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21 PrefaceThese notes are based on Lectures delivered at the Saint Flour Summer School inJuly 1997. Accurate notes were taken by Dimitris Gatzouras, who also edited them.Revisions by David Levin and myself led to the current form of the notes. I hopethat they are useful to probabilists and graduate students as an introduction to thesubject; a more complete account is in the forthcoming book co-authored with RussellLyons.The �rst 10 chapters are devoted to basic facts about percolation on trees, branch-ing processes and electrical networks, with an emphasis on several key techniques:moment estimates, the use of percolation to determine dimension, and the \methodof random paths" to construct ows of �nite energy. These 10 chapters are the \in-troductory climb" alluded to in the title.More advanced topics start in Chapter 11, where the method of random paths isre�ned in order to establish the Grimmett-Kesten-Zhang Theorem: Simple randomwalk on the in�nite percolation cluster in Zd; d � 3 is transient.Chapters 12 and 13 contain a regularity property of subperiodic trees, and itsapplication to random walks on groups. In Chapter 14 we discuss capacity estimatesfor hitting probabilities; these are used in Chapter 15 to derive intersection-equivalenceof fractal percolation and Brownian paths.In Chapter 16 we analyze the phase transition in a broadcasting model consideredby computer scientists: A random bit is propagated, with errors, from the root of atree to its boundary, and the goal is to reconstruct the original bit from the boundaryvalues. Remarkably, the same model arose independently in genetics, as a mutationmodel, and in mathematical physics, where it is equivalent to the Ising model on atree. In Chapter 17, the Ising model on a tree is used to construct a nearest-neighborprocess on Z that is \less predictable" than simple random walk.In Chapters 18 and 19, we study the speed and recurrence properties of tree-indexed processes; in particular, we relate three natural notions of speed (cloud speed,burst speed, and sustainable speed) to three well-known dimension indices (Minkowskidimension, packing dimension, and Hausdor� dimension). In Chapter 20 we consider adynamical variant of percolation, where edges open and close according to independentPoisson processes. At any �xed time, the random con�guration is a sample of Bernoullipercolation, but we focus on exceptional random times when the number of in�niteopen clusters is atypical. There are striking parallels between the study of theseexceptional times for dynamical percolation, and the study of multiple points forBrownian motion. We conclude in Chapter 21 by describing some results on stochasticdomination between randomly labeled trees, and stating some open problems for othergraphs.I was �rst drawn to thinking about general trees in a lecture of I. Benjamini in1989, when H. Furstenberg noted that certain trees that appeared in the lecture couldbe interpreted (via b-adic expansions) as Cantor sets with di�erent Hausdor� andMinkowski dimensions. I. Benjamini and I proceeded to examine relations between



1. Preface 3properties of trees and properties of the corresponding compact sets; these connectionshad unexpected uses later (see Chapter 15). For example, consider a subset � of theunit square in the plane and the corresponding tree T (�; b) in base b. Then � is hit byplanar Brownian motion (i.e., it has positive logarithmic capacity) i� simple randomwalk on T (�; b) is transient.We then learned that a year earlier, R. Lyons (building on works of Furstenberg,Shepp, Kahane and Fan) had established some remarkably precise connections be-tween random walks, percolation and capacity on trees. R. Lyons and R. Pemantlehad already used these ideas to determine the sustainable speed of �rst-passage per-colation on trees.The point of view of these lectures was largely developed in the ensuing collabora-tion with Itai Benjamini, Russell Lyons and Robin Pemantle, whose inuence pervadesthese notes. Other coauthors whose insights and ideas are represented here includeChris Bishop (see Chapter 15), Will Evans, Claire Kenyon, and Leonard Schulman(see Chapter 16), Olle H�aggstr�om and Je� Steif (see Chapter 20).In fact, probability on trees is a rich and fast-growing subject, so the account pre-sented in these notes is necessarily incomplete. Natural complements are the two con-ference proceedings volumes: Trees, edited by B. Chauvin, S. Cohen and A. Rouault(Birkh�auser 1996) and Classical and Modern Branching Processes, edited by K. B.Athreya and P. Jagers (Springer 1996). Continuum random trees are fascinating ob-jects studied in several papers by David Aldous; Tom Liggett is writing a detailedaccount of the contact process on trees. Superprocesses, which can be obtained asscaling limits of branching random walks, have been studied by numerous authors. Iapologize to the many researchers whose results involving probability on trees are notdescribed here.Acknowledgements I am grateful to the participants in the St. Flour summer schoolfor their comments and to the organizer, Pierre Bernard, for his warm hospitality.I am greatly indebted to Dimitris Gatzouras and David Levin for their help inpreparing these notes. I thank Itai Benjamini, Dayue Chen, Amir Dembo, DavidGrabiner, Olle H�aggstr�om, Davar Khoshnevisan, Elon Lindenstrauss, Elhanan Mossel,Oded Schramm and Balint Virag for their comments on the manuscript.Yuval PeresJerusalem, December 1998
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62 Basic De�nitions and a Few HighlightsA tree is a connected graph containing no cycles. All trees considered in these notesare locally �nite: the degree deg(v) is �nite for each vertex v, although deg(v) maybe unbounded as a function of v.Why study general trees?1. More can be done on trees than on general graphs. Percolation problems, forexample, are easier to analyze on trees. The insight and techniques developedfor trees can sometimes be extended to more general models later.2. Trees occur naturally. Some examples are:(a) Galton-Watson trees. Let L be a non-negative integer-valued randomvariable and set Z0 � 1, Z1 = L, and Zn+1 = PZni=1 L(n+1)i , where the L(n)iare i.i.d. copies of L. Then Zn is the number of individuals in generation nof a Galton-Watson branching process, a population which starts with oneindividual and in which each individual independently produces a randomnumber of o�spring with the same distribution as L. The collection of allindividuals form the vertices of a tree, with edges connecting parents totheir children.(b) Random spanning trees in networks. A spanning tree of a graph Gis a tree which is a subgraph of G including all the vertices of G. Thereare several interesting algorithms for generating random spanning trees of�nite graphs.3. Trees describe well the complicated structure of certain compact sets in Rd.Examples include Cantor sets on intervals and fractal percolation, a collectionof nested random subsets of the unit cube described below.Example 2.1 Fractal Percolation is a recursive construction generating randomsubsets fAng of the unit cube [0; 1]d. Tile A0 = [0; 1]d by bd similar subcubes withside-length b�1. Generate A1 by taking a union of some of these subcubes, includingeach independently with probability p. In general, An will be a union of b-adic cubesof order n (cubes with side-length b�n and vertices with coordinates of the form kb�n).An+1 is obtained by tiling each such cube contained in An by bd b-adic subcubes oforder n + 1, and taking a union which includes each subcube independently withprobability p. The limit set of this construction T1n=0An is denoted by Qd(p).There is a tree associated with each realization of fractal percolation. The verticesat level n correspond to b-adic cubes of order n which are contained in An, and avertex v at level n is the parent of a vertex w at level n+1 if the cube correspondingto v contains the cube corresponding to w. 4
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Figure 1: A realization of A1 and A2 for d = 2; b = 2.Let Q3(12) � [0; 1]3 denote the limit set of fractal percolation with b = 2, d = 3,and p = 12 . In Chapter 15, we will see that the random set Q3(12) is intersection-equivalent in the cube to the Brownian motion path started uniformly in the cube.By this we mean the following: if [B] denotes the range fB(t) : t � 0g of a three-dimensional Brownian motion started uniformly in [0; 1]3, then for some constantsC0; C1 > 0 and all closed sets � � [0; 1]3,C0 P(Q3(1=2) \ � 6= ;) � P([B] \ � 6= ;) � C1 P(Q3(1=2) \ � 6= ;) :Consequently, hitting probabilities for Brownian motion can be related to hittingprobabilities of Q3(12). This gives a new perspective on the classical study of intersec-tions and multiple points of Brownian paths.For example, consider two independent copies Q3(12) and Q03(12). Then the intersec-tion Q3(12) \Q03(12) has the same distribution as Q3(14). Since the tree correspondingto Q3(14) is a Galton-Watson tree with mean o�spring 2, it survives with positiveprobability. Hence Q3(14) 6= ; with positive probability, and intersection-equivalenceshows that two independent Brownian paths in R3 intersect with positive probability,a result �rst proved in [21].It also follows that three Brownian paths in space do not intersect (as �rst provedin [22]). By intersection-equivalence, it is enough to show that the intersection of thelimit sets of three independent fractal percolations, which has the same distribution asQ3(18), is empty a.s. But the tree corresponding to Q3(18) is a critical Galton-Watsonprocess and hence dies out, see Chapter 3.In�nite family trees arising from supercritical Galton-Watson Branching processes,(Galton-Watson trees in short) play a prominent role in these notes.Question 2.2 In what ways are Galton-Watson trees like regular trees?



8First we establish a simple property of regular trees.Example 2.3 Simple random walk fXngn�0 on a graph is a Markov chain on thevertices, with transition probabilitiesP(Xn+1 = wjXn = v) = ( 1deg(v) if w � v ;0 otherwise :The notation u � v means that the vertices u and v are connected by an edge. Nowsuppose the graph is a tree, and let jvj stand for the distance of a vertex v from theroot �, i.e., jvj is the number of edges on the unique path from � to v. On the b-arytree, EhjXn+1j � jXnj ���Xni � bb+ 1(+1) + 1b+ 1(�1) = b� 1b+ 1 :(We have an inequality here because Xn may be at the root.) Hence the distanceof the random walk on the tree from the root stochastically dominates an upwardlybiased random walk on Z. It is therefore transient and will visit 0 only �nitely manytimes. After the last visit of the random walk to the root,EhjXn+1j � jXnj ���Xni = b� 1b + 1 ;and the strong law of large numbers for martingale di�erences implies that, almostsurely, n�1jXnj ! b�1b+1 4One speci�c case of Question 2.2 isQuestion 2.4 On a Galton-Watson (GW) tree with mean m = Pk kpk > 1, is simplerandom walk transient on survival of the GW process?We will see later that the answer is positive; this was �rst proved by Grimmett andKesten (1984).For a tree �, denote �n = fv: jvj = ng. De�ne the lower growth and uppergrowth of � as gr(T ) := lim inf j�nj1=n and gr(T ) = lim sup j�nj1=n respectively. Ifgr(�) = gr(�), we speak of the growth of the tree � and denote it by gr(�).Question 2.5 Is gr(�) > 1 su�cient for transience of simple random walk on �? Isit necessary?The answer to both questions is negative. An analogous situation holds for Brown-ian motion on manifolds, where exponential volume growth is not su�cient and notnecessary for transience.Example 2.6 (3{1 tree) The 3-1 tree � has gr(�) = 2 (actually j�nj = 2n), butsimple random walk is recurrent on it. � can be embedded in the upper half-plane,with its root � at the origin. The root has two o�spring, and for n � 1, each level �n



2. Basic De�nitions and a Few Highlights 9

0Figure 2: The 3-1 Tree.has 2n vertices which can be ordered from left to right as vn1 ; : : : ; vn2n. For k � 2n�1,each vnk has only one child, while for 2n�1 < k � 2n, each vnk has three children.Observe that for any vertex not on the right-most path to in�nity, the subtree aboveit will eventually have no more branching (because \powers of 3 beat powers of 2").The random walk on � will have excursions on left-hand branches, but must alwaysreturn to the right-most branch (because of recurrence of simple random walk on theline). If these excursions are ignored, then we have a simple random walk on theright-most path, i.e., on Z+, which is recurrent. 4It is even easier to construct transient trees of polynomial growth: E.g., replace everyedge at level k of the ternary tree by a path consisting of 2k edges. Simple randomwalk on the resulting tree, considered just when it visits branch points, dominates anupward biased random walk on the integers, whence it is transient.On the other hand, positive speed implies exponential growth:Theorem 2.7 De�ne the speed of a random walk as limn n�1jXnj, when this limitexists. If the speed of simple random walk on a tree � exists and is positive, then �has exponential growth, i.e., gr(�) > 1.This follows from Theorem 5.4 below.Example 2.6 suggests that gr(�) does not give much information on the behaviorof a random walk on �. The growth gr(�) barely takes into account the structure of�, and a more re�ned notion is required.A cutset � is a set of vertices such that any in�nite self-avoiding path fromemanating the root � must pass through some vertex in �. The branching number



10of a tree � is de�ned asbr(�) = sup n � � 1 : inf�cutset Xv2���jvj > 0 o: (1)The function inf n Pv2���jvj : � a cutseto is decreasing in � and positive at � = 1.The boundary of a tree �, denoted @�, is the set of all in�nite self-avoidingpaths (rays) emanating from the root � of �. A natural metric on the boundary @�is d(�; �) = e�n, where n is the number of edges shared by � and �. dimH(@�) willdenote the Hausdor� dimension of @� with respect to this metric d. Because an opencover of @� corresponds to a cutset of �, and vice-versa, the Hausdor� dimension of@� is related to the branching number of � bylog br(�) = dimH(@�) :Similarly, gr(�) is related to the Minkowski dimension dimM(@�) bylog gr(�) = dimM(@�) :Generally, br(�) � gr(�), since for � > gr(�) we must haveinfn j�nj��n = infn Xv2�n ��jvj = 0;using the fact that �n is itself a cutset yields the inequality. If @� is countable, thenbr(�) = 1, because dimH A = 0 for countable sets A. For the 3-1 tree in Example 2.6,@� is countable, and consequently br(�) = 1.As an indication that the branching number br(�) contains more information aboutthe tree than the growth gr(�), we mention two results that we shall prove later, inChapters 7 and 13.Bernoulli(p) percolation on a tree � is the random subgraph of � obtained byindependently including each original edge of � with probability p, and discardingeach with probability 1 � p. The retained edges are called open, and Pp is theprobability corresponding to this process (see Chapter 4 for the formal de�nition ofthe probability space.) The �rst quantity of interest in percolation ispc(�) = inffp 2 [0; 1]:Pp(�$1) > 0g ; (2)where f�$1g denotes the event that the root � is connected to 1, i.e., that thereis an in�nite self-avoiding path emanating from �, that consists of open edges.Theorem 2.8 (R. Lyons 1990) For an in�nite and locally �nite tree �,pc(�) = 1br(�) : (3)



2. Basic De�nitions and a Few Highlights 11Theorem 2.9 (R. Lyons 1990) If br(�) > 1, then simple random walk on � istransient.We close with an equivalent description of the branching number br(�) of a tree �.If u; v are vertices in � so that v is a child of u, denote by uv the edge connecting them.A ow � on � from the root � to 1 is an edge function obeying �(uv) = P �(vw),where the sum is over all children w of v. This property is known as Kirchho�'snode law. Imagine the tree as a network of pipes through which water can owentering at the root. However much water enters a pipe must leave through the otherend, splitting up among the outgoing pipes (edges). De�ne �(v), for a vertex v 6= �,to be the amount of ow that reaches v, i.e., �(v) := �(uv) for u the parent of v. Thestrength of a ow �, denoted jj � jj , is the amount owing from the root, Pv:v�� �(v).When jj � jj = 1, we call � a unit ow.Lemma 2.10 For a tree �,br(�) = supf� � 1 : 9 a nonzero ow � from � to 1 : 8v; �(v) � ��jvjg : (4)Proof. This follows directly from the Min-cut/Max-ow Theorem, which in oursetting says that supf jj � jj : �(v) � ��jvj 8vg = inf� cutset Xv2���jvj : (5)For details, see Lyons and Peres (1999). 2Remark: As mentioned above, br(�) � gr(�) = lim infnj�nj1=n : In general, to getan upper bound for br(�) one can seek explicit `good' cutsets. To get lower boundsuse either(i) Theorem 2.8, which in particular says that br(�) � 1=pc(�), or(ii) �nd a good ow � on � such that �(v) � ��jvj for all v; then br(�) � �. (Recallthat �(v) denotes the ow from the unique parent of v to v.)A ow � on � induces a measure � on @�: for cylinder sets [v] = f� 2 @� :� passes through vg, de�ne �([v]) as �(v). If [v1]; : : : ; [vn] are disjoint cylinders (whichmeans that no vi is an ancestor of another), and [v] = Sni=1[vi] (i.e., the fvig form acutset for the subtree �v rooted at v), then Kirchho�'s node law implies (by inductionon n) that �([v]) = Pni=1 �([vi]). Countable additivity can be proven using the com-pactness of @�: Cylinders form a basis consisting of open sets and are also closed inthe natural topology on @�. Thus countable additivity follows from �nite additivity.



123 Galton-Watson TreesLet L be a non-negative integer-valued random variable and let pk = P(L = k)for k = 0; 1; 2; : : :. To avoid trivial cases, we assume throughout that p1 < 1. LetfL(n)i gi;n2N be independent and identically distributed copies of L, set Z0 = 1, andde�ne Zn+1 = ( PZni=1 L(n+1)i if Zn > 0 ;0 if Zn = 0 :The variables Zn are the population sizes of a Galton-Watson branching process. Thetree associated with a realization of this process has Zn vertices at level n, and fori � Zn, the i'th vertex in level n has L(n+1)i children in level n+ 1.Generating functions are an indispensable tool in the analysis of Galton-Watsonprocesses. Set f(s) = E[sL] and de�ne inductivelyf0(s) = s ; f1(s) = f(s) ; fn+1(s) = f � fn(s) ; 0 � s � 1 :It can be veri�ed by induction that fn(s) = E[sZn] for all n, that is, fn is the generatingfunction of Zn. Note that f(s) = P1k=0 pksk and f 0(1) = E[L] = m. We always havef 00(s) � 0 for s � 0, so f is convex on R+.De�ne q to be the smallest �xed point of f in [0; 1]. Note that if p0 = 0, thenq = 0. Observe that limnP(Zn = 0) = limn fn(0) � q, and since limn fn(0) must be a�xed point of f , it follows that q = limnP(Zn = 0). Soq = P(Zn ! 0) = probability of extinction:Since f is convex, if 1 � m = f 0(1), then q = 1. If instead 1 < m = f 0(1), thenq < 1. Thus, a Galton-Watson process dies out a.s. if and only if m � 1.A property of trees A is inherited if all �nite trees have property A, and allthe immediate descendant subtrees �(i) of � have A when � has A. (The immediatedescendant subtrees �(i) of � are the subtrees of � rooted at the children of the root�.)Example 3.1 The following are all inherited properties:1. f� : supn j�nj <1g.2. f� : j�nj grows polynomially in ng.3. f� : � �nite or br(�) � cg. 4Proposition 3.2 (0-1 Law) Let P be the probability measure on trees correspondingto a GW process with m > 1. If A is inherited, thenP(A j non-extinction) 2 f0; 1g:



4. General percolation on a connected graph 13Proof. We haveP(� 2 AjZ1 = k) � P k\i=1f�(i) 2 Ag j Z1 = k! = P(� 2 A)k:Thus, P(� 2 A) =Xk pkP(� 2 AjZ1 = k) � f(P(� 2 A)):Convexity of f implies that the only numbers x 2 [0; 1] satisfying x � f(x) arex = 1 and all x 2 [0; q]. Since A holds for all �nite trees, P(� 2 A) � q. SoP(� 2 A) 2 fq; 1g. 2Observe that m�nZn is a non-negative martingale and hence converges to some�nite random variable W <1. If m � 1, then Zn = 0 eventually, so a.s. W = 0. Thecase m > 1 is treated by the following theorem.Theorem 3.3 (Kesten and Stigum (1966a)) When m > 1,P(W > 0 j non-extinction) = 1 if and only if E[L log+ L] <1:A conceptual proof of Theorem 3.3 appears in Lyons, Pemantle, and Peres (1995).Hawkes (1981), under the assumption that E[L log2 L] < 1, proved that forGalton-Watson trees �,P(dimH(@�) = logm j non-extinction) = 1:This is equivalent to P(br(�) = m j non-extinction) = 1: (6)R. Lyons discovered a simpler proof without the assumption E[L log2 L] <1, whichis given below in Corollary 5.2. Because a.s. m�nZn ! W , where 0 � W < 1, itfollows that a.s. gr(�) � m. This, together with the general inequality br(�) � gr(�)and (6), implies that a.s. given non-extinction,m = br(�) � gr(�) � gr(�) � m:4 General percolation on a connected graphGeneral (bond) percolation on a connected graph G is a random subgraph G(!)of G such that, for any edge e in G, the event that e is an edge of G(!) is measurable.Independent fpeg percolation is the percolation obtained when each edge e isretained (or declared open) with probability pe, independently of other edges (andremoved or declared closed otherwise). We already discussed in Chapter 2 the specialcase of Bernoulli(p) percolation where all probabilities pe are the same, pe � p.



