
SUMMARY: LAGRANGE INVERSION AND RANDOM FORESTS

GÁBOR PETE

1. The Lagrange inversion formula

If f(z) =
∑

n≥1 anzn and fk(z) =
∑

n≥k a
(k)
n zn, then by forming the upper-

triangular matrix Af :=
(

a
(k)
n

)

k,n≥1
we have established an endomorphism f 7→ Af

from the group of formal power series with compositional inverse, into the group
of invertible upper-triangular matrices. The coefficients of f [−1](z) =

∑

n≥1 bnzn

form the first row of the inverse matrix A−1
f = Af [−1] =

(

b
(k)
n

)

k,n≥1
. So our task is

to invert an infinite-dimensional matrix! Fortunately, the answer can be derived in
a completely different way. The simplest version of the Lagrange inversion formula,
also called the Schur-Jabotinski formula, says

b(k)
n =

k

n
a
(−n)
−k . (1)

In the book I would point out the connection to Jabotinski’s matrix interpre-

tation of the composition of exponential generating functions, and to the Faà di

Bruno formula.

There are multivariate Lagrange expansion formulae, as well, the first of
which was formulated by Jacobi [Jac30], and was proved in full generality by Good
[Goo60]. For the different versions of single and multivariate Lagrange formulae,
including some different Jacobi formulae, a good reference is [Ges87].

The gap that I found anno in [Pit98, Thm 1.4] fortunately doesn’t appear in the
book. That was a difficult bijection between two sets that are not convenient to
compare directly.

If the offspring distribution Xi happens to be infinitely divisible, there is a nice
continuous time queuing-like process to build up the corresponding GW-tree. Take

the Lévy-process Yt with Y1
d
= Xi, and look at Zt = Yt − t from t = 0 till t = T−1,

the first passage time to −1, a positive integer. Let us suppose that Yt has jumps
of size 1, so the number of jumps of {Yt : 0 ≤ t ≤ 1} has also a distribution Xi;
this corresponds to the assumption that only one customer arrives at one time, so
we can decide the order of them. Let Vt = inf{Zs : 0 ≤ s ≤ t}. The length of
time intervals inside [0, T−1] where Vt = Zt add up to 1, and the number of time
intervals where Vt is constant has distribution Xi. Let the interval [0, T−1] be the
root of our GW-tree, and the constant intervals of Vt be the children of the root.
Now we can replay the procedure for each of these children, etc. The size of the
resulting GW-tree will be T−1.
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2. Lagrangian distributions

The probability distributions on {0, 1, 2, . . . ,∞} which arise as the total progeny
distribution of a GW forest with Z0 distributed according to any given discrete ran-
dom variable, are called Lagrangian distributions. They were defined the first
time in [CS72], but the GW description was given only by [Goo75]. The former pa-
per notices that the composition of two Lagrangian distributions is also Lagrangian,
which is obvious from the GW description. Some examples of Lagrangian distribu-
tions: geometric, Borel-Tanner (see in next section), negative binomial.

A nice interesting paper is by Viskov [Vis00]. He gives an algebraic proof of
the Lagrange inversion formulae, with the representation theory of the Heisenberg-
Weyl algebra, as the underlying idea. He deduces a new, exponential version of
the inversion formula, which allows him to prove that if h(z) is a basic Lagrangian
distribution, i.e. the total progeny of a single GW-tree with offspring p.g.f. g(0) 6= 0,
then it is infinitely divisible, with a possible positive mass at infinity. In fact,
for G(z) = h(z)/z, Gλ(z) is the generating function of a compound Poisson process
Yλ, λ > 0,

P (Yλ = m) =
λ

m!(λ + m)

dm

dxm

[

gλ+m(x)
]

x=0
. (2)

The Lévy-Khintchin formula is

Gλ(z) = exp

{

λ

[

log g(0) +

∞
∑

n=1

zn

n!n

dn

dxn

[

gn(x)
]

x=0

]}

.

