in G iff they are conjugate under the action of W.

For U(n), the standard maximal torus is the subgroup of diagonal matrices, isomorphic to \mathbb{T}^n . So Theorem 3 is the generalization of the fact that every matrix in U(n) can be diagonalized. The Weyl group of U(n) and SU(n) is S_n .

The Weyl group plays a central role in representation theory.

References

I can recommend two good books, T. Bröcker — T. tom Dieck: *Representations of compact Lie groups*, Springer, 1985, and P. Walters: *An introduction to ergodic theory*, Springer, 1982.