14 Formally, the sample space for a general bond percolation is 
 = f0; 1gE, whereE is the edge set of the graph G. The �-�eld F on 
 is generated by the �nite-dimensional cylinders, sets of the form f! 2 
 : !(e1) = x1; : : : ; !(em) = xmg forxi 2 f0; 1g. The probability measures Pfpeg and Pp, corresponding to independentfpeg percolation and Bernoulli(p) percolation respectively, are product measures on(
;F).We write the event that vertex sets A and B are connected by a path in G(!) byfA $ Bg; when G is an in�nite tree �, we write f� $ @�g for the event that thereis an in�nite path emanating from � with all edges open.The connected components of open edges in percolation are called clusters, andthe cluster containing v is denoted by C(v). De�neC := f9v 2 G with jC(v)j =1g;C is the event that there is an in�nite cluster somewhere in the percolation on G. Wewrite CG when there is a possibility of ambiguity.For Bernoulli(p) percolation, at any �xed vertex v,Pp(jC(v)j =1) > 0 if and only if Pp(C) = 1: (7)One implication in (7) follows immediately from Kolmogorov's zero-one law: C doesnot depend on the status of any �nite number of edges, hence Pp(C) 2 f0; 1g. To seethe other implication, assume Pp(C) = 1 and take a ball Bn(v) large enough so thatPp(there exists an in�nite path intersecting Bn(v)) > 0:Then clearly Pp(@Bn(v)$1) > 0:Because Bn(v) is �nite, the event that all edges in Bn(v) are open has positive prob-ability. By independence of disjoint edge sets,Pp(jC(v)j =1) � Pp(all edges in Bn(v) are open and @Bn(v)$1)= Pp(all edges in Bn(v) are open)Pp(@Bn(v)$1)> 0 :Alternatively, one can use the FKG inequality for the events A = fall edges in Bn(v)are openg and B = fthere exists an in�nite path connecting Bn(v) to 1g, as boththese events are increasing. See Grimmett (1989) for details.For Bernoulli(p) percolation on an arbitrary graph G, the critical probability(already mentioned in the case of trees) ispc(G) = inff p : Pp(C) = 1 g :For this de�nition to make sense, p 7! Pp(C) must be non-decreasing. This can beseen by by coupling the measures Pp for all p together, see Grimmett (1989).



5. The First-Moment Method 155 The First-Moment MethodThe �rst moment method is straightforward but useful. For general percolation on atree � with root �, it asserts thatP(�$1) � Xv2�P(�$ v) (8)for any cutset �. For Bernoulli(p) percolation on the tree, the inequality becomesPp(�$1) � Xv2� pjvj :When p < 1=br(�), this can be made arbitrarily small for appropriate choice of cutset.This provesProposition 5.1 For any locally �nite �,pc(�) � 1br(�) : (9)In general there is equality here, as advertised previously in Theorem 2.8. The proofof equality is in x7.Corollary 5.2 Let T be a GW tree with mean m > 1. Almost surely on non-extinction, br(T ) = m and pc(T ) = 1=m.Proof. Let PGW be the distribution of T on the space of rooted trees T , and letZn = jTnj be the size of level n of T . Given t 2 T , let Pp;t be Bernoulli(p) percolationon t.Observe that m � gr(T ) � gr(T ) � br(T ) � 1pc(T ) : (10)The �rst inequality follows since Zn=mn converges to a �nite random variable, themiddle inequalities hold in general, and the right-most is the content of Proposition5.1. Thus it is enough to show that for p > m�1,PGW (t : Pp;t(jC(�)j =1) > 0 non-extinction) = 1: (11)Combine the measures PGW and Pp;t: Given the Galton-Watson tree T , performBernoulli(p) percolation on T and let T 0 be the component of � in the percolation. T 0is itself a Galton-Watson tree, where the number of individuals in the �rst generationis Z 01 = PZ1i=1 Yi, where fYig are i.i.d. Bernoulli(p) random variables. Because E[Z 01] =mp > 1, with positive probability T 0 is in�nite:P(jT 0j =1) = Z Pp;t(jC(�)j =1g)dPGW (t) > 0:



16We conclude that the integrand must be positive with positive PGW -probability:PGW (t : Pp;t(jC(�)j =1) > 0) > 0:Since the set ft : Pp;t(jC(�)j =1) = 0gde�nes an inherited property, Proposition 3.2 implies that (11) holds. This provesthat a.s. on survival, pc(T ) = m�1, whence (10) yields that br(T ) = m. 2Kahane and Peyri�ere (1976) calculated the dimension of the limit set of fractalpercolation; their methods were di�erent. The proof above is due to R. Lyons.Question 5.3 (H�aggstr�om) Suppose simple random walk fXngn�0 on � has posi-tive lower speed, i.e., for some positive number sP lim infn jXnjn > s! > 0 : (12)Is it necessarily true that br(�) > 1?The answer is positive, and the proof relies on the �rst-moment method again.Theorem 5.4 If (12) holds, then br(�) � eI(s)=s, whereI(s) = 12[(1 + s) log(1 + s) + (1� s) log(1� s)] :Proof. By (12) above, there exists L such thatP (jXnj > ns for all n � L) > 0 :De�ne a general percolation on � by�(!) = n v 2 � : jvj � L or Xn = v for some n < jvjs�1o :More precisely, if e(v) denotes the edge from the parent of v to v, we retain e(v) ifjvj � L or if Xn = v for some n < jvjs�1. By the de�nition of this percolation,P(�$1) � P (jXnj > ns for all n � L) > 0 : (13)On the other hand, we claim that if Sn is simple symmetric random walk on Z, thenfor jvj > L,P(�$ v) = P(Xn = v for some n < jvjs�1) � P maxn<jvjs�1 jSnj � jvj! : (14)Consider a particle on � which moves with X when X moves along the unique pathfrom � to v, but remains stationary during excursions (possibly in�nite) of X from



5. The First-Moment Method 17this path. This particle performs a simple random walk on the path with (possiblyin�nite) holding times between moves. The probability on the left in (14) is the chancethat this particle reaches v before time jvjs�1, which is at most the chance that simplerandom walk on Z travels distance jvj from the origin in the same time. This proves(14).By the reection principle,P�maxn�N jSnj � sN� � 2P�maxn�N Sn � sN� � 4P(SN � sN) � 4 e�NI(s) ;where I(s) is the large deviations rate function for simple random walk on Z (see,e.g., Durrett 1996). Thus for jvj > L we haveP(�$ v) � 4 exp �jvjI(s)s ! :Combine this with (13) and (8) to conclude that if � = eI(s)=s, then0 < P(�$1) � Xv2�P(�$ v) � 4Xv2���jvjfor any cutset � at distance more than L from the root. Hence br(�) � eI(s)=s. 2Conjecture 1 Under the assumptions of Question 5.3 aboves � br(�)� 1br(�) + 1 ; i.e., br(�) � 1 + s1� s:Remark. Very recently, this conjecture was proved by B. Virag (1998).Recall that for simple random walk on the b-ary tree, the speed a.s. equals b�1b+1 :Example 5.5 Take a binary tree and a ternary tree rooted together. The simplerandom walk on this tree does not have an a.s. constant speed. 4The Fibonacci tree ��b is a subtree of the binary tree. We label vertices as (L) and(R) (for \left" and \right"). The root is labeled (L). Every vertex labeled (L) hastwo o�spring, one labeled (L) and one labeled (R). Every vertex labeled (R) has oneo�spring, which is labeled (L).Exercise 5.6 Justify the name Fibonacci tree. Also, show thatbr(��b) = gr(��b) = (1 +p5)=2:Hint: Use a two state Markov chain to de�ne a `good' ow.
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Figure 3: The Fibonacci tree.6 Quasi-independent PercolationConsider Bernoulli(p) percolation on a tree �. If v and w are vertices in �, thenP(�$ u and �$ w) = pjvjpjwjpjv^wj = P(�$ u)P(�$ w)P(�$ u ^ w) ;where v^w is the vertex at which the paths from the root � to v and w separate. Thisturns out to be a key property of independent percolation, and we therefore make thefollowing de�nition.A quasi-independent percolation on a tree � is any general percolation so thatfor some M <1 and any vertices u; v 2 �,P(�$ v and �$ w) �MP(�$ u)P(�$ w)P(�$ v ^ w) : (15)Example 6.1 Percolation induced by i.i.d. labels.1. Let E be the edge set of a tree �, and let fXege2E be i.i.d. f�1; 1g-valuedrandom variables with P(Xe = 1) = 1=2. Write path(v) for the unique pathin � from the root to v. A tree-indexed random walk fSvg is de�ned forvertices v of � by Sv = Xe2path(v)Xe :De�ne �(!) = fv:Sv(!) 2 [0; b)g. For b = 2, this is equivalent to Bernoulli(1=2)percolation: the only in�nite paths in �(!) are those for which each 1 is followed



7. The Second Moment Method 19by �1, and each �1 by 1 (with 1 in the �rst step). For b > 2, the correspondingpercolation process is not independent, but it is quasi-independent.2. Let fUeg be a collection of i.i.d. random variables, uniform on [0; 1), indexed bythe edges of �. De�ne�(!) = ( v : for path(v) = e1e2 � � � ejvj; Ue1(!) = maxk�jvj Uek(!)) :This is not quasi-independent.For more on tree-indexed processes, see Chapter 18 and the survey article by Pemantle(1995). 47 The Second Moment MethodFor general percolation on a tree, the cutset sums (8) bound P(�$ @�) from above.We get lower bounds by using the second moment method, which we describe next.By our standing assumption about local �niteness of trees,f�$ @�g =\n f�$ �ng :We extend the de�nition of the boundary @� to �nite trees by@� = ( leaves of �, i.e., vertices with no o�spring if � is �nite,in�nite paths starting at � if � is in�nite.Consider the case � �nite �rst. Let � be a probability measure on @� and setY = Xx2@��(x)1f�$xg 1P(�$ x) :Then E[Y ] = Px2@��(x) = 1, andE[Y 2] = E 24Xx2@� Xy2@��(x)�(y) 1f�$xg\f�$ygP(�$ x)P(�$ y)35= Xx2@� Xy2@��(x)�(y)P(�$ x and �$ y)P(�$ x)P(�$ y) : (16)Thus, in the case of quasi-independent percolation,E[Y 2] � M Xx;y2@��(x)�(y) 1P(�$ x ^ y) : (17)



20In the case of independent percolation, there is an equality with M = 1 in (17).De�ne the energy of the measure � in the kernel K asEK(�) = Xx;y2@�K(x; y)�(x)�(y) = Z@� Z@�K(x; y)�(dx)�(dy):When the kernel is K(x; y) = 1P(�$ x ^ y) for x; y 2 @� ;(17) can be rewritten as E[Y 2] � MEK(�) :By the Cauchy-Schwarz inequality,(E[Y ])2 = (E[Y 1fY >0g])2 � E[Y 2]P(Y > 0) ;and consequently P(Y > 0) � (E[Y ])2E[Y 2] � 1M 1EK(�) :Since P(�$ @�) � P(Y > 0),P(�$ @�) � 1M 1EK(�) :The left-hand side does not depend on �, so optimizing the right-hand side withrespect to � yieldsP(�$ @�) � 1M sup�:�(@�)=1 1EK(�) = 1MCapK(@�) ; (18)where we de�ne the capacity of @� in the kernel K to beCapK(@�) = sup�:�(@�)=1 1EK(�) :For � in�nite, let � be any probability measure on @�. � induces a probabilitymeasure on �n : for a vertex x 2 �n, set�(x) = �(in�nite paths through x) :By the �nite case considered above,P(�$ �n) � 1M 1Px;y2�nK(x; y)�(x)�(y) :



7. The Second Moment Method 21Each path � from the root � to1 must pass through some vertex x in �n ; write x 2 �if the path � goes through vertex x. If x 2 � and y 2 �, then � ^ � is a descendant ofx ^ y. This implies that K(x; y) � K(�; �) for x 2 � and y 2 �. Therefore,Z@� Z@�K(�; �)d�(�)d�(�) = Xx;y2�n Zx2� Zy2� K(�; �)d�(�)d�(�)� Xx;y2�nK(x; y)�(x)�(y)� 1M 1P(�$ �n) :Hence P(�$ �n) � 1M 1EK(�)for any probability measure � on @�. Optimizing over � and passing to the limit asn!1, we get P(�$ @�) � 1MCapK(@�) : (19)To summarize, we have established the following proposition.Proposition 7.1 Let � be �nite or in�nite, P the probability measure correspondingto a quasi-independent percolation on �, and K the kernel on @� de�ned by K(x; y) =P(�$ x ^ y)�1. Then P(�$ @�) � 1MCapK(@�); (20)where M = 1 in the case of independent percolation.For Bernoulli percolation, we have already proven that pc(�) � 1=br(�) in Proposition5.1, using the �rst-moment method. We will now prove the reverse inequality, thusshowing equality. For convenience, we restate the result.Theorem 2.8 (R. Lyons 1990) For Bernoulli(p) percolation on a tree �,pc(�) = 1=br(�) :Proof. Take p > 1=br(�) and 1=p < � < br(�). By Lemma 2.10, there exists a unitow � from � to the boundary satisfying �(v) � C��jvj for each vertex v 2 �. Wemay identify � with a probability measure on @� (see the discussion following Lemma2.10).Consider the kernel K(�; �) = 1P(�$ � ^ �) = p�j�^�j :



22The energy EK(�) of � in the kernel K is given byZ@� Z@� p�j�^�jd�(�)d�(�) =Xv p�jvj Z Z�^�=v d�(�)d�(�):Since the set of pairs (�; �) with � ^ � = v is contained in the set of pairs (�; �) withv 2 �; v 2 �, the right-hand side above is not larger thanXv p�jvj[�(v)]2 = 1Xn=0 p�n Xjvj=n[�(v)]2� 1Xn=0 p�n Xjvj=nC��jvj�(v)= C 1Xn=0(p�)�n�(�n):The last sum is �nite since �p > 1. Applying Proposition 7.1 yieldsPp(�$ @�) � C�1(1� 1=�p) > 0 : 28 Electrical NetworksThe basic reference for the material in this chapter is Doyle and Snell (1984). Herewe will not restrict ourselves to trees, but will discuss general graphs.While electrical networks are only a di�erent language for reversible Markov chains,the electrical point of view is useful because of the insight gained from the familiarphysical laws of electrical networks.A network is a �nite connected graph G, endowed with non-negative numbersfceg, called conductances, that are associated to the edges of G. The reciprocalre = 1=ce is the resistance of the edge e. A network will be denoted by the pairhG; fcegi. Vertices of G are often called nodes. A real-valued function h de�ned onthe vertices of G is harmonic at a vertex x of G ifXy�x cxy�x h(y) = h(x) ; where �x = Xy�x cxy: (21)(Recall that the notation y � x means y is a neighbor of x.)We distinguish two nodes, fa; zg, which are called the source and the sink of thenetwork. A function V which is harmonic on G n fa; zg will be called a voltage. Avoltage is completely determined by its boundary values, Va; Vz. In particular, thefollowing result is derived from the maximum principle.Proposition 8.1 Let h be a function on a network G which is harmonic on Gnfa; zgand such that h(a) = h(z) = 0. Then h must vanish everywhere on G.



8. Electrical Networks 23Proof. We will �rst show that h � 0. Suppose this is not the case. Then h(x�): =maxG h > 0. By harmonicity on G n fa; zg, if x =2 fa; zg belongs to the set A =fx: h(x) = maxG hg and y � x , then y 2 A also. By connectedness, a; z 2 A, henceh(a) = h(z) = maxG h > 0, contradicting our assumption. Thus h � 0, and anapplication of this result to �h also yields h � 0. 2This proves that given boundary conditions h(a) = x and h(z) = y, if thereis a function harmonic on G n fa; zg with these boundary conditions, it is unique.To prove that a harmonic function with given boundary values exists, observe thatthe conditions (21) in the de�nition of harmonic functions form a system of linearequations with the same number of equations as unknowns, namely (number of nodesin G)� 2; for such a system, uniqueness of solutions implies existence.A more informative way to prove existence is via the probabilistic interpretationof harmonic functions and voltages. Consider the Markov chain on the nodes of Gwith transition probabilitiespxy = P(Xn+1 = y j Xn = x) = cxy�x :This process is called the weighted random walk on G with edge weights fceg, orthe Markov chain associated to the network hG; fcegi. This Markov chain is reversiblewith respect to the measure �: �xpxy = cxy = �ypyx :A special case is the simple random walk on G, which has transition probabilitiespxy = 1deg(x) for y � xand corresponds to the weighted walk with conductances cxy = 1 for y � x.To get a voltage with boundary values 0 and 1 at z and a respectively, setV �x = Px(fXng hits a before z) ;where Px is the probability for the walk started at node x. For arbitrary boundaryvalues Va and Vz, de�ne Vx = Vz + V �x (Va � Vz) :Until now, we have focused on undirected graphs. Now we need to consider alsodirected graphs. An edge in a directed graph is an ordered pair of nodes (x; y),which we denote by ~e = ~xy.A ow � from a to z, previously discussed when the underlying graph is a tree, is afunction on oriented edges which is antisymmetric, �( ~xy) = ��( ~yx), and which obeysKirchho�'s node lawPw�v �( ~vw) = 0 at all v 62 fa; zg. This is just the requirement\ow in equals ow out" for any node 6= a; z. Despite notational di�erences, it is easilyseen that these de�nitions generalize the ones given earlier for trees.



24 Observe that it is only ows that are de�ned on oriented edges. Conductance andresistance are de�ned for unoriented edges; we may of course de�ne them on orientededges by c ~xy = c ~yx = cxy and r ~xy = r ~yx = rxy.Given a voltage V on the network, the current ow associated with V is de�nedon oriented edges by I(~e) = Vy � Vxre ; where ~e = ~xy :Notice that I is antisymmetric and satis�es the node law at every x =2 fa; zg:Xy�x I( ~xy) = Xy�x cxy(Vy � Vx) = 0:Thus the node law for the current is equivalent to the harmonicity of the voltage.The current ow also satis�es the cycle law: if the edges ~e1; : : : ; ~em form a cycle,i.e., ~ei = ���!xi�1xi and xn = x0, then mXi=1 reiI(~ei) = 0 :Finally, by de�nition, a current ow also satis�es Ohm's law: if ~e = ~xy,reI(~e) = Vy � Vx :The particular values of a voltage function V are less important than the voltagedi�erences, so �x a voltage function V on the network normalized to have Vz = 0.By de�nition, if � is an arbitrary ow on oriented edges satisfying Ohm's lawrxy�( ~xy) = Vy � Vx (with respect to the voltage V ), then � equals the current ow Iassociated with V .De�ne the strength of an arbitrary ow � asjj � jj = Xx�a �( ~ax) :Proposition 8.2 (Node law/cycle law/strength) If � is a ow from a to z sat-isfying the cycle law mXi=1 rei�(~ei) = 0for any cycle ~e1 : : : ; ~em, and if jj � jj = jj I jj , then � = I.Proof. The function J = � � I satis�es the node-law at all nodes and the cycle law.De�ne h(x) = mXi=1 J(~ei)rei ;



8. Electrical Networks 25where ~ei; : : : ; ~em is an arbitrary path from a to x. By the cycle law, J is well de�ned.By the node law, it is harmonic everywhere, except possibly at a and z. Now jj � jj =jj I jj implies that J is also harmonic at a and z. By the maximum principle, h mustbe constant. This implies that J = 0. 2Given a network, the ratio (Va � Vz)= jj I jj , where I is the current ow correspondingto the voltage V , is independent of the voltage V applied to the network. De�ne thee�ective resistance between vertices a and z asR(a$ z): = Va � Vzjj I jj :We think of e�ective resistance as follows: replace the whole network by a single edgejoining a to z and require that the two networks be equivalent, in the sense that theamount of current owing from a to z in the new network is the same as in the originalnetwork if we apply the same voltage to both.Next, we discuss the probabilistic interpretation of e�ective resistance. DenoteP(a! z): = Pa(hit z before returning to a) :For any vertex x Px(hit z before a) = Va � VxVa � Vz :If pxy = cxy��1x are the transition probabilities of the Markov chain, thenP(a! z) = Xx paxPx(hit z before a)= Xx�a cax�a Va � VxVa � Vz= 1�a(Va � Vz) Xx�a I( ~ax)= 1�a jj I jjVa � Vz= 1�aR(a$ z) :Call [R(a$ z) ] �1 the e�ective conductance, written as C(a$ z). ThenP(a! z) = 1�aC(a$ z) : (22)The Green function for the random walk stopped at z, is de�ned byG(a; x) = Ea[# visits to x before hitting z] :(The subscript in Ea indicates the initial state.) Then G(a; a) = �aR(a $ z) ;since the number of visits to a before visiting z has a geometric distribution with



26parameter P(a ! z). It is often possible to replace a network by a simpli�ed onewithout changing quantities of interest, for example the e�ective resistance betweena pair of nodes. The following laws are very useful.Parallel Law. Conductances in parallel add: Suppose edges e1 and e2, with con-ductances c1 and c2 respectively, share vertices v1 and v2 as endpoints. Then bothedges can be replaced with a single edge of conductance c1 + c2 without a�ecting therest of the network. All voltages and currents in G n fe1; e2g are unchanged and thecurrent I(~e) equals I(~e1)+ I(~e2). For a proof, check Ohm's and Kirchho�'s laws withI(~e) := I(~e1) + I(~e2).Series Law. Resistances in series add: If v 2 G n fa; zg is a node of degree 2 withneighbors v1 and v2, the edges (v1; v) and (v; v2) can be replaced by a single edge(v1; v2) of resistance rv1v + rvv2 . All potentials and currents in G n fvg remain thesame and the current that ows from v1 to v2 equals I(�!v1v) = I(�!vv2). For a proof,check again Ohm's and Kirchho�'s laws, with I(��!v1v2) := I(�!v1v) = I(�!vv2).Glue. Another convenient operation is to identify vertices having the same voltage,while keeping all existing edges. Because current never ows between vertices withthe same voltage, potentials and currents are unchanged.Example 8.3 Consider a spherically symmetric tree �, a tree in which all verticesof �n have the same number of children for all n � 0. Suppose that all edges at thesame distance from the root have the same resistance, that is, re = ri if jej = i, i � 1.Glue all the vertices in each level; This will not a�ect e�ective resistances, so we inferthat R(�$ �N) = NXi=1 rij�ijand P(�! �N) = r1=j�1jNPi=1 ri=j�ij :Therefore the corresponding random walk on � is transient i� 1Pi=1 ri=j�ij <1. 4Theorem 8.4 (Thomson's Principle) For any �nite connected graph,R(a$ z) = inf f E(�) : � a unit ow from a to z g ;where E(�): = Pe[�(e)]2re. The unique minimizer in the inf above is the unit currentow.Note: The sum in E(�) is over unoriented edges, so each edge fx; yg is only consid-ered once in the de�nition of energy. Although � is de�ned on oriented edges, it isantisymmetric and hence �(e)2 is unambiguous.