(Here I have a problem: if there is no mass at infinity, i.e. g′(1) ≤ 1, then do the
rates of the compound Poisson process sum up to − log g(0)? They don’t seem like
that....)

Note that for λ = k ∈ Z
+, Gk(z) has a clear probabilistic meaning, and Yk + k

coincides with the first passage time T−k of the Kemperman setting. But what
about λ = 1/2, say? Viskov also considers Bernoulli random walks where the jump
times are Poisson randomized.

Limit theorems by [PS77]: what is the limiting distribution of the total progeny
(correctly normalized) as the expected values ν of Z0 and µ of the offspring distri-
bution approach certain values, e.g. µ → 1, ν → ∞, ν(1− µ) → c ∈ (0,∞). Takács
proves limit theorems for the height and diameter of GW-trees with offspring dis-
tributions arising naturally from the queuing interpretation [Tak93].

3. Simply generated forests

A labeled forest means a forest of vertex-labeled rooted trees, and a plane

forest consists of unlabeled rooted trees with an ordering of each level. From the

set F
[n]
k,n of labeled forests of n vertices and k trees, there is a natural map f 7→ f ◦

onto the set F◦
k,n of plane forests of the same size: order the vertices on each level

by the order of their labels.
A simply generated forest is a probability measure on F◦

k,n, given by condi-

tioning a GW forest with k initial individuals and offspring distribution p.g.f. F (z)

on having total offspring size n. Note that the uniform distribution F [n]
k,n is not such

a thing, but

F [n]
k,n

d
=(P∗

k,µ |#Pk,µ = n), (3)
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where P∗
k,µ is the Poisson GW forest labeled by a uniform random permutation of

the vertex set. To prove this, one needs the following formula for the Borel-Tanner

distribution:

P (#Pk,µ = n) =
k

n

(µn)n−k

(n − k)!
e−µn (n = k, k + 1, . . .), (4)

which can be deduced from the Otter-Dwass formula

P (#GWk(F (z)) = n) =
k

n
P (Sn(F (z)) = n − k), (5)

which is basically equivalent to Kemperman’s formula, the cycle lemma, and to the
Lagrange inversion formula, see [Pit98] and [Wen75].

Similar conditional counting identities appear in [SMS94], they are quite inter-
esting, and might also be good for exercises.

The vector of component sizes ν1, . . . , νk of a simply generated forest is an
example of a generalized allocation scheme. This means that there exist
i.i.d. variables ξ1, . . . , ξk such that P (νi = ni, i = 1, . . . , k) = P (ξi = ni, i =
1, . . . , k | ∑

i ξi = n) for arbitrary values
∑

i ni = n. The simplest example is the
classical allocation scheme, where we want to distribute n balls into k cells: if
the number of balls in cell i is νi, then ξi ∼Poisson(λ) will work for arbitrary λ > 0.

This λ-invariance of Poisson(λ) inspires a nice more general fact about simply
generated forests: if we have a GW process with some offspring distribution pi and
p.g.f. F (z), then for any 0 < λ ≤ 1 the GW-process with offspring distribution
pi(λ) = λipi/F (λ), p.g.f. Fλ(z) = F (λz)/F (λ), defines the same simply generated
forest. (The reason is that conditioned on the total size to be n, if the number
of vertices with i children is ci, then

∑

i ci =
∑

i ici = n.) In particular, if pi is
Poisson(1), then F (z) = ez−1 and pi(λ) is Poisson(λ), so the classical allocation
scheme shows that Poisson(λ) GW forests have an even finer λ-invariance than
arbitrary GW forests. However, the general λ-invariance is still important in many
ways.