8. Electrical Networks 27Proof. By compactness, there exists ows minimizing E(�) subject to jj � jj = 1. ByProposition 8.2, to prove that the unit current ow is the unique minimizer, it isenough to verify that any unit ow � of minimal energy satis�es the cycle law.Let the edges ~e1; : : :~en form a cycle. Set (~ei) = 1 for all 1 � i � n and set equal to zero on all other edges. Note that  satis�es the node law, so it is a ow, butP (~ei) = n 6= 0. For any � 2 R, we have that0 � E(� + �)� E(�) = 12 nXi=1 [(�(~ei) + �)2 � �(~ei)2]rei = � nXi=1 rei�(~ei) +O(�2) :By taking �! 0 from above and from below, we see that nPi=1 rei�(~ei) = 0, thus verifyingthat � satis�es the cycle law.To complete the proof, we show that the unit current ow I has E(I) = R(a$ z):Xe reI(e)2 = 12Xx Xy rxy  Vy � Vxrxy !2= 12Xx Xy cxy(Vy � Vx)2= 12Xx Xy (Vy � Vx)I( ~xy):Since I is antisymmetric,12Xx Xy (Vy � Vx)I( ~xy) = �Xx VxXy I( ~xy) : (23)Applying the node law and recalling that jj I jj = 1, we conclude that the right-handside of (23) is equal to Vz � Vajj I jj = R(a$ z) : 2Let a; z be vertices in a network, and suppose that we add to the network an edgewhich is not incident to a. How does this a�ect the escape probability from a to z?Probabilistically the answer is not obvious. In the language of electrical networks,this question is answered by:Theorem 8.5 (Rayleigh's Monotonicity Law) If freg and fr0eg are sets of resis-tances on the edges of the same graph G, and if re � re0 for all e, thenR(a$ z; r) � R(a$ z; r0) :Proof. Note that inf� Pe re�(e)2 � inf� Pe r0e�(e)2 and apply Thomson's Principle (The-orem 8.4). 2



28Corollary 8.6 Adding an edge weakly decreases the e�ective resistance R(a$ z). Ifthe added edge is not incident to a, the addition weakly increases the escape probabilityP(a! z) = [ �aR(a$ z) ] �1.Proof. Before we add an edge to a network we can think of it as existing alreadywith c = 0 or r =1. By adding the edge we reduce its resistance to a �nite number.2 Thus, combining the relationship (22) and Corollary 8.6 shows that the additionof an edge not incident to a (which we regard as changing a conductance from 0 to 1)cannot decrease the escape probability P(a! z).Exercise 8.7 Show that R(a$ z) is a concave function of freg.Corollary 8.8 The operation of gluing vertices cannot increase e�ective resistance.Proof. When we glue vertices together, we take an in�mum over a larger class ofows. 2Moreover, if we glue together vertices with di�erent potentials, then e�ective resistancewill strictly decrease.9 In�nite NetworksFor an in�nite graph G containing vertex a, let fGng be a collection of �nite connectedsubgraphs containing a and satisfying [nGn = G. If all the vertices in G n Gn arereplaced by a single vertex zn, thenR(a$1): = limn!1R(a$ zn in Gn [ fzng) :Now P(a!1) = C(a$1)�a :A ow on G from a to in�nity is an antisymmetric edge function obeying the nodelaw at all vertices except a. Thomson's Principle remains valid for in�nite networks:R(a$1) = inf f E(�) : � a unit ow from a to 1g : (24)Let us summarize the facts in the following proposition.Proposition 9.1 Let hG; fcegi be a network. The following are equivalent.1. The weighted random walk on the network is transient.2. There is some node a with C(a$1) > 0 (equivalently, R(a$1) <1).3. There is a ow � from some node a to in�nity with jj � jj > 0 and E(�) <1.



9. In�nite Networks 29In particular, any subgraph of a recurrent graph must be recurrent.Recall that an edge-cutset � separating a from z is a set of edges so that any pathfrom a to z must include some edge in �.Corollary 9.2 (Nash-Williams (1959)) If f�ng are disjoint edge-cutsets whichseparate a from z, then R(a$ z) �Xn 0@Xe2�n ce1A�1 : (25)In an in�nite network hG; fcegi, the analogous statement with z replaced by 1 is alsovalid; in particular, if there exist disjoint edge-cutsets f�ng that separate a from 1and satisfy Xn 0@Xe2�n ce1A�1 =1 ;then the weighted random walk on hG; fcegi is recurrent.Proof. Let � be a unit ow from a to z. For any nXe2�n ce � Xe2�n re�(e)2 � 0@Xe2�npceprej�(e)j1A2 = 0@Xe2�n j�(e)j1A2 � jj � jj 2 = 1 ;because �n is a cutset and jj � jj = 1. ThereforeXe re�(e)2 �Xn Xe2�n re�(e)2 �Xn 0@Xe2�n ce1A�1 : 2Example 9.3 (Z2 is recurrent) Take re = 1 on G = Z2 and consider the cutsetsconsisting of edges joining vertices in @2n to vertices in @2n+1, where 2n = [�n; n]2.Then by Nash-Williams (25),R(a$1) �Xn 14(2n+ 1) =1 :Thus simple random walk on Z2 is recurrent. Moreover, we obtain a lower bound forthe resistance from the center of a square 2n = [�n; n]2 to its boundary:R(0$ @2n) � c logn :In the next chapter, we will obtain an upper bound of the same type. 4The Nash-Williams inequality (25) is useful, but in general is not sharp. For example,for the 3-1 tree in Example 2.6, the e�ective resistance from the root to 1 is in�nitebecause the random walk is recurrent, yet the right-hand side of (25) is at most 1 forany sequence of disjoint cutsets (prove this, or see Lyons and Peres 1999).



30Example 9.4 (Z3 is transient) To each directed edge ~e in the lattice Z3, attach anorthogonal unit square 2e intersecting ~e at its midpoint me. De�ne �(~e) to be thearea of the radial projection of 2e onto the sphere @B(0; 14), taken with a positivesign if ~e points in the same direction as the radial vector from 0 to me, and with anegative sign otherwise. By considering a unit cube centered at each lattice pointand projecting it to @B(0; 14), we can easily verify that � satis�es the node law at allvertices except the origin. Hence � is a ow from 0 to 1 in Z3. It is easy to boundits energy: E(�) �Xn C1n2 �C2n2 �2 <1 :By Proposition 9.1, Z3 is transient. This works for any Zd, d � 3. An analyticdescription of the same ow was given by T. Lyons (1983). 4Exercise 9.5 Fix k > 1. De�ne the k-fuzz of an undirected graph G = (V;E) as thegraph Gk = (V;Ek) where for any two distinct vertices v; w 2 V , the edge fv; wg isin Ek i� there is a path of at most k edges in E connecting v to w. Show that for Gwith bounded degrees, G is transient i� Gk is transient.A solution can be found in Doyle and Snell (1984, x8.4).10 The Method of Random PathsA self-avoiding path from a to z is a sequence of vertices v0; : : : ; vn such that v0 = aand vn = z, adjacent vertices vi�1 and vi are connected by an edge, and vi 6= vj fori 6= j. If ' and  are two self-avoiding paths from a to z, de�nej' \  j = number of edges in the intersection of ' and  :If ~e is the oriented edge pointing from vertex v to w, let  �e be the reversed edgepointing from w to v. If � is a measure on the set of self-avoiding paths from a to z,de�ne �(e) = �(' : ' 3 e) = �(' : ' 3 ~e or ' 3  �e ):The Nash-Williams inequality yields lower bounds for e�ective resistance. Forupper bounds the following result is useful. Assume that re = 1 for all e; the resultcan be extended easily to arbitrary resistances.Theorem 10.1 (Method of random paths)R(a$ z) = inf� Xe [�(e)]2 = inf� E���[ j' \  j ] ;where the in�mum is over all probability measures � on the set of self-avoiding pathsfrom a to z, and ' and  are independent paths with distribution �. Similarly, if thereis a measure � on in�nite self-avoiding paths in a graph G with E���[ j' \  j ] <1,then simple random walk on G is transient.



10. The Method of Random Paths 31Remark. The useful direction here is R(a$ z) � P�(e)2 for all �.Proof. The second equality is trivial: write j' \  j as Pe 1f'3e; 3eg.Given a probability measure � on the set of self-avoiding paths from a to z, de�ne�(~e) := �(' : ' 3 ~e)� �(' : ' 3  �e )= E� [1f' 3 ~eg � 1f' 3  �e g] :By de�nition, � is antisymmetric. To see that � obeys the node law, observe thatXw:w�v �( ~vw) = E� " Xw:w�v 1f' 3 ~vwg � 1f' 3  �vwg# :Assume v 62 fa; zg. If, for a sample path ', a term in the sum is nonzero, then 'must use either an edge directed to v or an edge directed from v. But because ' isa self-avoiding walk which terminates at z, it must also use exactly one other edgeincident to v, in the �rst case directed away from v and in the second case directed tov. Hence the net contribution of ' to the sum is zero. We conclude that � is a ow.Clearly, � is a unit ow, i.e..jj � jj = Xx�a �( ~ax) = 1 :so we can apply Thomson's principle:R(a$ z) �Xe [�(e)]2 �Xe [�(e)]2:The other inequality R(a $ z) � inf�P�(e)2 will not be used in these notes, sowe only sketch a proof. Let I denote a unit current ow. ThenR(a$ z) =Xe I(e)2:Notice that a unit current ow is acyclic. De�ne a Markov chain by making transitionsaccording to the ow I normalized. This chain then de�nes a measure on paths and�(~e) = I(~e), because I is acyclic. For details, see Lyons and Peres (1999). 2Example 10.2 In Z2, consider the boundary @2n = fx 2 Z2: jj x jj 1 = ng of thesquare 2n = [�n; n]2. Using Nash-Williams we have seen thatR(0$ 2n) � c logn :Now de�ne a measure � on self-avoiding paths in 2n as follows: Pick a ray ~̀ em-anating from the origin in a random uniformly distributed direction, and let � bethe distribution of the lattice path that best approximates `. By considering edges eaccording to their distance from the origin, we also getXe [�(e)]2 � nXk=1 c1k �c2k �2 � C log n :



32So in Z2 we have c logn � R(0$ @2n) � C logn : 4Example 10.3 In Z3, de�ne � analogously, but this time on the whole in�nite lattice.Now R(0$1) �Xk c1k2 � c2k2�2 <1: 4Example 10.4 (Wedges in Z3) Given a non-negative and non-decreasing functionf , consider the wedgeWf = f(x; y; z) : 0 � y � x; 0 � z � f(x)g :By Nash-Williams, the resistance from the origin to 1 in Wf satis�esR(0$1) � CXk 1kf(k) :In particular, if this sum diverges, then Wf is recurrent. The converse also holds: 4Theorem 10.5 (T. Lyons 1983) If Pk[kf(k)]�1 <1, then the wedge Wf is tran-sient.Proof Idea. Choose a random point (U1; U2) according to the uniform distributionon [0; 1]2 and �nd the lattice path closest to f(k; U1k; U2f(k))g1k=0. The completionof this proof is left as an exercise. 211 Transience of Percolation ClustersThe graph Z3 supports a ow of �nite energy, described in Example 9.4, and hencesimple random walk in three dimensions is transient. Equivalently, if each edge ofZ3 is assigned unit conductance, then the e�ective conductance from any vertex toin�nity is positive. If a �nite number of edges are removed, then the random walk onthe in�nite component of the modi�ed graph is also transient, because the e�ectiveconductance remains nonzero.A much deeper result, �rst proved by Grimmett, Kesten, and Zhang (1993), is thatif d � 3 and p > pc(Zd), then simple random walk on C1(Zd; p) is transient, whereC1(Zd; p) is the unique in�nite cluster of Bernoulli(p) percolation on Zd. Benjamini,Pemantle and Peres (1998) (hereafter referred to as BPP (1998)) gave an alternativeproof of this result and extended it to high-density oriented percolation. Their argu-ment uses certain \unpredictable" random paths that have exponential intersectiontails to construct random ows of �nite energy on C1(Zd; p).



11. Transience of Percolation Clusters 33Let G = (VG; EG) be an in�nite graph with all vertices of �nite degree and letv0 2 VG. Denote by � = �(G; v0) the collection of in�nite oriented paths in G whichemanate from v0. Let �1 = �1(G; v0) � � be the set of paths with unit speed,i.e., those paths for which the nth vertex is at distance n from v0.Let 0 < � < 1. A Borel probability measure � on �(G; v0) has exponentialintersection tails with parameter � (in short, EIT(�)) if there exists C such that�� �n(';  ) : j' \  j � no � C�n (26)for all n, where j' \  j is the number of edges in the intersection of ' and  . Ifsuch a measure � exists for some basepoint v0 and some � < 1, then we say that Gadmits random paths with EIT(�). By the previous chapter, such a graph G must betransient.Theorem 11.1 (Cox-Durrett 1983, BPP 1998) For every d � 3, there exists� < 1 such that the lattice Zd admits random paths with EIT(�).Proof: For d � 4, we will show (following Cox and Durrett 1983, who attributethe idea to Kesten) that the \uniform distribution" on �1(Zd; 0) has the requiredEIT property; for d = 3 such a simple choice cannot work, and we will delay theproof to Chapter 17. Let d � 4, and de�ne � to be the distribution of the randomwalk with i.i.d. increments uniformly distributed on the d standard basis vectors(1; 0; : : : ; 0); : : : ; (0; : : : ; 0; 1). Let fXng and fYmg be two independent random walkswith distribution �. It su�ces to show that the number of vertex intersections ofthese two walks has an exponential tail. Since jjXn jj 1 = n for all n, we can haveXn = Ym only if n = m. The process fXn�Yng is a mean 0 random walk in the d�1dimensional sublattice of Zd consisting of vectors orthogonal to (1; 1; : : : ; 1), and itsincrements generate this sublattice. Since d� 1 � 3, the random walk fXn � Yng istransient, and (26) holds with� := P[9n � 1 Xn � Yn = 0]; and C = 1: 2Proposition 11.2 (BPP 1998) Suppose that the directed graph G admits randompaths with EIT(�), and consider Bernoulli(p) percolation on G. If p > � then withprobability 1 there is a vertex v in G such that the open cluster C(v) is transient.Proof. The hypothesis means that there is some vertex v0 and a probability measure� on � = �(G; v0) satisfying (26). We will assume here that � is supported on �1;the general case is treated in BPP (1998).For N � 1 and any in�nite path ' 2 �1(G; v0), denote by 'N the �nite pathconsisting of the �rst N edges of '. Consider the random variableZN = Z�1 p�N1f'N is openg d�(') : (27)



34Except for the normalization factor p�N , this is the �-measure of the paths that stayin the open cluster of v0 for N steps.Since each edge is open with probability p (independently of other edges), E(ZN) =1, but we can say more. Let BN be the �-�eld generated by the status (open or closed)of all edges on paths 'N with ' 2 �1. It is easy to check that for each ' 2 �1,the sequence fp�N1f'N is opengg is a martingale adapted to the �ltration fBNgN�1.Consequently, fZNgN�1 is also a non-negative martingale. By the Martingale Con-vergence Theorem, fZNg converges a.s. to a random variable Z1. In fact, we nowshow that fZNg is bounded in L2, and hence converges in L2. Since each edge is openwith probability p (independently of other edges), E(ZN) = 1. The second momentof ZN satis�esE(Z2N) = E Z�1Z�1 p�2N1f'N and  N are openg d�(') d�( )� Z�1Z�1 p�j'\ j d�(') d�( )= 1Xk=1 p�k�� �f(';  ) : j' \  j = kg : (28)By (26), the sum on the right-hand side of (28) is bounded by P1k=1C ��p�k , whichdoes not depend on N and is �nite since � < p.On the event fZ1 > 0g, the cluster C(v0) is in�nite, and by Cauchy-Schwarz,P(jC(v0)j =1) � P(Z1 > 0) � (EZ1)2EZ21 :Since EZ2N is bounded, by Fatou's Lemma the right-hand side is positive. Thus withpositive probability C(v0) is in�nite, and it remains to prove that C(v0) is a.s. transienton this event.We will construct a ow of �nite energy on C(v0). For each N � 1, and every edge~e directed away from v0, de�nefN (~e) = Z� p�N1f'N is openg1f~e2'Ng d�(') : (29)If ~e is directed towards v0, let f(~e) = �f( �e ), where  �e is the reversal of ~e. LetB(v0; N) denote the set of all vertices within distance N of v0. Then fN is a owon C(v0) \ B(v0; N + 1) from v0 to the complement of B(v0; N), i.e., for any vertexv 2 B(v0; N) except v0, the incoming ow to v equals the outgoing ow from v. Thestrength of fN (the total outow from v0) is exactly ZN .Next, we estimate the expected energy of fN by summing over edges directed awayfrom v0:EX~e fN(~e)2 = EZ�1Z�1 p�2N1f'N ; N are opengX~e 1f~e2'Ng1f~e2 Ng d�(') d�( )



11. Transience of Percolation Clusters 35� Z�1Z�1 j' \  j p�j'\ j d�(') d�( )= 1Xk=1 kp�k�� �f(';  ) : j' \  j = kg: (30)Again using (26) and p > �, from (30) we conclude thatEX~e fN (~e)2 � 1Xk=1 k  �p!k = C <1; (31)where C does not depend on N .For each directed edge ~e of G, the sequence ffN(~e)g is a fBNg-martingale whichconverges a.s. and in L2 to a nonnegative random variable f(~e). The edge functionf is a ow with strength Z1 on C(v0), and has �nite expected energy by (31) andFatou's Lemma.Thus P[C(v0) is transient] � P[Z1 > 0] > 0 ;so the tail event f9v : C(v) is transientg must have probability 1 by Kolmogorov'szero-one law. 2Theorem 11.3 (Grimmett, Kesten and Zhang 1993) Consider Bernoulli(p)percolation on Zd, where d � 3. For all p > pc, the unique in�nite cluster is a.s.transient.Proof. It follows from Theorem 11.1 and Proposition 11.2 that the in�nite cluster istransient if p is close enough to 1.Recall that a set of graphs B is called increasing if for any graph G that containsa subgraph in B, necessarily G must also be in B.Consider now percolation with any parameter p > pc in Zd. Following Pisztora(1996), call an open cluster C contained in some cube Q a crossing cluster for Q iffor all d directions there is an open path contained in C joining the left face of Q tothe right face. For each v in the lattice NZd, denote by 2N (v) the cube of side-length5N=4 in Zd, centered at v. Let Ap(N) be the set of v 2 NZd with the followingproperty: The cube 2N (v) contains a crossing cluster C such that any open clusterin 2N(v) of diameter greater than N=10 is connected to C by an open path in 2N (v).Proposition 2.1 in Antal and Pisztora (1996), which relies on the work of Grimmettand Marstrand (1990), implies that Ap(N) stochastically dominates site percolationwith parameter p�(N) on the stretched lattice NZd, where p�(N)! 1 as N !1. ByLiggett, Schonmann and Stacey (1996), it follows that Ap(N) stochastically dominatesbond percolation with parameter p�(N) on NZd, where p�(N)! 1 as N !1. Thisdomination means that for any increasing Borel set of graphs B, the probabilitythat the subgraph of open sites under independent bond percolation with parameterp�(N) lies in B, is at most P[Ap(N) 2 B]. If N is su�ciently large, then the in�nitecluster determined by bond percolation with parameter p�(N) on the lattice NZd,



36is a.s. transient. The set of subgraphs of NZd that contain a transient subgraph isincreasing, so Ap(N) contains a transient subgraph bAp(N) with probability 1. Observethat bAp(N) is isomorphic to a subgraph of the \3Nd-fuzz" of the in�nite cluster Cpin the original lattice, so by Rayleigh's monotonicity principle, we conclude that Cp isalso transient a.s. (See Ex. 9.5, or x8.4 in Doyle and Snell (1984) for the de�nition andproperties of the k-fuzz of a graph.) Alternatively, it can be veri�ed that bAp(N) is\roughly isometric" to a subgraph of Cp, and therefore Cp is transient a.s. (see Soardi1994). 2Remark. Hiemer (1998) proved a renormalization theorem for oriented percolation,that allowed him to extend the result of [6] on transience of oriented percolationclusters in Zd for d � 3, from the case of high p to the whole supercritical phase fororiented percolation.Recall that a collection of edges � is a cutset separating v0 from1 if any in�niteself-avoiding path emanating from v0 must intersect �. Nash-Williams proved thatif f�ng1n=1 is a sequence of disjoint cutsets separating v0 from in�nity in a connectedtransient graph, then Pn j�nj�1 <1.The following extension of Theorem 11:3 provides �ner information about thepermissible growth rates of cutsets on supercritical in�nite percolation clusters.Exercise 11.4 Show that for d � 2,inffq : 9 a ow f 6= 0 from 0 to 1 on Zd with X jf(e)jq <1g = dd� 1 :Theorem 11.5 (Levin and Peres 1998) Let C1(Zd; p) be the in�nite cluster ofBernoulli(p) percolation on Zd. Then for d � 3 and p > pc(Zd), a.s.,inffq : 9 a ow f 6= 0 from 0 to 1 on C1(Zd; p) with Xe jf(e)jq <1g = dd� 1 :Corollary 11.6 Let d � 3 and p > pc(Zd). With probability one, if f�ng is asequence of disjoint cutsets in the in�nite cluster C1(Zd; p) that separate a �xed vertexv0 from 1, then Pn j�nj�� <1 for all � > 1d�1 .Proof. Pick � > 1d�1 , and let f be a unit ow on C1(Zd; p) with P jf(e)j1+� < 1,which exists by Theorem 11.5. Observe �rst thatE1+�(f) = Xe2EG jf(e)j1+� �Xn Xe2�n jf(e)j1+�;since the f�ng are disjoint. By Jensen's inequality, for all n � 1,1j�nj Xe2�n jf(e)j1+� � � 1j�nj Xe2�n jf(e)j�1+� = j�nj�1�� :Multiplying by j�nj and summing over n establishes the Corollary. 2Remark. Theorem 11.5 was recently sharpened by Ho�man and Mossel.



12. Subperiodic Trees 3712 Subperiodic TreesFor a tree �, let �v denote the subtree of � rooted at vertex v that contains alldescendants of v. � is N-subperiodic if for any vertex v 2 � there exists a 1-1adjacency preserving map f : �v ! �f(v) with jf(v)j � N .Example 12.1 Examples of subperiodic trees.� b-ary trees for any integer b � 2.� The Fibonacci tree ��b described in Exercise 5.6.� The tree of all self-avoiding walks in Zd.� Directed covers of �nite connected directed graphs: to every directed path oflength n in the graph corresponds v 2 � with jvj = n; extensions of the pathcorrespond to descendants of v.� Universal covers of undirected graphs: to every non-backtracking path of lengthn in the graph corresponds v 2 � with jvj = n; extensions correspond to de-scendants, as above. 4Suppose that b � 2 is an integer. For a closed nonempty set � � [0; 1], de�ne atree �(�; b) as follows. Consider the system of b-adic subintervals of [0; 1]; those whichhave a non-empty intersection with � form the vertices of the tree. Two vertices areconnected by an edge if one of the corresponding intervals is contained in the otherand their orders di�er by one (i.e., the ratio of lengths is b). The root of this tree is[0; 1]. Clearly, �([0; 1]; b) is the usual b-ary tree. If b�(mod 1) � �, i.e., � is invariantunder the transformation x 7! bx(mod 1), then �(�; b) is 0-subperiodic.Theorem 12.2 (Furstenberg 1967) For � which is subperiodic, gr(�) exists andgr(�) = br(�). Furthermore, inf� S(br(�);�) > 0 ;where S(�;�) = Pv2���jvj for a cutset �.Corollary 12.3 (Furstenberg's formulation) Let � � [0; 1] be a compact set. Ifb�(mod 1) � �, then dimH(�) = dimM(�) = �for some �, and moreover, H�(�) > 0, where H� denotes �-dimensional Hausdor�measure.



38Proof of Theorem 12.2. We will give the proof for � 0-subperiodic. The N -subperiodic case can be reduced to the 0-subperiodic case; this reduction is left as anexercise. Assume �rst that � has no leaves.Suppose that for some �nite cutset �,S(�;�) < 1 : (32)Denote d = maxv2� jvj. By 0-subperiodicity, for any v 2 �, there exists a cutset �(v) of�v such that Xw2�(v)��(jwj�jvj) < 1 :In other words, Xw2�(v) ��jwj < ��jvj :Replace v in � by the vertices in �(v) to obtain a new cutset ~� in � with S(�; ~�) < 1.Given n, repeat this kind of replacement for every vertex v in the current cutset withjvj � n to get a cutset �� such that all vertices u 2 �� satisfy n � juj � n+ d. Thenj�nj��n�d � S(�;��) < 1 :This inequality depends on the assumption of no leaves. Thus j�nj < �n+d for alln, whence gr(�) � �. Since (32) holds for any � > br(�), we infer that gr(�) < �.Therefore gr(�) � br(�) � gr(�) :Finally, consider �1 = br(�). If S(�1;�) < 1 for some �nite cutset �, then wecould �nd � < �1 such that S(�;�) < 1, and the preceding argument would yieldthat gr(�) � � < �1, a contradiction. Thus for all cutsets �,S(br(�);�) � 1:If � has leaves, create a modi�ed tree �0 by attaching to each leaf an in�nite path.�0 is periodic as well, and so the theorem can be applied to it, yielding br(�0) = gr(�0).But since br(�) = br(�0) and gr(�) � gr(�0), we havebr(�) � gr(�) � gr(�) � gr(�0) = br(�0) = br(�);and hence gr(�) = br(�). 2Exercise 12.4 Construct a subperiodic tree with superlinear polynomial growth (moreprecisely, construct a subperiodic tree T such that jTn jj to1 as n ! 1, but jTnj =O(nd) for some d <1.(Hint: build a subtree of the binary tree where all �nite paths are labeled by wordsin the Morse sequence 0110100110010110 : : :. This sequence is obtained by iteratingthe substitution 0 7! 01, 1 7! 10. Alternatively, use a lexicographic spanning tree inZd, as described in the next chapter.)



13. The Random Walks RW� 39Exercise 12.5 Does every subperiodic tree with exponential growth have a subtreewithout leaves that has bounded pipes?(Hint: Consider the subtree T of the binary tree T2, containing all self-avoiding pathsfrom the root in T2 with the property that for every n > 100, any n2 consecutiveedges on the path contain a run of n consecutive left turns.)13 The Random Walks RW�For a graph G, �x an origin o, and de�ne jej as the length of a shortest path from o toan end-vertex of e. We will de�ne a family of processes RW� as weighted random walkson G. Speci�cally, each edge e is assigned conductance ��jej. We will mostly considerthe case where � is a tree and o is the root �, although we will also consider theseprocesses de�ned on Cayley graphs of groups. By �ne tuning �, we obtain randomwalks that explore the graph better than the simple random walk. The followingresult is stronger than Theorem 2.9 mentioned in Chapter 2.Theorem 13.1 (R. Lyons 1990) RW� is transient on a tree � if � < br(�), andrecurrent if � > br(�).Proof. If � > br(�), then for any � there exists a cutset � such that Pv2� ��jvj < �.By Nash-Williams (for just one cutset)R(�$1) � 1Pv2���jvj > 1� :Letting � # 0 shows that R(�$1) is in�nite, and hence the walk is recurrent.If � < br(�) choose � < �� < br(�) so that there exists a unit ow � from � to 1with �(e) � C��jej� . ThenE(�) =Xe re[�(e)]2 �Xn �n Xjej=n �(e)C��jej� = CXn  ���!n Xjej=n �(e) <1 ;since � is a unit ow. 2Let G be a countable group with a �nite set of generators S = hg1; : : : gmi. Withevery generator we include its inverse, so S = S�1. The Cayley graph of G has asvertices the elements of the group, and contains an (unoriented) edge between u andv if u = giv for some gi 2 S. Each element g 2 G can be represented as a word in thegenerators, g = gi(1) � � � gi(m); let jgj be the minimal length of words which representg, and let Gn = fg 2 G : jgj = ng. The growth gr(G) := limn jGnj1=n exists for suchgroups, and the group is of exponential growth if gr(G) > 1.Corollary 13.2 (R. Lyons 1995) RW� on the Cayley graph of a group G of expo-nential growth is transient for � < gr(G) and recurrent for � > gr(G).



40Proof. The second statement follows from the Nash-Williams inequality. For the �rst,we will show that random walk on a subgraph is transient; by Rayleigh's MonotonicityPrinciple, this is enough. We will use the lexicographic spanning tree � in G. Assigng its lexicographically minimal representation g = gi(1) � � �gi(m) where m = jgj andif g = gj(1) � � �gj(m) is another representation of g, then at the smallest k such thati(k) 6= j(k) we have i(k) < j(k). The edge gh is in � if j jgj � jhj j = 1 and either gis an initial segment of h or h is an initial segment of g. Let the identity be the root.Since there is a unique path from the root to any element in �, and � contains allelements of G, it is indeed a spanning tree. One can check that it is 0{subperiodic.Observe that j�nj = jGnj, so gr(�) = gr(G). Since � is subperiodic, Theorem 12.2implies that br(�) = gr(G). By Theorem 13.1, for � < gr(G) the biased walk RW� istransient on �, hence also on G. 2Open Problem 1 For 1 < � < gr(G), is it true thatspeed(RW�) := limn!1 jXnjn > 0 ; a.s. ?Here jvj denotes the distance of v from the identity.We remark that there exist groups of exponential growth where the speed of simplerandom walk is 0 a.s. An example is the simple random walk on the lamplightergroup; see Lyons, Pemantle and Peres (1996).14 CapacityIn Chapter 6 we considered capacity on the boundary of a tree. We now generalizethe de�nition to any metric space X equipped with the Borel �-�eld B. A kernel Fis a measurable function F : X�X ! [0;1]. For a measure � on (X;B), the energyof � in the kernel F is de�ned asEF (�) = ZX ZX F (x; y)d�(x)d�(y) :We will mostly consider F of the form F (x; y) = f(jx � yj) for f non-negative andnon-increasing; we write Ef for EF in this case. De�ne the capacity of a set � in thekernel F as CapF (�) = " inf�:�(�)=1 EF (�)#�1 :The �rst occurrence of capacity in probability theory was the following result.Theorem 14.1 (Kakutani 1944a, 1944b) If � � Rd is compact with 0 =2 � andB is a Brownian motion, thenP0(B hits �) > 0 if and only if CapG(�) > 0 ;



14. Capacity 41where G is the Green kernelG(x; y) = ( jx� yj2�d d � 3 ;log+ (jx� yj�1) d = 2 :R. Lyons discovered connections between capacity and percolation on trees, alreadydiscussed in Chapter 6. Let fpeg be a set of probabilities indexed by the edges ofa tree �. Let path(v) denote the unique path from the root to v, and let F be thekernel F (x; y) = Ye2path(x^y) p�1e : (33)If pe � p, then F (x; y) = p�jx^yj. More generally, if P is the probability measurecorresponding to independent fpeg percolation, then F (x; y) = [P(� $ x ^ y)]�1:A. H. Fan proved that on an in�nite tree of bounded degree, P(� $ @�) > 0 i�CapF (@�) > 0. This was sharpened by R. Lyons to a quantitative estimate.Theorem 14.2 (R. Lyons 1992) Let P be the probability measure corresponding toindependent fpeg percolation on a tree � and F the kernel de�ned in (33). ThenCapF (@�) � P(�$ @�) � 2CapF (@�) : (34)Consider Brownian motion in dimension d � 3. One obstacle to obtaining quanti-tative estimates for Brownian hitting probabilities with capacity in Green's kernel istranslation invariance of that kernel: If B is a Brownian motion started at the origin,then P(B hits � + x) becomes small as x ! 1. If we had a scale invariant kernelinstead, we would have more hope, as P(B hits c�) = P(B hits �) for any c > 0.Hence we use capacity in the Martin kernelK(x; y) = G(x; y)G(0; y) =  jyjjx� yj!d�2 (35)for d � 3.Theorem 14.3 (Benjamini, Pemantle, and Peres 1995) Let B be a Brownianmotion in Rd for d � 3, started at the origin. Let K be the Martin kernel de�ned in(35). Then for any closed set � in Rd,12CapK(�) � P0(B hits �) � CapK(�) :Remark. An analogous statement holds for planar Brownian motion, provided it iskilled at an appropriate �nite stopping time (e.g., an independent exponential time, orthe �rst exit from a bounded domain) and the corresponding Green function G(x; y)is used to de�ne the Martin Kernel.



42Theorem 14.4 (BPP 1995) Let fXng be a transient Markov chain on a countablestate space S with initial state � 2 S, and setG(x; y) = Ex " 1Xn=01fyg(Xn)# and K(x; y) = G(x; y)G(�; y) :Then for any initial state � and any subset � of S,12CapK(�) � P�(fXng hits �) � CapK(�) :Exercise 14.5 Verify the analogous result for the stable-12 subordinator and the kernelG(s; t) : = ( (t� s)�1=2 0 < s � t ;0 s > t > 0 :Problem: Find the class of Markov processes for which the above estimate (forsuitable kernel G and resulting K) holds.Proof of Theorem 14.4. To prove the right-hand inequality, we may assume thatthe hitting probability is positive. Let � = inffn : Xn 2 �g and let � be the measure�(A) = P�(� < 1 and X� 2 A). In general, � is a sub-probability measure, as �may be in�nite. By the Markov property, for y 2 �,Z� G(x; y)d�(x) = Xx2�P�(X� = x)G(x; y) = G(�; y) ;whence R�K(x; y)d�(x) = 1. Therefore EK(�) = �(�), EK(�=�(�)) = [�(�)]�1; con-sequently, since �=�(�) is a probability measure,CapK(�) � �(�) = P�(fXng hits �) :This yields one inequality. Note that the Markov property was used here.For the reverse inequality, we use the second moment method. Given a probabilitymeasure � on �, set Z = Z� 1Xn=0 1fyg(Xn) d�(y)G(�; y) :E�[Z] = 1, and the second moment satis�esE�[Z2] = E� Z� Z� 1Xm=0 1Xn=01fxg(Xm)1fyg(Xn) d�(x)d�(y)G(�; x)G(�; y)� 2E� Z� Z� Xm�n 1fxg(Xm)1fyg(Xn) d�(x)d�(y)G(�; x)G(�; y) :Observe that1Xm=0E� 1Xn=m1fxg(Xm)1fyg(Xn) = 1Xm=0P�(Xm = x)G(x; y) = G(�; x)G(x; y) :



14. Capacity 43Hence E�[Z2] � 2 Z� Z� G(x; y)G(�; y)d�(x)d�(y) = 2EK(�) ;and therefore P�(fXng hits �) � P�(Z > 0) � (E�[Z])2E�[Z2] � 12EK(�) :We conclude that P�(fXng hits �) � 12CapK(�). 2The upper bound on P(� $ @�) obtained by the �rst moment method (8) isnot sharp enough to prove Theorem 14.2. For example, take the binary tree withBernoulli(p) percolation for p = 12 ; if �n = fv: jvj � ng, then the �rst-moment methodyields an upper bound of 1 for any n, while CapF (@�n) = 2(n + 2)�1. However, wecan use Theorem 14.4 to give a short proof of Theorem 14.2.Proof of Theorem 14.2. The �rst inequality was already proven in Proposition 7.1.It remains to prove the right-hand inequality in (34). Assume �rst that � is �nite.There is a Markov chain fVkg hiding here: Embed � in the lower half-plane, withthe root at the origin. The random set of r � 0 leaves that survive the percolationmay be enumerated from left to right as V1; V2; : : : ; Vr. The key observation is thatthe random sequence �; V1; V2; : : : ; Vr;�;�; : : : is a Markov chain on the state space@� [ f�;�g, where � is the root and � is a formal absorbing cemetery.Indeed, given that Vk = x, all the edges on the unique path from � to x are retained,so that survival of leaves to the right of x is determined by the edges strictly to theright of the path from � to x, and is thus conditionally independent of V1; : : : ; Vk�1.This veri�es the Markov property, so Theorem 14.4 may be applied.The transition probabilities for the Markov chain above are complicated, but it iseasy to write down the Green kernel. Clearly, G(�; y) equals the probability that ysurvives percolation, so G(�; y) = Ye2path(y) pe :If x is to the left of y, then G(x; y) is equal to the probability that the range of theMarkov chain contains y given that it contains x, which is just the probability of ysurviving given that x survives. Therefore,G(x; y) = Ye2path(y)npath(x) pe ;and hence K(x; y) = G(x; y)G(�; y) = Ye2path(x^y) p�1e :Now G(x; y) = 0 for x on the right of y; thus (keeping the diagonal in mind)F (x; y) � K(x; y) +K(y; x)



44for all x; y 2 @�, and therefore EF (@�) � 2EK(@�) :Now apply Theorem 14.4 to � = @�:CapF (@�) � 12CapK(@�) � 12P(fVkg hits @�) = 12P(�$ @�) :This establishes the upper bound for �nite �.The inequality for general � follows from the �nite case by taking limits. 2Remark. The inequality (34) was recently sharpened by Marchal [68].The notation E has appeared twice, once as a functional on ows and once as afunctional on measures. As discussed following Lemma 2.10, measures on the bound-ary of a tree correspond to ows on the tree; we shall see that the energy of a measureon @� is (up to an additive constant) the same as the energy of the corresponding owon �: Given a measure � on @�, let � be the corresponding ow: �(uv) = �(� : v 2 �),where u is the parent of v. Observe thatE(�) = Xe re�(e)2 = Xe re Z@� Z@� 1f�3eg1f�3egd�(�)d�(�) :Moving the sum inside the integral, the above equalsZ@� Z@�Xe 1fe2�\�gred�(�)d�(�) = Z@� Z@� Xe��^� red�(�)d�(�) :By the series law for resistances, we are left withE(�) = Z@� Z@�R(�$ � ^ �)d�(�)d�(�) : (36)Now if 1=C(�$ v) + 1 = 1=P(�$ v) ; (37)then substituting in (36) yields EK(�) = 1 + E(�) ; (38)where K(�; �) = 1=P(� $ � ^ �). By taking in�mum on both sides of (38) andapplying Thomson's Principle, we can rewrite Theorem 14.2: If the correspondence(37) holds for resistances freg and an independent fpeg percolation P, then11 +R(�$1) � P(�$1) � 21 +R(�$1) : (39)It is easily checked that in the case of Bernoulli(p) percolation, the correspondence(37) is preserved by taking ce = (1� p)�1pjvj, where e is the edge connecting v to its