The expected offspring size corresponding to pi(λ) is mλ = λF ′(λ)/F (λ), and
the expected tree size is 1/(1−mλ). Thus choosing λ as mλ = (n− k)/n will make
the expected total forest size (without conditioning) exactly n, and then we can
hope in transporting some unconditional results more easily into the conditional
world. Indeed, [Pav00] establishes asymptotics for component sizes by calculating
separately the three factors in the identity

P (max
i

νi ≤ r) = (1 − P (ξ1 > r))k P (
∑

i ξi = n | ξi ≤ r, i = 1, . . . , k)

P (
∑

i ξi = n)
, (6)

using and proving conditional local limit theorems with the above choice of λ.
Another cute fact about Poisson GW trees from [AS92]: if λ < 1 < µ is a

conjugate pair in the sense that λeλ = µe−µ, then for the corresponding Poisson

GW trees P1,λ
d
=(P1,µ |#P1,µ < ∞). More generally, as I have just observed,

given any offspring distribution p.g.f. F (z) with survival probability q < 1, there
is exactly one λ ∈ (0, 1) such that

GW1(Fλ(z)))
d
=

(

GW1(F (z))
∣

∣ #GW1(F (z)) < ∞
)

, (7)

and this value is λ = q.
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I think that the λ-invariance and this general conjugation together could form a
good exercise before Exercise 1 on page 103.

Also, I would explicitely remark that this Exercise 1 implies that if d < 1 < c are
conjugates in the Poisson sense, then deleting the giant component from G(n, c/n)
results in a random graph which is basically G(n′, d/n′), where n′, the number
of vertices not in the giant component, satisfies n′ ∼ nq, where q = d/c is the
extinction probability.

4. Giant components

Using the multiplicative coalescent, the book explains the emergence of the
giant component in G(n, p(n)) at p(n) ∼ 1/n, or equivalently, in G(n, m(n)) at
m(n) ∼ n/2, see [Ald97]. The last paragraph in the previous section points out the
self-similarity in the dynamical structure. Very similar, but strangely different

phenomena can be found in the following two random forest models: 1. F [n]
k,n, or

in general, simply generated forests; 2. The uniform labeled unrooted forest

G[n]
k,n, which is clearly closer to the unrooted Erdős-Rényi model G(n, m(n)) than

the rooted model F [n]
k,n.

For these two forest models the emergence of the giant component happen in two

different regimes: at m(n) ∼ n/2 (i.e. k(n) ∼ n/2) for G [n]
k,n , and at k(n) ∼ √

n for

F [n]
k,n. However, independently of this difference, the orders of magnitude of the size

of the largest component are the same for the two models all along the evolution:
the difference is in the second largest component. Moreover, the behaviour of this

second largest component is not completely the same in G [n]
k,n and in G(n, m(n)): by

the end of the critical regime, the second largest component of the forest doesn’t
drop down to log n, but stays n2/3.

The simply generated forests are nicer models, and the F [n]
k,n is actually intimately

connected to the standard additive coalescent, see [AP98]. The book contains
a lot of things about the SAC, but doesn’t point out that all the results of [Pav00]
and [Che98] follow from the SAC. To summarize briefly:

According to (4), if ξ ∼ #P1,1 is the size of a Poisson(1) GW tree, then P (ξ =
j) = e−1jj−1/j!, and by Stirling’s formula

P (ξ = j) ∼ (2π)−1/2j−3/2.

So if Z1 has the 1/2-stable density g(x) = (2π)−1/2x−3/2 exp(−1/2x) for x ≥ 0,
then for i.i.d. copies of ξ we have

1

n

n1/2
∑

i=1

ξi =⇒ Z1. (8)

Moreover, a local limit theorem holds. So it’s not surprising that for k(n) ∼ cn1/2

the largest and the second largest etc. component sizes, when normalized by n,
converge to some non-degenerate distribution involving the stable distribution g(x)
in some way. Furthermore, in the regime n(k)/k2 → ∞, where the conditional
total size n is much larger than the unconditional expected size k2, a single giant
component emerges, such that the remaining components already behave exactly
like an unconditional GW forest with k − 1 trees.
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The complete proofs of [Pav00] and [Che98] are based on (6). For a more con-
ceptual proof one should generalize the SAC-results from Poisson GW forests to
arbitrary offspring distributions. The general conjugacy (7) above might be the
key to self-similarity. Am I right here? Is this the same as p-forests and general
additive coalescents?