14. Capacity 45parent. In this case the weighted random walk on the resulting network is RW1=p.Thus, (39) implies that percolation occurs at p if and only if RW1=p is transient.Consider a Cantor set � in the unit interval and the corresponding tree �(�; b).We shall see that simple random walk on this tree is transient i� �, considered as asubset of R2, is non-polar for Brownian motion. In particular, transience of �(�; b) isindependent of b. The following theorem can be found in Benjamini and Peres (1992)in a special case, and in Pemantle and Peres (1995b) in general.Theorem 14.6 Let � be a subtree of the bd-adic tree and let f : (0;1) ! (0;1)be a non-increasing function with f(0+) = 1. Let 	 be the canonical map from theboundary of the bd-adic tree to [0; 1]d; 	�1 is base-b representation of points in [0; 1]d.Let dist(v; w) = b�jv^wj for v; w 2 @� and let dist(x; y) be Euclidean distance forx; y 2 [0; 1]d. Then Capf (@�) � Capf(	(@�)) ;where Capf stands for capacity in the kernel F (x; y) = f(dist(x; y)). This meansthere exist constants c and C, depending on b and d only, such thatcCapf (	(@�)) � Capf (@�) � C Capf (	(@�)) :Exercise 14.7 Consider Bernoulli(p) percolation on an in�nite tree �. Prove thatPp(component of � is transient) > 0 i� Pfpeg(�$ @�) > 0 ;where pe = kk+1p when jej = k.Hint: An in�nite tree T is transient i� Capjx^yj(@T ) > 0. The kernel jx^yj is obtainedby applying f(r) = � logb r to the distance between x and y.Proof of Theorem 14.6 For v 2 �, let �(v) = �(� : � 3 v). We will prove thatEf(�) � Ef(�	�1), i.e., c(b; d) � Ef(�)Ef(�	�1) � C(b; d) (40)for some constants 0 < c(b; d) � C(b; d) < 1, depending on b and d only. This willyield Capf(@�) � Capf(	(@�)) ; proving the theorem.Let h(k) = ( f(b�k)� f(b1�k); k � 1f(1); k = 0:In the following, write u � w if w is a descendant of u. ThenEf(�) = Z@� Z@� jx^yjXk=0 h(k) d�(x)d�(y) = 1Xk=0h(k) Z Zjx^yj�k d�(x)d�(y):



46Breaking up the region of integration and observing that x ^ y � v i� x � v andy � v, the above is equal to1Xk=0h(k) Xjvj=k Z Zx^y�v d�(x)d�(y) = 1Xk=0h(k) Xjvj=k [�(v)]2 = 1Xk=0h(k)Sk;where Sk = Sk(�) = Pjvj=k [�(v)]2. Note thatXjvj=k+1 [�(v)]2 � Xjvj=k [�(v)]2 � bd Xjvj=k+1 [�(v)]2 ;i.e., Sk+1 � Sk � bdSk+1.We claim that in [0; 1]d,Ef(�	�1) � Z	(@�) Z	(@�) 1Xk=0h(k)1fk:b1�k�jx�yjg d�	�1(x)d�	�1(y) :This holds because for the largest k yielding a non-zero term in the sum above,b�k < jx� yj and thus the sum is bounded below by f(jx� yj).For vertices v; w at the same level of �, set �(v; w) = 1 i� 	(v) and 	(w) are thesame or adjacent subcubes of [0; 1]d, and �(v; w) = 0 otherwise. Then�� �f(�; �): j	(�)�	(�)j � b1�kg � Xjvj=k�1 Xjwj=k�1�(v)�(w)�(v; w) : (41)Now use the standard inequality 2�(v)�(w) � [�(v)]2 + [�(w)]2 and the fact that thenumber of cubes adjacent to a given cube is bounded above by 3d, to deduce that�� �f(�; �): j	(�)� 	(�)j � b1�kg � 3dSk�1 � 3dbdSk:It follows that Ef(�	�1) � (3b)dXk h(k)Sk = (3b)dEf(�) :For the reverse inequality, choose l so that bl � pd. Then jv ^ wj = k + l impliesthat j	(v)� 	(w)j � b�k, and consequentlyEf(�	�1) � 1Xk=0 f(b�k) �� �fjv ^ wj = k + lg= 1Xk=0 f(b�k) [Sk+l(�)� Sk+l+1(�)] :Using summation-by-parts shows that the right-hand side above is equal to1Xk=0h(k)Sk+l(�) � b�dl 1Xk=0h(k)Sk(�) = b�dlEf(�) : 2



15. Intersection-Equivalence 4715 Intersection-EquivalenceThis Chapter follows Peres (1996). Throughout this chapter we work in [0; 1]d and allprocesses considered are started according to the uniform measure on [0; 1]d, unlessotherwise indicated.Lemma 15.1 If B is a Brownian path (killed at an exponential time for d = 2), thenP(B \ � 6= ;) � Capg(�)for any Borel set �, whereg(r) = ( log+(r�1) if d = 2r2�d if d > 2 : (42)Proof. (for d � 3). Denote by K the Martin kernel, see (35). By Theorem 14.3,P(B hits �) = Z[0;1]d P0(B hits �� x)dx � 12 Z[0;1]d CapK(�� x)dx :Because EK(�) � CdEg(�) for any measure � on [0; 1]d, the right-hand side above isbounded below by 12Cd Z[0;1]d Capg(�� x)dx = 12CdCapg(�) :The upper-bound is a consequence of the probabilistic potential theory developedby Hunt and Doob. There exists a �nite measure � such thatPx(B hits �) = Z� g(jx� yj)d�(y) and �(�) = Capg(�) :(see, e.g., Chung (1973).) ThenP(B hits �) = Z[0;1]dPx(B hits �)dx = Z� Z[0;1]d g(jx� yj)dxd�(y) � Cd �(�) ;where Cd is a constant depending only on d. Note that this proof extends to any initialdistribution � for B(0) with a bounded density; more generally a bounded Greenianpotential su�ces. 2Shizuo Kakutani, generalizing a question of Paul L�evy, asked which compact sets� satisfy P(� \ B1 \ B2 6= ;) > 0, where B1, B2 are independent Brownian paths inRd (d = 2 or 3)?Evans (1987) and Tongring (1988) gave a partial answer:If Capg2(�) > 0 ; then P(� \ B1 \ B2 6= ;) > 0 : (43)



48They also found a necessary condition involving the Hausdor� measure of �. LaterFitzsimmons and Salisbury (1989) gave the full answer: Capg2(�) > 0 is necessary aswell as su�cient in (43). Furthermore, in dimension 2, their very general results yieldthe equivalence Capgk(�) > 0 , P (� \B1 \ : : : \ Bk 6= ;) > 0: (44)This led Chris Bishop to make the following insightful conjecture:Conjecture 2 (Bishop) Let B denote a Brownian path. Then for any nonincreasinggauge f and any closed set �, the event that Capf(�\B) > 0 has positive probabilityi� Capfg(�) > 0.We will present a proof of this below. Applying Kakutani's Theorem 14.1 to �0 =� \ B1 and B2 shows thatP(� \ B1 \ B2 6= ;) > 0 , Capg(� \ B1) > 0 with positive probability. (45)Bishop's Conjecture (with f = g) along with (45) imply thatCapg2(�) > 0 , P(� \ B1 \ B2 6= ;) > 0:Hence Bishop's Conjecture and Kakutani's Theorem together give (44).Theorem 15.2 Let f be a non-negative and non-increasing function. Consider in-dependent fpeg percolation on the 2d-ary tree, with pe = pk whenever jej = k and withp1 : : : pk = 1=f(2�k). Let Qd(f) � [0; 1]d be the set corresponding to @� in [0; 1]d,where � is the component of the root in this percolation. (This component may be�nite, whence Qd(f) = ;.) Then, for any closed set � � [0; 1]d,Capf (�) � P(� \Qd(f) 6= ;) : (46)For f = g in particular, Qd(f) is intersection-equivalent to Brownian motion, i.e.,P(� \Qd(g) 6= ;) � P(� \B 6= ;) : (47)Proof. By Theorem 14.2,P(� \Qd(f) 6= ;) = Pfpeg(�$ @�(�; 2)) � Capf(@�(�; 2)) ; (48)where the constants in � are universal, namely 1 and 2. Theorem 14.6 with b = 2yields Capf (@�(�; 2)) � Capf (�) ; (49)where the constants in � depend on d. Combining (48) and (49) establishes (46).Finally, use (46) and Lemma 15.1 to prove (47). 2



15. Intersection-Equivalence 49Corollary 15.3 Let f and h be non-negative and non-increasing functions. If arandom closed set A in [0; 1]d satis�esP(A \ � 6= ;) � Caph(�) (50)for all closed � � [0; 1]d, thenP(Capf (A \ �) > 0) > 0 if and only if Capfh(�) > 0 (51)for all closed � � [0; 1]d. In particular, Bishop's conjecture is true.Proof. Enlarge the probability space where A is de�ned to include independent limitsets of fractal percolations Qd(f) and eQd(h). By Theorem 15.2P(A \ � \Qd(f) 6= ; A) > 0 if and only if Capf (A \ �) > 0 ;it follows thatP( Capf (A \ �) > 0 ) > 0 if and only if P(A \ � \Qd(f) 6= ;) > 0 : (52)Conditioning on Qd(f) and then using (50) with � \Qd(f) in place of � givesP(A \ � \Qd(f) 6= ;) > 0 if and only if P( Caph(� \Qd(f)) > 0 ) > 0: (53)Conditioning on Qd(f) and applying Theorem 15.2 yieldsP( Caph(� \Qd(f)) > 0 ) > 0 if and only if P(� \Qd(f) \ eQd(h) 6= ;) > 0 : (54)Since Qd(f)\ eQd(h) has the same distribution as Qd(fh), Theorem 15.2 implies thatP(� \Qd(f) \ eQd(h) 6= ;) > 0 if and only if Capfh(�) > 0: (55)Combining (52),(53),(54), and (55) proves (51). 2Corollary 15.4 Suppose fAig are independent random closed sets in [0; 1]d satisfyingP(Ai \ � 6= ;) � Capgi(�)for all closed � � [0; 1]d and some gi non-negative and non-increasing. ThenP(A1 \ : : : \ Ak \ � 6= ;) > 0 , Capg1:::gk(�) > 0 :Example 15.5 A.s., two independent Brownian paths in R4 do not intersect.



50This is a well-known result of Dvoretsky, Erd}os and Kakutani (1950); we will showhow it follows from intersection-equivalence. Let B1 and B2 be two independentBrownian paths in R4, started uniformly in the cube [0; 1]4 and intersected with thatcube. Each is intersection-equivalent to Q4(g), and thusP([0; 1]4 \ B1 \B2 6= ;) � P(Q4(g) \ eQ4(g) 6= ;) ; (56)where eQ4(g) is an independent copy of Q4(r�2). Because Q4(g)\ eQ4(g) has the samedistribution as Q4(g2),P([0; 1]4 \ B1 \B2 6= ;) � P(Q4(g2) 6= ;) : (57)Since the edge probabilities in the percolation corresponding to g2(r) = r�4 are allpk = 1=16, the tree corresponding to Q4(g2) is a critical branching process and thusdies out almost surely: P(Q4(g2) 6= ;) = 0 : (58)Putting together (57) and (58) shows that the two paths never intersect. 4Corollary 15.6 (Lawler (1982, 1985), Aizenman (1985)) Let B1 and B2 be in-dependent Brownian paths intersected with [0; 1]d, considered as sets in [0; 1]d. ThenP(dist(B1; B2) < �) � 8>><>>: 1 d � 31� log � d = 4�d�4 d > 4 :Proof. We will prove the cases d � 4; the other cases are handled similarly. Let g bethe Greenian potential (42), and write Qd(p) instead of Qd(g), where p = 22�d. For aclosed set C and � > 0, let C� be the set of points within distance � from a point inC. Conditioning on B�2 and applying Theorem 15.2 givesP(dist(B1; B2) < �) = P(B1 \B�2 6= ;) � P(Qd(p) \ B�2 6= ;) : (59)Now conditioning on [Qd(p)]� and again applying Theorem 15.2 yieldsP(Qd(p) \ B�2 6= ;) = P([Qd(p)]� \B2 6= ;) � P([Qd(p)]� \ eQd(p) 6= ;) ; (60)where eQd(p) is an independent copy of Qd(p).Combining (59) and (60) shows thatP(dist(B1; B2) < �) � P([Qd(p)]� \ eQd(p) 6= ;) : (61)Next let �=2 < 2�k � � and choose ` so that 2` � pd. Then P([Qd(p)]�\ eQd(p) 6= ;) isat most the probability that Qd(p) and eQd(p) both intersect the interior of the samebinary cube of side-length 2�(k+`), and this is bounded below byc2 �P(the construction leading to Qd(p2) survives for k + ` generations) ; (62)



15. Intersection-Equivalence 51where c = 1 � q > 0 is the probability of survival of the (supercritical) branchingprocess associated to the construction of Qd(p).The probability in (62) may be estimated via standard branching process argu-ments, but we use percolation instead. Consider Bernoulli(p2) percolation on the2d-ary tree T and write the probability as Pp2(�$ Tk+`). Since the minimal energymeasure on @Tk is the uniform measure �, Theorem 14.2 yields that1Pp(�$ Tk) � 1CapF (Tk) = EF (�) ;where F (v; w) = p�jv^wj. We haveEF (�) = 1+ Xv;w2Tk kXj=1(p�j � p1�j)�(v)�(w) = 1+ kXj=1 Xjv^wj>�j(p�j � p1�j)�(v)�(w) :Since jv ^ wj � j if and only if jvj � j and jwj � j,EF (�) = 1 + kXj=1(p�j � p1�j)0@Xjvj�j �(v)1A2 = 1 + kXj=1(p�j � p1�j)2�dj ;where the last equality holds because � is the uniform measure. We conclude thatEF (�) � Pkj=1(p2d)�j and 1Pp(�$ Tk) � ( k if p = 2�d(2dp)�k if p < 2�d :Recall that p = 22�d and hence the probability in (62) is equal toPp2(�$ Tk+`) � 8><>: (k + `)�1 � j log �j�1 if d = 4; because p2 = 2�d for d = 4 ;2(4�d)(k+`) � �d�4 if d > 4 :For the reverse inequality, recall (61):P(dist(B1; B2) < �) � P([Qd(p)]� \ eQd(p) 6= ;) :Let Qk�1d (p) denote the union of all binary cubes of side-length 21�k in the (k � 1)thstep of the construction of Qd(p), and recall that �=2 < 2�k � �. Then [Qd(p)]�is contained in the union of 3d translates Qk�1d (p) + x of Qk�1d (p) and therefore theprobability P([Qd(p)]� \ eQd(p) 6= ;) is bounded above by3dP(the construction leading to Qd(p2) survives to the (k � 1)th generation):The proof is now concluded by using the previous calculation for this probability. 2



52 +
�� �+ + + � �+ +Figure 4: Tree with +,� spins at the vertices.16 Reconstruction for the Ising Model on a TreeThis chapter follows Evans, Kenyon, Peres and Schulman (1998).Consider the following broadcast process. At the root � of a tree T , a random�1 valued \spin" �� is chosen uniformly. This spin is then propagated, with error,throughout the tree as follows: For a �xed � 2 (0; 1=2], each vertex receives the spinat its parent with probability 1� �, and the opposite spin with probability �. Theseevents at the vertices are statistically independent. This model has been studied ininformation theory, mathematical genetics and statistical physics; some of the historyis described below.Suppose we are given the spins that arrived at some �xed set of vertices W of thetree. Using the optimal reconstruction strategy (maximum likelihood), the probabilityof correctly reconstructing the original spin at the root is clearly at least 1=2; denotethis probability by 1+�2 . We will establish a lower bound for � = �(T;W; �) in termsof the the e�ective electrical conductance from the root � toW (Theorem 16.2), and anupper bound for � which is the maximum ow from � toW for certain edge capacities(Theorem 16.3.) When T is an in�nite tree, these bounds allow us to determine (inTheorem 16.1) the critical parameter �c so that, denoting the nth level of T by Tn,we have limn!1�(T; Tn; �)8<: > 0 if � < �c= 0 if � > �c : (63)As we explain below, vanishing of the above limit is equivalent to extremality ofthe \free boundary" limiting Gibbs state for the ferromagnetic Ising model. For thespecial case of regular trees, the problem of determining �c was open for two decades,and was �nally solved in 1995 by Bleher, Ruiz and Zagrebnov [12].The random spins f�vg that label the vertices of T as described above, can beconstructed from independent variables f�eg labeling the edges of T , as follows. Foreach edge e, let P[�e = �1] = � = 1� P[�e = 1]. Let �� be a uniformly chosen spin,and for any other vertex v let �v := ��Ye �e ; (64)



16. Reconstruction for the Ising Model on a Tree 53where the product is over all edges e on the path from � to v. Given �W = f�v : v 2 Wg,the strategy which maximizes the probability of correctly reconstructing ��, is to de-cide according to the sign of E(�� j �W ); with this strategy, the di�erence betweenthe probabilities of correct and incorrect reconstruction is�(T;W; �) = E���P(�� = 1 j �W )�P(�� = �1 j �W )��� : (65)Alternatively, �(T;W; �) can be interpreted as the total variation distance betweenthe conditional distributions of �W given �� = 1 and given �� = �1; see below. Thedependence between �� and �W is also captured by the mutual informationI(��; �W ) :=Xx;y P[�� = x; �W = y] log P[�� = x; �W = y]P[�� = x]P[�W = y] :Theorem 16.1 Let T be an in�nite tree with root �, and suppose its vertices areassigned random spins f�vg, using the ip probability � < 1=2 as in (64). Considerthe problem of reconstructing �� from the spins at the n'th level Tn of T .(i) If 1� 2� > br(T )�1=2 then infn�1�(T; Tn; �) > 0 and infn�1 I(��; �Tn) > 0.(ii) If 1� 2� < br(T )�1=2 then infn�1�(T; Tn; �) = 0 and infn�1 I(��; �Tn) = 0.The tail �eld of the random variables f�vgv2T contains events with probability strictlybetween 0 and 1 in case (i), but not in case (ii).Thus in the notation of (63), �c = (1�br(T )�1=2)=2. As mentioned above, this wasalready known when T is a b+1 - regular tree (for which br(T ) = b). Theorem 16.1 isconsiderably more general. Simple examples show that at criticality, when 1 � 2� =br(T )�1=2, asymptotic solvability of the reconstruction problem is not determined bythe branching number; in this case there is a sharp capacity criterion, proved in [75],that we will not develop here. To see the relevance of the quantity 1�2� appearing inTheorem 16.1, note the following equivalent construction of the random variables f�vg:Perform independent bond percolation on T with parameter  = 1�2� (the probabilityof open bonds), and independently assign to each of the resulting percolation clustersa uniform random spin (the same spin is assigned to all vertices in each cluster). Thisis a special case of the Fortuin-Kasteleyn random cluster representation of the Isingmodel (see, e.g., [32]); on a tree, it is elementary to verify the equivalence of thisrepresentation with the construction (64).The following two theorems contain estimates of reconstruction probability andmutual information, that imply Theorem 16.1.Theorem 16.2 Let T be a tree with root �, and let W be a �nite set of vertices in T .Given � 2 (0; 1=2], denote  := 1� 2�, and consider the electrical network obtained byassigning to each edge e of T the resistance (1� 2)�2jej. Then�(T;W; �)I(��; �W ) ) � 11 +R(�$ W ) ; (66)where R denotes e�ective resistance.
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+ � � � �+ + + +Figure 5: Majority vote can disagree with maximum likelihood.The proof of this theorem is based on reconstruction by weighted majority vote, i.e.,reconstruction according to the sign of an unbiased linear estimator of the root spin.We relate the variance of such an estimator to the energy of a corresponding unit owfrom � toW . We �nd it quite surprising that on any in�nite tree, reconstruction usingsuch linear estimators has the same threshold as maximum-likelihood reconstruction.Next, we present an upper bound on � and I(��; �W ). Say that a set of verticesW1 separates � from W if any path from � to W intersects W1. For a vertex v ofT , denote by jvj the number of edges on the path from v to �.Theorem 16.3 Let W be a �nite set of vertices in the tree T . For any set of verticesW1 that separates the root � from W , we have�(T;W; �)2 � 2�1� Yv2W1q1� 2jvj� � 2 Xv2W1 2jvj (67)and I(��; �W ) � Xv2W1 I(��; �v) � Xv2W1 2jvj : (68)In view of the mincut-maxow theorem, (68) is an upper bound on mutual informationin terms of the maximum ow in a capacitated network. Theorem 16.3 is proved bycomparing the given tree T to a \stringy tree" bT which has an isomorphic set of pathsfrom the root to the vertices of W1, but these paths are pairwise edge-disjoint. Weshow that �(T;W; �) � �( bT ;W1; �) by constructing a noisy channel that maps thespins on W1 in bT to the spins on W in T .Symmetric trees: Recall that a tree T is spherically symmetric if for everyn � 1, all vertices in Tn have the same degree. For such a tree, the e�ective resistancefrom the root to level n is easily computed, and we infer from Theorems 16.1-16.3that �2 + 2(1� 2) nXk=1 �2kjTkj ��1 � I(��; �Tn) � infk�n jTkj2k (69)and (1� 2�c)�2 = lim infn jTnj1=n.The example in Figure 5 shows that even on a regular tree, majority vote candisagree with maximum likelihood when the spin con�guration �Tn is given.Given the boundary data in Figure 5, the root spin �� is more likely to be �1than +1 provided that � is su�ciently small, since �� = +1 requires 4 spin ips, while�� = �1 requires only 3 spin ips.



16. Reconstruction for the Ising Model on a Tree 55Organization of the rest of the chapter.Next, we present background on the Ising model and some references to the statis-tical mechanics and genetics literatures. Then we infer Theorem 16.1 from Theorems16.2-16.3. After collecting some facts about mutual information and distances betweenprobability measures, we prove the conductance lower bound for reconstruction, The-orem 16.2, and the upper bound, Theorem 16.3. Extensions and unsolved problemsare discussed at the end of the chapter.BackgroundLet G be a �nite graph with vertex set V . In the ferromagnetic Ising model withno external �eld on G, the interaction strength J > 0 and the temperature t > 0determine a Gibbs distribution G = GJ;t on f�1gV which is de�ned byG(�) = Z(t)�1 exp(Xu�v J�u�v=t) ; (70)where the normalizing factor Z(t) is called the partition function. If the graph G is atree, then this is equivalent to the Markovian propagation description in the beginningof the chapter, for an appropriate choice of the error parameter �. Indeed, if u � vare adjacent vertices in a �nite tree with �u = �v, then ipping all the spins on oneside of the edge connecting u and v will multiply the probability in (70) by e�2J=t.Thus if we de�ne � by �1� � = e�2J=t ; (71)then the distributions de�ned by (64) and (70) coincide. For an in�nite graph G, aweak limit point of the Gibbs distributions (70) on �nite subgraphs fGng exhaust-ing G, (possibly with boundary conditions imposed on �@Gn), is called a (limiting)Gibbs state on G. See Georgii [30] for more complete de�nitions, using the notionof speci�cation.For any in�nite graph with bounded degrees, the limiting Gibbs state is uniqueat su�ciently high temperatures, i.e., the limit from �nite subgraphs exists and doesnot depend on boundary conditions. When G = T is a tree, this means thatlimn!1E[�� j �Tn � 1] = 0 (72)at high temperatures. Some graphs admit a phase transition: below a certain criticaltemperature, multiple Gibbs states appear and the limit in (72) is strictly positive.The critical temperature t+c for this transition on a regular tree T was determined in1974 by Preston [79]; his result was generalized in 1989 by Lyons [59] who showed thattanh(J=t+c ) = br(T )�1; in the equivalent Markovian description, the critical parameter�+c for an all + boundary to a�ect �� in the limit, satis�es 1� 2�+c = br(T )�1.In general, a Gibbs state is extremal (or \pure") i� it has a trivial tail, see Georgii([30], Theorem 7.7). The tree-indexed Markov chain (64) on an in�nite tree T is thelimit of the Gibbs distributions (70) on �nite subtrees, with no boundary conditionsimposed; hence it is called the free boundary Gibbs state on T . In 1975 Spitzer



56([82], Theorem 4) claimed that on a b+1 - regular tree T (b), the free boundary Gibbsstates are extremal at any temperature. A counterexample, due to T. Kamae, waspublished in 1977 (see Higuchi [42]). Kamae showed that the sum of spins on T (b)n ,normalized by its L2 norm, converges to a non-constant tail-measurable function,provided that 1�2� > b�1=2. In 1978, this result was put in a broader context by Mooreand Snell [69], who showed it followed from the 1966 results of Kesten and Stigum [51]on multi-type branching processes. Moore and Snell noted that it was open whetherthe free boundary Gibbs state on T (b) is extremal when b�1 < 1� 2� � b�1=2. Chayes,Chayes, Sethna and Thouless [14] successfully analyzed a closely related spin-glassmodel on Tb; by a gauge transformation, this is equivalent to the Ising model with i.i.d.uniform f�1g boundary conditions. Although these boundary conditions are quitedi�erent from a free boundary, they turn out to have the same critical temperature.Bleher, Ruiz and Zagrebnov [12] adapted the recursive methods of Chayes et al [14]to the extremality problem, and showed that the free boundary Gibbs state on T (b) isextremal whenever 1� 2� � b�1=2. Shortly thereafter, a more streamlined argumentwas found by Io�e [44]. Theorem 16.1 was �rst established in [24]. After learning ofthat result, Io�e [45] found an elegant alternative proof for the upper bound.Genetic reconstruction and parsimonyTree-indexed Markov chains as in the introduction have been studied in the Mathe-matical Biology literature by Cavender [13], by Steel and Charleston [84], and others.In that literature the two \spins" are often called \colors", and correspond to traitsof individuals, species, or DNA sequences. The \broadcasting errors" (color changesalong edges) represent mutations, and one attempts to infer traits of ancestors fromthose of an observable population.Proof of Theorem 16.1(i) From  = 1� 2� > br(T )�1=2 it follows thatR(�$1) := supn R(�$ Tn) <1when each edge e is assigned conductance 2jej; see (39) and Theorem 2.8. There-fore by (66),infn�1�(T; Tn; �) � infn�1 11 +R(�$ Tn) � 11 +R(�$1) > 0and similarly infn�1 I(��; �Tn) > 0, as asserted. In particular, �� is not indepen-dent of the tail �eld of f�vg, so this tail �eld is not trivial.(ii) If  = 1� 2� < br(T )�1=2 then inf�Pv2� 2jvj = 0, so Theorem 16.3 implies thatinfn�1�(T; Tn; �) = 0 and infn�1 I(��; �Tn) = 0.Next, �x a �nite set of vertices W0. For each w 2 W0 and n > jwj, denote byTn(w) the set of vertices in Tn which connect to � via w. Then Lemma 16.4(iii)



16. Reconstruction for the Ising Model on a Tree 57implies that for su�ciently large n,I(�W0; �Tn) � Xw2W0 I(�W0 ; �Tn(w)) = Xw2W0 I(�w; �Tn(w)) ; (73)since the conditional distribution of �Tn(w) given �W0 is the same as its condi-tional distribution given �w.For any �nite W0, the right-hand side of (73) tends to 0 as n ! 1; It followsthat the tail of f�vg is trivial. 2Mutual Information: De�nition and PropertiesLet X; Y be random variables de�ned on the same probability space which take�nitely many values. The entropy of X is de�ned byH(X) := �Xx P[X = x] logP[X = x]and the mutual information I(X;Y ) between X and Y is de�ned to beI(X;Y ) := H(X) +H(Y )�H(X; Y ) =Xx;y P[X = x; Y = y] log P[X = x; Y = y]P[X = x]P[Y = y] :We collect a few basic properties of mutual information in the following lemma. See,e.g., Cover and Thomas [15] x2.Lemma 16.4 (i) I(X;Y ) � 0, with equality i� X and Y are independent;(ii) Data processing inequality: If X 7! Y 7! Z form a Markov chain (i.e., X andZ are conditionally independent given Y ), then I(X;Y ) � I(X;Z).(iii) Subadditivity: If Y1; : : : ; Yn are conditionally independent given X, thenI(X; (Y1; : : : ; Yn)) � Pnj=1 I(X;Yj).The assumption of conditional independence in part (iii) cannot be omitted, as isshown by standard examples of 3 dependent random variables which are pairwiseindependent (e.g., Boolean variables satisfying X = Y1 + Y2 mod 2). Nevertheless,inequality (68) in Theorem 16.3 extends (iii) to a setting where this conditional inde-pendence need not hold.Distances between probability measuresLet �+ and �� be two probability measures on the same space 
. (In our applica-tion 
 is �nite, but it is convenient to use notation that applies more generally.) Set� := �++��2 and denote f = d�+d� , g = d��d� , so that f+g � 2 identically. Suppose that �is uniform in f�1g, and X has distribution ��. Inferring � from X is a basic problemof Bayesian hypothesis testing. (In our application, � will be the root spin ��, and Xwill be some function of the spin con�guration �W on a �nite vertex set W .)There are several important notions of distance between �+ and ��, that can berelated to this inference problem:



58 � Total variation distance DV (�+; ��) := 12 R jf � gj d� can be interpretedas the di�erence between the probabilities of correct and erroneous inference.Indeed, among all functions b� of the observations, the probability of error P[b� 6=�] is minimized by taking b� = 1 if f(X) � g(X), and b� = �1 otherwise. Wethen have� := P[b� = �]�P[b� 6= �] = 12� Z b�f d� � Z b�g d�� = 12 Z jf � gj d� : (74)� �2 distance D�(�+; ��) := 12fR (f � g)2 d�g1=2 represents the L2 norm of theconditional expectation E(� jX) = 12(f(X)� g(X)).� Mutual information between � and X,DI(�+; ��) := I(�;X) = 12 Z (f log f + g log g) d� (75)is a symmetrized version of the Kullback-Leibler divergence (see Vajda [86]).� The Hellinger distanceDH(�+; ��) := Z (qf �pg)2 d� = 2�1� Z qfg d�� : (76)derives its importance from the simple behavior of the Hellinger integralsIntH(�+; ��) := Z qfg d�for product measures:IntH(�+ � �+ ; �� � ��) = IntH(�+; ��)IntH(�+; ��) : (77)These distances appear in di�erent sources under di�erent names and with di�erentnormalizations. We collect here some well known inequalities between them, that willbe useful below. For more on this topic, see, e.g., Le Cam [56] or Vajda [86].Lemma 16.5 With the notation above,(i) D2� � DV � D� � pDH(ii) D2� � DI � 2D2�(iii) If �+ and �� are measures on IR, thenn Z xd(�+ � ��)o2 = n Z x[f(x)� g(x)] d�o2 � 4 Z x2 d� �D2� :Proof.



16. Reconstruction for the Ising Model on a Tree 59(i) The left-hand inequality follows from jf(x)�g(x)j � 2, and the middle inequalityfrom Cauchy-Schwarz. The right-hand inequality follows from the identity f �g = (pf �pg) � (pf +pg) and the concavity relation pf+pg2 � qf+g2 = 1.(ii) Setting  = (f � g)=2, the assertion follows from the pointwise inequalities 22 � 1 +  2 log(1 +  ) + 1�  2 log(1�  ) �  2 : (78)Here the left-hand inequality is veri�ed for  2 [0; 1) by comparing secondderivatives, and the right-hand inequality follows from log(1 + y) � y.(iii) This is just the Cauchy-Schwarz inequality. 2Finally, we interpret the data processing inequality in terms of distances. Supposethat we are given transition probabilities on the state space, i.e., a stochastic matrixM (the entries of M are nonnegative and the row sums are all 1). Write M��(y) :=PxM(x; y)�(x) : Then Lemma 16.4 (ii) implies thatDI(M��+;M���) � DI(�+; ��) :An analogous inequality holds for total variation:DV (M��+;M���) = 12Xy jM��+(y)�M���(y)j� 12Xy Xx M(x; y)j�+(x)� ��(x)j= 12Xx j�+(x)� ��(x)j = DV (�+; ��) : (79)Conductance lower bounds: Proof of Theorem 16.2Recall that each edge e was assigned the resistanceR(e) := (1� 2)�2jej : (80)Say that a set of vertices W is an antichain if no vertex in W is a descendant ofanother.Lemma 16.6 Let W be a �nite antichain in T . For any unit ow � from � to W ,the weighted sum S� := Xv2W �(v)�vjvj (81)



60satis�es E[S� j ��] = �� andE[S2�] = E[S2� j ��] = 1 +Xe R(e)�(e)2 : (82)Consequently, min� E[S2�] = 1 +R(�$W ) ; (83)and the minimum is attained precisely when � is the unit current ow from � to W .Proof. From the product representation (64), we infer thatE[�v j ��] = ��jvjfor any vertex v. The formula for E[S� j ��] follows by linearity. For any two ver-tices v; w in T , denote by path(v; w) the path from v to w. Also, write path(v) forpath(�; v). Clearly, E[�v�w] = jpath(v;w)j = jvj+jwj�2jv^wj ; (84)where v ^ w, the meeting point of v and w, is the vertex farthest from the root �on path(v) \ path(w). The percolation representation can also be invoked to justify(84).It is now easy to determine the second moment of S�:E[S2�] = Xv;w2W �(v)�(w)jvjjwj E[�v�w] = Xv;w2W �(v)�(w)2jv^wj ; (85)Next, insert the identity �2juj = 1 + Xe2path(u)R(e)with u = v ^w, into (85). Changing the order of summation, and using the fact thatW is an antichain, we obtainE[S2�] = 1 +Xe R(e) Xv;w2W 1fe2path(v^w)g�(v)�(w) : (86)Since path(v ^ w) = path(v) \ path(w) andXv;w2W 1fe2path(v^w)g�(v)�(w) = � Xv2W 1fe2path(v)g�(v)�� Xw2W 1fe2path(w)g�(w)� = �(e)2;(86) is equivalent to (82). Finally, (83) follows from Thomson's principle. 2Proof of Theorem 16.2: We may assume that W is an antichain. (Otherwise,remove from W all vertices which have an ancestor in W .) Let � be the unit currentow from � to W for the resistances R(e) as in the preceding lemma, and let S� bethe weighted sum (81). In order to apply Lemma 16.5, denote by �+ the conditional
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Figure 6: A tree T and the corresponding stringy tree bT .distribution of S� given that �� = 1; de�ne �� analogously by conditioning that�� = �1, so that � = (�+ + ��)=2 is the unconditioned distribution of S�. We thenhave by Lemma 16.5(iii) thatD2�(�+; ��) � n R xd(�+ � ��)o24 R x2 d� = (E[S� j �� = 1]� E[S� j �� = �1])24E[S2�] :Applying Lemma 16.6, we deduce thatD2�(�+; ��) � 11 +R(�$W ) : (87)By Lemma 16.5, the di�erence � = �(T;W; �) between the probabilities of correctand incorrect reconstruction, satis�es � = DV (�+; ��) � D2�(�+; ��), and the mutualinformation between �� and �W also satis�es I(��; �W ) = DI(�+; ��) � D2�(�+; ��).In conjunction with (87), this completes the proof. 2Mincut upper bound: Proof of Theorem 16.3De�nition. A noisy tree is a tree with ip probabilities labeling the edges. Thestringy tree bT associated with a �nite noisy tree T is the tree which has the same setof root-leaf paths as T but in which these paths act as independent channels. Moreprecisely, for every root-leaf path in T , there exists an identical (in terms of length andip probabilities on the edges) root-leaf path in bT , and in addition, all the root-leafpaths in bT are edge-disjoint.Theorem 16.7 Given a �nite noisy tree T with leaves W , let bT , with leaves cW androot �̂, be the stringy tree associated with T . There is a channel which, for � 2 f�1g,transforms the conditional distribution � bW j (��̂ = �) into the conditional distribution�W j (�� = �). Equivalently, we say that bT dominates T .
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� ��
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Figure 7: � is dominated by b�.Remark A channel is formally de�ned as a stochastic matrix describing the con-ditional distribution P(Y jX) of the output variable Y given the input X, see [15].Often a channel is realized by a relation of the form Y = f(X;Z), where f is a de-terministic function and Z is a random variable (representing the \noise") which isindependent of X.Proof: We only establish a key special case of the theorem: namely, that the tree� shown in Figure 7, is dominated by the corresponding stringy tree b�. The generalcase is derived from it by �rst allowing the ip probabilities to vary from edge to edge,and then applying an inductive argument; see [25] for details.Given 0 � � � 1, to be speci�ed below, we de�ne the channel as follows:��1 = b�1��2 = ( b�2 with probability �b�1 with probability 1� �To prove that (b��; ��1; ��2) has the same distribution as (��; �1; �2), it su�ces to showthat the means of corresponding products are equal. (This is a special case of the factthat the characters on any �nite Abelian group G form a basis for the vector space ofcomplex functions on G.) By symmetryE(��) = E(�1) = E(�2) = E(���1�2) = E(b��) = E(��1) = E(��2) = E(b����1��2) = 0and thus we only need to check pair correlations. Clearly, E(b����1) = E(���1) andE(b��b�1) = 2, whence E(b����2) = 2 = E(���2) for any choice of �. Finally, sinceE(��1 b�2) = 4 < 2 = E(�1�2) andE(��1 b�1) = 1 > 2 ;we can choose � 2 [0; 1] so that E(��1��2) = E(�1�2); explicitly,� = (1� 2)=(1� 4) : (88)



16. Reconstruction for the Ising Model on a Tree 63This proves that b� dominates �. 2Proof of Theorem 16.3: We �rst prove (68). Since W1 separates � from W , thedata processing inequality (Lemma 16.4 (ii)) yields I(��; �W ) � I(��; �W1). Let T1 bethe tree obtained from T by retaining only W1 and ancestors of nodes in W1. Let cT1be the stringy tree associated with T1. From Theorem 16.7 applied to T1 and the dataprocessing inequality, we obtain I(��; �W1) � I(��̂; � bW1). Since the spins on leaves ofcT1 are conditionally independent given ��̂, subadditivity (Lemma 16.4 (iii)) givesI(��̂; � bW1) � Xv̂2 bW1 I(��̂; �v̂) :But due to the de�nition of the stringy tree, the mutual information between ��̂ and�v̂ is identical to the mutual information between �� and �v in T1, hence the leftinequality in (68).Since E(���v) = jvj for each v, the right-hand inequality in (68) follows from theright-hand inequality in (78).We now turn to the total variation inequality (67). Recall that �(T;W; �), thedi�erence between the probabilities of correct and incorrect reconstruction, equalsDV (�W+ ; �W� ), the total variation distance between the two distributions of the spinson W given �� = �1.By (79), Theorem 16.7, and Lemma 16.5,DV (�W+ ; �W� ) � DV (�W1+ ; �W1� ) � DV (� bW1+ ; � bW1� ) � rDH(� bW1+ ; � bW1� ) :Now, DH(� bW1+ ; � bW1� ) on the stringy tree cT1 is easily calculated using the mul-tiplicative property of Hellinger integrals: � bW1+ is just the product over w 2 cW1of �w+, the distribution of �w given �� = 1, and similarly � bW1� = Qw �w�. SinceIntH(�w+; �w�) = q1� 2jwj, the left-hand inequality in (67) follows; the right-handinequality there is a consequence of the standard inequality Q(1� xj) � 1�Pxj. 2Remarks and unsolved problems1. Reconstruction at criticality. It is shown in [12, 44] that on in�nite regulartrees, limn�(T; Tn; �c) = 0. On general trees, Theorem 16.2 implies that �nitee�ective resistance from the root to in�nity (when each edge at level ` is assignedthe resistance (1�2�)�2`) is su�cient for limn�(T; Tn; �) > 0. In [75], a recursivemethod is used to show this condition is also necessary.2. Multi-colored trees and the Potts model. The most natural generaliza-tion of the two-state tree-indexed Markov chain model studied in this chapterinvolves multicolored trees, where the coloring propagates according to any �nitestate tree-indexed Markov chain. For instance, if this Markov chain is de�nedby a q� q stochastic matrix where all entries o� the main diagonal equal �, then