Now we turn to the G[n]
k,n model. First recall Rényi’s formula on the number

of labeled unrooted forests:

g(n, k) = #G
[n]
k,n =

1

k!

k
∑

i=0

(

k

i

)

(−1

2

i

)(k + i)nn−k−i−1(n)k+i. (9)

We will write f(n, m) = g(n, n−m) to agree with our references. This formula can
easily be deduced from the exponential generating function

T (z) =
∑

j≥1

jj−2zj

j!
= T (z) − T 2(z)/2 (10)

of unrooted labeled trees, where T (z) =
∑

j≥1
jj−1zj

j! = z exp(T (z)) is the exponen-

tial generating function of rooted labeled trees, a very handy formal power series.
Clearly,

f(n, m) =
n!

(n − m)!
[zn]T n−m(z). (11)

The asymptotic behaviour of f(n, m) was studied by Britikov [Bri88], and actu-
ally these results form the main ingredient in the study [ LP92] of the emergence of

the giant component in G[n]
k,n.

The key observation in obtaining these asymptotics is that

[zn]T n−m(z) =
T n−m(ζ)

ζn
P (

n−m
∑

i=1

Yi = n), (12)

where ζ ∈ (0, e−1) is fixed, and the Yi’s are i.i.d. variables with p.g.f. E(zYi) =
T (ζz)/T (ζ). Now ζ can be set freely to obtain EYi = n/(n−m), and then can use
local limit theorems to estimate the probability factor in (12) — an idea we already
saw above for simply generated forests.

Then one proves that these i.i.d. random variables Yi belong to the domain of
attraction of a stable distribution with parameter 2 (normal distribution) in the
subcritical case s3/n2 → −∞, where s = 2m−n, and to the domain of a 3/2-stable
in the critical case |s|3/n2 < C, and also in the supercritical case s3/n2 → ∞.

Once we have these asymptotics, it is good to notice that if Xn,m(j1, j2) denotes
the number of components of size in [j1, j2], then

E(Xn,m(j1, j2)) =

j2
∑

r=j1

(

n

r

)

rr−2 f(n − r, m − r + 1)

f(n, m)
, (13)

and a similar expression holds for the j-th factorial moments EjXn,m(j1, j2). Then
the main steps are the following:

1. In the entire subcritical regime the factorial moments of Xn,m can be well
approximated by the factorial moments of the corresponding Yn,m variables for
G(n, m), and so we are done with this regime.
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2. If sn−2/3 → α, then the size of the largest component is Op(n2/3). This can
be proved by the estimate

E(Xn,m(ω(n)n2/3, n)) ≤ c

∫ ∞

ω(n)

x−2 exp(−x3)dx → 0, (14)

when ω(n) → ∞.
3. In the same critical regime as in step 2, for 0 < d < D < ∞ arbitrary

constants, a formula for Ej(Xn,m(dn2/3, Dn2/3)) can be achieved, which shows

that Xn,m(dn2/3, n) =⇒ X(d) where

Ej(X(d)) =
1

2πp(α)

∫ ∞

−∞

e−itαφ(t)

(

1√
2π

∫ ∞

d

eitx

x5/2
dx

)j

dt, (15)

where φ(t) is the characteristic function of a 3/2-stable distribution p(x), appearing
already in the asymptotics for f(n, m).

4. If s3/n → ∞ but n − s → ∞, then for every constant d,

|largest component of G [n]
k,n| − s

(n − s)2/3
=⇒ p(−x). (16)

Here the key is that we can estimate the number of forests with largest component
of size r ∈ [s − D(n − s)2/3, s − d(n − s)2/3], by building them starting with a
component of size r in one from

(

n
r

)

rr−2 possible ways, and then take a random
forest with m′ = m − r + 1 edges on the remaining n′ = n − r vertices — by step
2, the largest component here will be O((n′)2/3) = o(r).

5. The previous argument also shows that deleting the largest component from
a supercritical forest we arrive at a critical forest, so the smaller components can
be obtained by step 3.
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