64 the q-state Potts model arises. The proof of Theorem 16.2 extends to generalMarkov chains, and shows that the tail of the tree-indexed chain is nontrivialif br(T ) > ��22 , where �2 is the second eigenvalue of the transition matrix (e.g.for the q-state Potts model, �2 = 1� q�). However, unpublished calculations ofE. Mossel indicate that this lower bound is not sharp in general. Furthermore,we do not know a reasonable upper bound on mutual information between rootand boundary variables. In particular, it seems that the critical parameter fortail triviality in the Potts model on a regular tree is not known.3. An information inequality. Theorem 16.3 implies that the spins in theferromagnetic Ising model on a tree satisfyI(�v; �W ) � Xw2W I(�v; �w) ;for any vertex v and any �nite set of vertices W . Does this inequality hold onother graphs as well?More generally, are there natural assumptions (e.g., positive association) onrandom variables X; Y1; : : : Yn that imply the inequality I(X; (Y1; : : : ; Yn)) �Pnj=1 I(X; Yj) ?17 Unpredictable Paths in Z and EIT in Z3The goal of this chapter is to complete the proof of Theorem 11.1, by exhibiting aprobability measure on directed paths in Z3 that has exponential intersection tails.We construct the required measure in three dimensions from certain nearest-neighborstochastic processes on Z that are \less predictable than simple random walk".For a sequence of random variables S = fSngn�0 taking values in a countable setV , we de�ne its predictability pro�le fPRES(k)gk�1 byPRES(k) = supP[Sn+k = x j S0; : : : ; Sn] ; (89)where the supremum is over all x 2 V , all n � 0, and all histories S0; : : : ; Sn.Thus PRES(k) is the maximal chance of guessing S correctly k steps into thefuture, given the past of S. Clearly, the predictability pro�le of simple random walkon Z is asymptotic to Ck�1=2 for some C > 0.Theorem 17.1 (Benjamini, Pemantle, and Peres 1998) For any � < 1 thereexists an integer-valued stochastic process fSngn�0 such that jSn � Sn�1j = 1 a.s. forall n � 1 and PRES(k) � C�k�� for some C� <1; for all k � 1 : (90)After Theorem 17.1 was proven in BPP (1998), H�aggstr�om and Mossel (1998) con-structed processes with lower predictability pro�le. They showed that if f is non-decreasing and Pk (f(k)k)�1 < 1, then there is a nearest{neighbor process S on Z



17. Unpredictable Paths in Z and EIT in Z3 65with PRES(k) � Cf(k)k�1. (For example, f(k) = log1+�(k) satis�es this summabilitycondition.)Ho�man (1998) proved that this result is sharp: if a nondecreasing function fsatis�es Pk(f(k)k)�1 = 1, then there is no nearest{neighbor process on Z withpredictability pro�le bounded by O(f(k)k�1).We prove Theorem 17.1 using the Ising model on a tree. We follow H�aggstr�om andMossel (1998), who improved the original argument from BPP (1998). The followinglemma is the engine behind the proof. Let T be the b{adic tree of depth N , and �x0 < � < 1=4. We will assign to the vertices of T �1 labels f�(v)gv2T according to anIsing model (see Chapter 16). For the root �, set �(�) = 1, and for a vertex w withparent v, let �(w) = ( �(v) with probability 1� ���(v) with probability � :Lemma 17.2 Denote by YN := Pv2TN �(v) the sum of the spins at level N . Thereexists Cb <1 such that for all N � 1 and all x 2 Z,P[YN = x] � Cb�[b(1� 2�)]N :Proof. By decomposing the sum YM+1 into b parts corresponding to the subtrees ofdepth M rooted at the �rst level, we getYM+1 = bXj=1 �(vj)Y (j)M ;where f�(vj)gbj=1 are b i.i.d. spins with�(vj) = ( +1 with probability 1� ��1 with probability � ;and fY (j)M gbj=1 are i.i.d. variables with the distribution of YM , independent of thesespins. Consequently, the characteristic functionsbYM(�) = E(ei�YM )satisfy the recursion bYM+1(�) = ((1� �) bYM(�) + � bYM(��))b= (< bYM(�) + i(1� 2�)= bYM(�))b (91)where < denotes real part, and = imaginary part. For �n(�) := arg bYn(�), de�neJn := n0 � � � �2 : �k(�) < �2b; k = 0; � � � ; n� 1oand In := Jn n Jn+1 :



66 We will evaluate the integral of bYN(�) over (0; �=2] by using the decomposition[0; �2 ] =  N�1[k=0 Ik![ JN :Rewrite (91) as bYM+1(�) = j bYM(�)jb[cos �M(�) + i(1� 2�) sin �M(�)]b; (92)and infer, for 0 � �M(�) � �2b , that�M+1(�) = b arctan �(1� 2�) tan �M(�)�:Since arctan is concave in [0;1) and arctan 0 = 0,arctan �(1� 2�)�� � (1� 2�) arctan(�)for any � � 0. ThereforeIf 0 � �M (�) � �2b ; then �2 � b�M (�) � �M+1(�) � b(1� 2�)�M(�): (93)If � 2 In, then applying (93) for M = n� 1 shows that�2 � �n(�) � �2b : (94)Using (92) with M = n together with (94), we �nd that for � 2 In,j bYn+1(�)j � � cos2( �2b) + (1� 2�)2 sin2( �2b)� b2 � �1� 2� sin2( �2b)� b2 � e�%�b ; (95)where % := sin2( �2b). Inductive use of (92) for � 2 In and N > n givesj bYN(�)j � e�%�bN�n : (96)Since �0(�) � �, (93) implies that �k(�) � bk(1 � 2�)kj�j for � 2 Jn and k � n.Therefore jInj � jJnj � �2bn(1� 2�)n ; (97)By (96), 12� Z ��� j bYN(�)j d� = 2� Z �20 j bYN(�)j d� � 2��N�1Xk=0 jIkje�%�bN�k + jJN j�:Inserting (97) yields12� Z ��� j bYN(�)j d� � 1(1� 2�)N �N�1Xk=0 b�ke�%�bN�k + b�N�: (98)



17. Unpredictable Paths in Z and EIT in Z3 67In order to evaluate the sum in the right hand side of (98), we de�ner = maxfk : %�bN�k > 1g :Separating the contributions of k � r and k < r, we obtain thatN�1Xk=r b�ke�%�bN�k + b�N � NXk=r b�k � b�r 1Xk=0 b�k (99)and r�1Xk=0 b�ke�%�bN�k � r�1Xk=0 b�ke�br�k � b�r 1Xk=0 bke�bk : (100)Furthermore, since %�bN�r�1 � 1, we have thatb�r � 1%�bN�1 : (101)Combining (98), (99), (100), and (101) we see that12� Z ��� j bYN(�)j d� � CbbN�(1� 2�)N ;where Cb = b(P1k=0 b�k +P1k=0 bke�bk)%and % was de�ned after (95). Using the inversion formula we conclude thatP[YN = x] = 12� Z ��� bYN(�)e�i�x d� � 12� Z ��� j bYN(�)j d� � CbbN �(1� 2�)N : 2Proof of Theorem 17.1. For all N > 0, we will de�ne a process S up to timeM = 2N with the required properties. A process de�ned for all times will then existby consistency of the �nite dimensional distributions.Fix a small � > 0. We assign spins f�vg to the vertices of the binary tree T ofdepth N , according to the Ising model (described before Lemma 17.2) with error rate�, but we take �� to be random uniform in f�1g, rather than �xing it. Enumeratethe vertices at depth N from left to right as v0; v1; : : : ; vM , and setSn = nXk=1�(vk):We claim that fSng has the desired predictability pro�le. To see this, �x 0 � n < Mand 0 < k � M � n. Observe that Sn+k = Sn +Pn+kj=n+1 �(vj). If we now take theunique h satisfying 2h+1 � k < 2h+2, there will exist a vertex w at level N � h forwhich all of the descendants at depth N are in the set fvn+1; : : : ; vn+kg. It follows (by



68conditioning on the spins of all vi which are not descendants of w and on the spin ofw) that supx2ZP[Sn+k = xjS0; : : : ; Sn] � supx2ZP[Yh = x]: (102)Applying Lemma 17.2 and (102) we getPRES(k) � Cb2h�(1� 2�)h ; (103)and the proof is complete. 2The process S serves as a building block for Zd-valued processes whose predictabil-ity pro�les are controlled.Corollary 17.3 For each 12 < � < 1, there is a Zd{valued process � = ��;d such thatthe random edge sequence f�n�1�ngn�1 is in �1, and8k � 1 PRE�(k) � C(�; d)k�(d�1)� : (104)Proof. Let W rk = (S(r)k + k)=2 for r = 1; : : : ; d� 1, where S(r) are independent copiesof the process described in Theorem 17.1. For r = 1; : : : ; d� 1, de�ne clockstr(n) := bn + d� 1� rd� 1 c ;and let D(n) := n�Pd�1r=1W rtr(n) :Write �n = (W 1t1(n); : : : ;W d�1td�1(n); D(n)). It is then easy to see thatPRE�(k) � "PRES(b kd� 1c)#d�1 �  C�kd� 1!��(d�1) � C(�; d)k��(d�1) : 2The last ingredient we need to prove that Z3 admits paths with exponential inter-section tails is the following.Lemma 17.4 Let f�ng be a sequence of random variables taking values in a countableset V . If the predictability pro�le (de�ned in (89)) of � satis�es P1k=1 PRE�(k) <1,then there exist C < 1 and 0 < � < 1 such that for any sequence fvngn�0 in V andall ` � 1, P[#fn � 0 : �n = vng � `] � C�` : (105)Proof. Choose m large enough so that P1k=1 PRE�(km) = � < 1, whence for anysequence fvngn�0 ,Ph9k � 1 : �n+km = vn+km ����0; : : : ;�ni � � for all n � 0 : (106)If n is replaced by a stopping time � and the �{�eld generated by �0; : : : ;�n isreplaced by the usual stopping time �-�eld, then (106) remains valid. This can be



18. Tree-Indexed Processes 69seen by decomposing the probability according to the value of � , and checking thatthe bound holds in each case. Hence, it follows by induction on r � 1 that for allj 2 f0; 1; : : : ; m� 1g, P[#fk � 1 : �j+km = vj+kmg � r] � �r : (107)If #fn � 0 : �n = vng � ` then there must be some j 2 f0; 1; : : : ; m� 1g such that#fk � 1 : �j+km = vj+kmg � `=m� 1 :Thus the inequality (105), with � = �1=m and C = m��1, follows from (107). 2Proof of Theorem 11.1 for d = 3: The process � constructed in Corollary 17.3with � > 1=2 and d = 3 satis�es Pk PRE�(k) < 1, and hence by Lemma 17.4, thedistribution � of the edge sequence f�n�1�ng1n=1 has exponential intersection tails.218 Tree-Indexed ProcessesLabel the vertices of a tree � by a collection of i.i.d. real random variables fXvgv2�.Given � and the collection fXvgv2�, we de�ne the tree-indexed random walkfSvgv2� by Sv = Xw�vXw ;where w � v means that v is a descendant of w.The simple case where � is a binary tree and Xv = �1 with probabilities p and1� p was considered by Dubins and Freedman (1967).We want to determine the speed of tree-indexed random walks, or at least recognizewhen the speed is positive.There are several ways to de�ne speed for tree-indexed walks and the answersdepend on the de�nition used. Here are three notions of speed.De�nitions of Speed� Cloud Speed scloud := limn 1n maxjvj=n Sv ;� Burst Speed sburst := sup�2@� limv2� Svjvj ;� Sustainable Speed ssust := sup�2@� limv2� Svjvj ;



70These speeds are a.s. constant by Kolmogorov's zero-one law. The �rst two werestudied by Benjamini and Peres (1994b), while the third was studied earlier by Lyonsand Pemantle (1992).Assumptions. Throughout this chapter we will assume that each variableXv is not a.s. constant, E[Xv] = 0 and E[e�Xv ] <1 for all � > 0 : (108)These assumptions can be relaxed, but they make the ideas of the proofs more trans-parent.In general, scloud � sburst � ssust : The following examples shows that the inequali-ties may be strict.Example 18.1 Consider the 3-1 tree � in Example 2.6. It follows from Theorem18.4 below that on this treescloud > 0 but sburst = ssust = 0 :Example 18.2 Let n1 < n2 < : : : be a sequence of positive integers. Construct atree � as follows: The �rst n1 levels of � are as in the 3-1 tree. To each vertex v inthe n1-th level of �, attach a copy of the �rst n2 � n1 levels of the 3{1 tree, with vas its root. Continue by attaching a copy of the �rst nk+1 � nk levels of the 3-1 treeto each vertex at level nk of �. For any choice fnig, the tree � has positive packingdimension; in particular, dimM(@�) = dimP (@�) = log 2. However, if the ni increasesu�ciently fast, then the Hausdor� dimension of @� is 0, as in the 3-1 tree. Thus inthis case Theorem 18.4 yields that scloud � sburst > 0, but ssust = 0.Notation. Denote by f ~Sngn�0 the ordinary random walk indexed by the non-negativeintegers with i.i.d. increments distributed like Xv. Let I(�) be the rate function forthe random walk f ~Sng, de�ned byI(a) = limn!1 1n logP( ~Sn > na) (a > 0) :Theorem 18.3 (Hammersley (1974), Kingman (1975), Biggins (1977)) Let� be a GW tree with mean m > 1. Suppose that the vertices of � are labeled by randomvariables Xv that satisfy (108). On the event that � survives, a.s. all speeds coincideand equal s� := supfs : I(s) � logmg.Proof. The inequality scloud � s� is easy: By the de�nition of s�, for any � > 0 thereis � > 0 such that I(s� + �) > logm+ �. Therefore,P( ~Sn > n(s� + �)) � e�n(logm+�) = m�ne�n� :Consequently,P(Sv > n(s� + �) for some v 2 �n j non-extinction ) � mn1� qm�ne�n� ;



18. Tree-Indexed Processes 71where q is the probability of extinction. The proof is concluded by invoking theBorel-Cantelli Lemma.For the reverse inequality, let a < s� be given. Using the strict monotonicity ofthe rate function and the de�nition of s�, choose � so that I(a)+2� < logm. For eachk � 1 and M 2 [1;1], we de�ne a new embedded branching process as follows: startfrom the root of �, and take the set of o�spring �(v; k;M) of a vertex v to consist ofall its descendants w in � that satisfy� jwj = jvj+ k in � ;� Sw > Sv + ka.� Su > Sv �M for all u on the path from v to w.(HereM =1means the last requirement holds automatically.) Since Ej�(v; k;1)j =mkP[ ~Sk > ka], the de�nition of I yields that for su�ciently large k,Ej�(v; k;1)j � mke�k[I(a)+�] > 2 :By choosing M large, we can ensure that the embedded process has mean o�springEj�(v; k;M)j � 12mke�k[I(a)+�] > 1 :Thus for large k;M , the embedded process is supercritical. Therefore ssust > a withpositive probability. Since f�: � �nite or ssust � a on �gis an inherited property, Proposition 3.2 implies that P[ssust > a j� 6= ;] = 1. Hence,given survival, we have that a.s.,s� � scloud � sburst � ssust � s� : 2We have already encountered two of the following de�nitions:� The upper Minkowski dimension of @�, written dimM(@�), is log gr(�).� The Hausdor� dimension of @�, written dimH(@�), is log br(�).� The Packing dimension of @�, is de�ned bydimP (@�) := inf f supi dimM(@�(i)) g;where the in�mum extends over all countable collections f�(i)g of subtrees of �such that @� � Si @�(i).



72Theorem 18.4 Suppose that � is an in�nite tree without leaves, and the vertices of� are labeled by random variables Xv that satisfy (108). Then(i) scloud > 0 , dimM(@�) > 0.(ii) sburst > 0 , dimP (@�) > 0.(iii) ssust > 0 , dimH(@�) > 0.Proof. (i) The implication \)" is easy: By Cram�er's theorem on large deviations,(108) implies that I(a) > 0 for any a > 0. ThereforeXn P(Sv > na for some v 2 �n) �Xn j�njP( ~Sn > an) �Xn j�nj e�nI(a) :which is �nite since dimM(@�) = 0 means that � has subexponential growth. Thusby Borel-Cantelli P(fSv > na for some v 2 �ng i.o. ) = 0for any a > 0.For the implication \(", observe that because we assumed � has no leaves, thereexists at least one descendant in �2n for each v 2 �n. Denote the leftmost suchdescendant by w(v). The j�nj paths from vertices v 2 �n to the corresponding w(v)are disjoint. Since dimM(@�) > 0, if we choose � su�ciently small, thenj�nj > en[I(2�)+2�] for in�nitely many n (109)By Cram�er's theorem, P( ~Sn > 2n�) > e�n[I(2�)+�] for large n.Write �0n = fv 2 �n:Sv > �n�g. By the Weak Law of Large Numbers,j�nj�1Ej�0nj = P( ~Sn > �n�) �! 1and therefore P(j�0nj < j�nj=2) �! 0. DenoteAn := f9w 2 �2n : Sw > n�g :ThenP[Acn] � P(j�0nj < j�nj=2) +P(j�0nj � j�nj=2 and Sw(v) � Sv � 2n� 8 v 2 �0n) :The right-hand side is at mostP(j�0nj < j�nj=2) + �1� e�n[I(2�)+�]�j�nj=2 ;which tends to zero along a subsequence of n values by (109). Taking stock, we inferthat P(An i.o.) � limnP(An) = 1, so scloud � �=2 a.s.



18. Tree-Indexed Processes 73(ii) The implication \)" is easy again: if dimP (@�) = 0, then given � > 0 we can�nd a cover Si @�(i) of @� with dimM(@�(i)) � � for all i. As in the proof of (i),scloud(�(i)) � �0for some �0 and all i. Whencesburst(�(i)) � scloud(�(i)) � �0for all i and so sburst(�) � �0. Here �0 can be made arbitrarily small because � may betaken arbitrarily small.For the reverse implication \(", let d = dimP (@�) > 0. Pick � > 0 small and let�0 = fv 2 �: dimP (�(v)) > d� �g ;here �(v) = fw 2 �:w � v or w � vg.Now � 2 �0, so �0 6= ; and dimP (@�0) > d� �. Actually, it is easy to see from thede�nition of packing dimension thatdimM(@�0(v)) > d� � for all v 2 �0 :By (i) and the de�nition of cloud-speed, with probability one we can �nd for eachv 2 �0 a vertex w = f(v) 2 �0(v) with w > v and Sw > jwj� for some �xed � > 0.The sequence �; f(�); f(f(�)); : : : is a sequence of vertices fvjgj�0 along a ray of �such that Svijvij > � ; for all i � 1 :(iii) was proved by Lyons and Pemantle (1992) in the following sharp form:I(ssust) = log br(�) = dimH(@�) :(For the other speed notions there is no analogous exact formula.)The inequality I(ssust) � log br(�) is proved using the �rst-moment method (seethe proof of Theorem 5.4). For the other inequality, �x a so that I(a) < dimH(@�)and then choose k such that P� ~Sk > ka� > br(�)k. Consider a compressed tree �[k]whose `th level is the k`th level of �, with the induced partial order. It is easy tosee that dimH (@�[k]) = k dimH(@�). De�ne a general percolation on �[k] in whichthe edge !vw is retained if Sw � Sv > ka. This general percolation process is notindependent; however, for each �xed k, it is quasi-independent. By proposition 7.1,this percolation survives with positive probability, whence ssust � a. It follows thatI(ssust) � log br(�). 2Exercise 18.5 Suppose that � is an in�nite tree without leaves, and its vertices arelabeled by i.i.d. variables Xv � N(0; 1). Denote d = dimM(@�). Prove thatqd=2 � scloud � p2dand both bounds can be achieved.



74Hint: Use the ideas in the proof of (i) and optimize, or see [9]. These bounds weresharpened by Benassi (1996).Consider an in�nite tree � again, label its vertices by i.i.d. real-valued randomvariables fXvgv2�, and let fSvgv2� be the corresponding tree-indexed random walk.The following question is mostly open.Open Problem 2 (Bouncing Rays) Suppose that there a.s. exists a ray � 2 @�such that lim infv2� Sv > �1. Must there a.s. exist a ray �0 2 @� with limv2�0 Sv = +1?The only cases for which the answer is known (Pemantle and Peres 1995a) are when� Xv = �1 with probability 1=2 each, or when� Xv � N(0; 1).In these cases there is an exact capacity criterion on the tree for the property to hold.Even in these special cases the proofs are complicated.19 Recurrence for Tree-Indexed Markov ChainsThis chapter is based on Benjamini and Peres (1994a). For a tree � and a vertexv, denote by �v the subtree consisting of v and its descendants. We are given acountable state-space G and a set of transition probabilities fp(x; y): x; y 2 Gg. theinduced �-indexed Markov chain is a collection of G-valued random variables fSvgv2�,with some initial state S� := x0 2 G and �nite-dimensional distributions speci�ed bythe following requirement: if w 2 � and v is the parent of w, thenP�Sw = y j Sv = x ; Su for u =2 �v� = P(Sw = y j Sv = x) = p(x; y) :We may think of the state-space G as a graph, with vertices the elements of G andan edge between x and y i� p(x; y) > 0. If p = fp(x; y): x; y 2 Gg is irreducible, i.e.,for any x; y 2 G there exists an n such that pn(x; y) > 0, then the associated graph isconnected.De�nitions. A tree-indexed Markov chain is recurrent if it returns in�nitely oftento its starting point with positive probability:P(Sv = S� for in�nitely many v 2 �) > 0 :A stronger requirement is ray-recurrence: fSvgv2� is ray-recurrent ifP(9 � 2 @� : Sv = S� for in�nitely many v 2 �) > 0 :In general, recurrence does not imply ray-recurrence (even when G = Z3). Indeed,the 3-1 tree has exponential growth (which yields recurrence for G = Zd), yet it hasa countable boundary (which precludes ray-recurrence on any transient G).



20. Dynamical Percolation 75The probabilities in the de�nitions of recurrence and ray-recurrence may lie strictlybetween 0 and 1, even when the indexing tree is a binary tree. If G is a group and thetransition probabilities are G-invariant, then there are zero{one laws for both notionsof recurrence.Given a state space G, an irreducible stochastic matrix p = fp(x; y) : x; y 2 Ggand a �nite subset F of G, write �(pF ) for the spectral radius of the substochasticmatrix pF = fp(x; y): x; y 2 Fg. We then de�ne�(G; p) = supF �nite �(pF ) :Then P(9 � 2 @� with bounded trajectory) > 0 , br(�) > 1�(G; p) :Simple random walk on Z has spectral radius 1, but we can make a quantitativestatement on rays with bounded trajectories: For the �-indexed simple random walkon Z, br(�) > 1cos (�=(b+ 1))is su�cient for the existence of a ray with trajectory in f0; 1; : : : ; b�1g to have positiveprobability, and br(�) � 1cos (�=(b+ 1))is necessary.Finally, we note that recurrence of a �-indexed Markov chain on G is related toa comparison of the Minkowski dimension of � and the spectral radius of G, whileray-recurrence is related to a comparison of packing dimension and spectral radius.In particular, dimM(@�) < � log[�(G; p)] implies non-recurrence and dimP (@�) <� log[�(G; p)] implies non-ray-recurrence.More details on the notions described in this chapter, and some amusing examples,can be found in [8, 9]. Benjamini and Schramm [10] give an application of tree-indexedMarkov chains to a problem in discrete geometry.20 Dynamical PercolationThis chapter is based on H�aggstr�om, Peres, and Steif (1997).Consider Bernoulli(p) percolation on an in�nite graph G. Recall that each edge is,independently, open with probability p. As before, PG;p = Pp will denote this productmeasure. Write C for the event that there exists an in�nite open cluster. Recall thatby Kolmogorov's 0-1 law, the probability of C is, for �xed G and p, either 0 or 1. Asremarked previously, there exists a critical probability pc = pc(G) 2 [0; 1] such thatPp(C) = ( 0 for p < pc1 for p > pc:



76At p = pc we can have either Pp(C) = 0 or Pp(C) = 1, depending on G.In this chapter we consider a dynamical variant of percolation. Given p 2 (0; 1), wewant the set of open edges to evolve so that at any �xed time t � 0, the distributionof this set is Pp. The most natural way to accomplish this is to let the distributionat time 0 be given by Pp, and to let each edge change its status (open or closed)according to a continuous time, stationary 2-state Markov chain, independently of allother edges. For an edge e of G, write �t(e) = 1 if e is open at time t, and �t(e) = 0otherwise. The entire con�guration of open and closed edges at time t, denoted �t,can then be regarded as an element of X = f0; 1gE (where E is the edge set of G).The evolution of �t is a Markov process, and can be viewed as the simplest type ofparticle system. Each edge ips (changes its value) at rate�(�t; e) = ( p if �t(e) = 01� p if �t(e) = 1and the probability that two edges ip simultaneously is 0. Write 	G;p (or 	p) forthe underlying probability measure of this Markov process, and write Ct for the eventthat there is an in�nite cluster of open edges in �t. Since Pp is a stationary measurefor this Markov process, Fubini's theorem implies that8<: 	p( Ct occurs for Lebesgue a.e. t) = 1 if Pp(C) = 1	p(:Ct occurs for Lebesgue a.e. t) = 1 if Pp(C) = 0where :Ct denotes the complement of Ct. The main question studied here is thefollowing,Question 20.1 For which graphs can the quanti�er \for a.e. t" in the above state-ments be replaced by \for every t"?For p 6= pc, the answer is all graphs.Proposition 20.2 For any graph G we have8<: 	p( Ct occurs for every t ) = 1 if p > pc(G)	p(:Ct occurs for every t) = 1 if p < pc(G) : (110)Notation: For 0 � a � b <1 and any edge e of a graph G, we abbreviateinf[a;b] �(e) := inft2[a;b] �t(e):and write Cinf[a;b] for the event that there is an in�nite cluster of edges with inf [a;b] �(e) =1. Analogously, de�ne sup[a;b] �, and let Csup[a;b] be the event that there is an in�nitecluster of edges with sup[a;b] �(e) = 1.Proof. (i) Suppose p > pc. Let 0 < � < p� pc and observe that for every edge e,	pn inf[0;�] �(e) = 1o = p exp(�(1� p)�) > p� � > pc :



20. Dynamical Percolation 77Since the events n inf [0;�] �(e) = 1o are mutually independent as e ranges over theedges of G, it follows from the de�nition of pc that 	phCinf[0;�]i = 1 and therefore	p�Ct occurs for all t 2 [0; �]� = 1 :Repeating the argument for the intervals [k�; (k+1)�] with integer k and using count-able additivity, we obtain the supercritical part of the proposition.(ii) A similar argument proves that for p < pc there is never an in�nite open cluster.We take � 2 (0; pc � p) and �nd that	pn sup[0;�] �(e) = 1o = 1� (1� p) exp(�p�) < p+ p� < pc : (111)Therefore 	p�Csup[0;�]� = 0, whence there is a.s. no in�nite cluster for any t 2 [0; �].Countable additivity concludes the argument. 2At the critical value pc(G) the situation is more delicate.Theorem 20.3 There exists a graph G1 with the property that at p = pc(G) we havePG;p(C) = 0 but 	G;p� [t>0 Ct� = 1. (The latter probability is 0 or 1 for any graph.)There also exists a graph G2 such that for p = pc(G2) we have PG2;p(C) = 1 , yet	G2;p(\t>0Ct) = 0:The graphs for which percolation problems have been studied most extensively arethe lattices Zd, and trees. On Z2, the critical value pc is 1=2 and Ppc(C) = 0 (seeKesten (1980)); for d > 2 the precise value of pc(Zd) is not known. Hara and Slade(1994) showed that Ppc(C) = 0 for Zd if d � 19, and it is certainly believed that thisholds for all d.Theorem 20.4 Let G be either the integer lattice Zd with d � 19 or a regular tree.Then 	G;pc(:Ct occurs for every t) = 1:Remark. It is not known whether G = Z2 can be included in Theorem 20.4. Let �(p)denote the Pp-probability that the origin is in an in�nite open cluster. The proof ofTheorem 20.4 for G = Zd with d � 19 uses more information than just �(pc) = 0; italso uses that � has a �nite right derivative at pc. In Z2 it is known that �(pc) = 0,but Kesten and Zhang proved that the right derivative of � is in�nite at pc.Next, we consider dynamical percolation on general trees. In Chapter 14, we provedR. Lyons' criterion for Pp(C) > 0 in terms of e�ective electrical resistance (see (39));e�ective resistance is easy to calculate on trees using the parallel and series laws. Herewe obtain such a criterion for dynamical percolation.For an in�nite tree � with root �, as before we write �n for the set of verticesat distance exactly n from �, the nth level of �. Recall that a tree is sphericallysymmetric if all vertices on the same level have equally many children.



78Theorem 20.5 Let f�tg be a dynamical percolation process with parameter 0 < p < 1on an in�nite tree �. Assign each edge between levels n� 1 and n of � the resistancep�n=n. If in the resulting resistor network the e�ective resistance from the root toin�nity is �nite, then 	�;p-a.s. there exist times t > 0 such that � has an in�niteopen cluster, while if this resistance is in�nite, then a.s. there are no such times. Inparticular, if � is spherically symmetric, then	�;p([t>0Ct) = 1 if and only if 1Xn=1 p�nnj�nj <1 : (112)Recall R. Lyons' criterion for the percolation probability on a general tree � to bepositive: Suppose that 0 < p < 1 and assign each edge between levels n � 1 and nresistance p�n. Then P�;p(C) > 0 i� the resulting e�ective resistance from the rootto in�nity is �nite. Thus a spherically symmetric tree � with p = pc(�) 2 (0; 1), has	�;p([t>0Ct) = 1 but P�;p(C) = 0 i� the series in (112) converges but P1n=1 p�nj�nj =1.In the course of the proof of Theorem 20.5, we obtain bounds for the probabilitythat there exists a time t 2 [0; 1] for which there is an open path in �t from the root tothe nth level �n. For example, on the regular tree Tk with p = 1=k, this probability isbounded between constant multiples of 1= logn. (The probability under P1=k that anopen path exists from � to the nth level of Tk, is bounded between constant multiplesof 1=n; this follows from Kolmogorov's theorem on critical branching processes, seeAthreya and Ney (1972).) For a general tree these bounds, given in Theorem 20.9,can be expressed in terms of the e�ective resistance from the root to �n, and the ratioof the upper and lower bounds is an absolute constant.For a graph with 	G;p([t>0Ct) = 1 but PG;p(C) = 0, the set of percolating timesat criticality has zero Lebesgue measure, so it is natural to ask for its Hausdor�dimension. For spherically symmetric trees there is a complete answer.Theorem 20.6 Let p 2 (0; 1) and let � be a spherically symmetric tree. If the set oftimes ft 2 [0;1) : Ct occursg is a.s. nonempty, then 	p-a.s. this set has Hausdor�dimension sup n� 2 [0; 1] : 1Xn=1 p�nn��1j�nj <1 o :(Note that this series converges for � = 0 by (112). )Here are some interesting trees with 	T;p([t>0Ct) = 1 but PT;p(C) = 0:Example 20.7 Let � be the spherically symmetric tree where each vertex on leveln has 4 children if n = 1; 2; 4 : : : is a power of 2, and 2 children otherwise. Then it iseasily seen that n2n � j�nj � 2n2n for all n > 0. Combining Theorem 20.6 with theresult of R. Lyons quoted after Theorem 20.5, we see that 	1=2-a.s. the set of timesfor which percolation occurs on � has Hausdor� dimension 1 but Lebesgue measure0. 4



20. Dynamical Percolation 79Example 20.8 Let 0 < p; � < 1, and suppose that � is a spherically symmetric treewith j�nj = p�nn�+o(1) as n!1. Then Theorem 20.6 implies that 	p-a.s. the set oftimes for which percolation occurs on � has Hausdor� dimension �. 4Since we will introduce an auxiliary random killing time � , we denote the under-lying probability measure P rather than 	p. The event that there is an open pathfrom the root to @� in �t is denoted f� t$ @�g.Theorem 20.9 Consider dynamical percolation f�tg with parameter 0 < p < 1 on atree � which is either �nite or in�nite with P�;p(C) = 0. Let � be a random variablewith an exponential distribution of mean 1, which is independent of the process f�tg.Let h(n) = p�nn+ 1 � 1� pn+11� p for n � 0 : (113)Then the event A = f9t 2 [0; � ] : � t$ @�g satis�es for some constant C12Caph(@�) � P(A) � 2CCaph(@�) ; (114)Remarks:(i) It is easy to verify that h is increasing and h(n) � p�n for all n. These propertiesalso follow from the interpretation of h given in Lemma 20.10(iii) below. In thesequel, we will sometimes write h(v) instead of h(jvj) when v is a vertex.(ii) The event A is easier to work with than the perhaps more natural eventB = f9t 2 [0; 1] : � t$ @�g. Noting that P(B) � P(Aj� > 1) � P(A)=e�1 andP(A) � P1k=0 e�kP(B) = P(B)=(1� e�1), we obtain1� e�12 Caph(@�) � P(B) � 2eCCaph(@�) :We will only prove the lower bound in Theorem 20.9; consult [37] for the otherinequality. We will need a lemma concerning the behavior of a pair of paths.Notation: Denote by fv t$ wg the event that there is an open path in �t betweenthe vertices v and w. Similarly, when x is a ray of the tree, f� t$ xg means that x isopen at time t. Thus f� t$ @�g = [x2@� f� t$ xg. For s > 0 let Tv(s) := Z s0 1f� t$vg dtbe the amount of time in [0; s] when the path from the root to v is open.Lemma 20.10 Let u and w be vertices of �. With the notation of Theorem 20.9 inforce,(i) E[Tw(�)] = pjwj(ii) E[Tw(�) j Tw(�) > 0] = E[Tw(�) j � 0$ w] = h(w)pjwj



80(iii) P(Tw(�) > 0) = h(w)�1(iv) E[Tu(�)Tw(�)] = 2h(u ^ w)pjuj+jwjProof: Let q = 1� p.(i) This is immediate from Fubini's Theorem.(ii) The �rst equality follows from the lack of memory of the exponential distribution.Verifying the second equality requires a calculation:E[Tw(�) j � 0$ w] = Z 10 P(� t$ w j � 0$ w)P(� > t) dt= Z 10 (p+ qe�t)jwje�t dt = �(p+ qe�t)jwj+1(jwj+ 1)q ���1t=0 :(iii) The required probability is the ratio of the expectations in (i) and (ii).(iv) Since the process f�tg is reversible,E[Tu(�)Tw(�)] = E Z �0Z �0 1f� s$ug1f� t$wg dt ds= 2 Z 10 Z 1s P(� s$ u)P�� t$ w j � s$ u�e�t dt ds : (115)Observe that for t > s,P�� t$ w j � s$ u� = pjwj�ju^wjP�� t$ u ^ w j � s$ u ^ w� :Change variables ~t = t� s in (115) to get that E[Tu(�)Tw(�)] equals= 2pjwj�ju^wj Z 10 Z 10 P(� s$ u)e�s�~tP�� ~t$ u ^ w j � 0$ u ^ w� d~t ds= 2pjwj�ju^wjE[Tu(�)] �E[Tu^w(�) j � 0$ u ^ w] :Substituting parts (i) and (ii) of the lemma into the last equation proves (iv).2Proof of lower bound in Theorem 20.9. We prove the theorem when � is a�nite tree; the general case then follows by an appropriate limiting procedure. Thelower bound on P(A) is proved via the second moment method. Let � be a probabilitymeasure on @�, and consider the random variableZ := Xv2@�Tv(�)p�jvj�(v) : (116)



21. Stochastic Domination Between Trees 81Lemma 20.10(i) implies that E(Z) = 1. Part (iv) of the same lemma givesE[Z2] = Xv2@� Xw2@�E[Tv(�)Tw(�)]p�jvj�jwj�(v)�(w) = 2Eh(�) : (117)Using the Cauchy-Schwarz inequality we �nd thatP(A) � P(Z > 0) � E[Z]2E[Z2] = 12Eh(�) :Taking the supremum of the right-hand side over all probability measures � on @�proves the lower bound on P[A] in (114). 2We include the statement of one result from Peres and Steif (1998).Theorem 20.11 Let � be an in�nite spherically symmetric tree, p = pc(�) 2 (0; 1)and T k denote the set of times in [0;1) when there are at least k in�nite clusters.Suppose that Pp(C) = 0. Let�c := sup n� 2 [0; 1] : 1Xn=1 p�nn��1j�nj <1 o :Then for all k, the Hausdor� dimension of T k ismaxf0; 1� k(1� �c)g 	p{a.s. : (118)21 Stochastic Domination Between TreesFor a tree � with total height N � 1, label its vertices by i.i.d. random variablesfXvgv2�. If B � RN is a Borel set, we writeP(B; �) = P(9 � 2 @� : (Xv)v2� 2 B) :For two such trees � and �0 of height N � 1, labeled by fXvgv2� and fX 0vgv2�0respectively, we say that �0 stochastically dominates � if for any Borel set B � RN ,P(B; �) � P(B; �0) :To verify that one tree dominates another, it su�ces to consider the case where theXv are i.i.d. uniform random variables in [0; 1], since other random variables can bewritten as functions of these.Recall that a tree � is spherically symmetric if all vertices in �n have the samenumber of o�spring.Theorem 21.1 (Pemantle and Peres 1994) Let �0 be a spherically symmetric treeand � another (arbitrary) tree. Then �0 stochastically dominates � i� j�nj � j�0nj forall n � 1.



82
Γ Γ'Figure 8: � is dominated by �0.Example 21.2 Two trees of height 2.Let � be the tree of height 2 in which the root has two o�spring and each of thesethree o�spring. Let �0 be the tree for which the root has three o�spring and and eachof these two o�spring.Then it is not clear a priori which tree dominates. The result above yields that �is dominated by �0. 4Stochastic domination between trees is well understood only for trees which areeither spherically symmetric or have height two. Already for trees of height three, thedomination order is somewhat mysterious, as the following example from Pemantleand Peres (1994) demonstrates.Example 21.3 Comparison between a tree T and T with vertices glued.Consider the trees T and T 0 in the next �gure, where T 0 is obtained from T by gluingtogether the vertices in the �rst generation.rr rr r rr r r r r�� @@�� SS�� SST

rrr r rr r r r r@@���� SS T 0Intuitively, it seems that T should dominate T 0, but this is not the case. IfBc = ([0; 1=2]� [0; 1]� [0; 2=3]) [ ([1=2; 1]� [0; 1=2]� [0; 1])and the Xv are uniform on [0; 1], then the probability that (Xv1 ; Xv2; Xv3) 2 Bc forall paths (�; v1; v2; v3) in T is 1075=7776, while the corresponding probability for T 0 isonly 998=7776. 4A consequence of Theorem 21.1 is that, among all trees of height n with j�nj =k, the tree T (n; k) consisting of k disjoint paths joined at the root is maximal inthe stochastic order. If the common law of the Xv is � and B � Rn, then 1 �



21. Stochastic Domination Between Trees 83P(B;T (n; k)) = (1� �n(B))k, where �n is n-fold product measure; thus for any tree� of height n, 1�P(B; �) � (1� �n(B))k :The de�nition of P(B; �) extends naturally to any graded graph �, a �nite graphwhose vertices are partitioned into levels 1; : : : ; n and oriented edges allowed onlybetween vertices in adjacent levels. The following is a natural conjecture.Conjecture 3 For any graded graph � of height n, let K(�) be the number of orientedpaths that pass through every level of � and let Xv be i.i.d. random variables withcommon law �. Then for any B � Rn,1�P(B; �) � (1� �n(B))K(�) :If B is upwardly closed (that is, x2B and y�x coordinate-wise imply y2B), then theconjecture is an easy consequence of the FKG inequality. The case n = 2 correspondsto a bipartite graph; Conjecture 3 for this case is due to Sidorenko (1994), who statedit (and proved it in many special cases) in the following analytic form:Sidorenko's Conjecture: Let f : [0; 1]2 ! [0;1) be a nonnegative bounded measur-able function and consider the bipartite graph with vertices X1; : : : ; Xn and Y1; : : : ; Ym.If E is the edge-set of this graph, thenZ : : : Z YXi�Yj f(xi; yj)dx1 : : : dxndy1 : : : dym � �ZZ f(x; y)dxdy�jEj : (119)For the bipartite graph consisting of three vertices X; Y; Z and two edges XY andXZ, the conjecture readsZZZ f(x; y)f(x; z)dxdydz � �ZZ f(x; y)dxdy�2and can be easily proved using the Cauchy-Schwarz inequality.Exercise 21.4 Prove Sidorenko's conjecture for the bipartite graph with four verticesand three edges, XY , XZ, and WZ. (Hint: use H�older's inequality with p = 3 andq = 3=2.)Sidorenko proved his conjecture for bipartite graphs with at most one cycle, and forbipartite graphs where one side has at most four vertices. For general �nite bipartitegraphs, it is still open whether (119) always holds.We conclude with yet another problem: In the statement of Theorem 16.7 wede�ned an information-theoretic domination relation between trees. It would be quiteinteresting to compare that relation with the stochastic domination relation studiedin this chapter.
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