MATC16 Cryptography and Coding Theory
Gábor Pete
University of Toronto Scarborough
gpete at utsc dot utoronto dot ca

Homework Assignment 2 (Due March 3 Thu)

Don't just give the answers, but indicate clearly the arguments you have followed.

Problem 1. A common way to store passwords on a computer is to use DES with the password as the key to encrypt a fixed plaintext (usually $00 \cdots 0$). The ciphertext is then stored in the file. When you \log in, the procedure is repeated, and the ciphertexts are compared. Why is this method more secure than the similar-sounding method of using the password as the plaintext and using a fixed known key (for example, $00 \cdots 0$)? ($\mathbf{1} \mathbf{~ p t}$)

Problem 2. Viewing the affine cipher as a double encryption, first multiplication by α, then shift by β, describe how a meet-in-the middle attack on a known plaintext-ciphertext pair works. Is this faster here than brute force key search? (2 pts)

Problem 3. Consider the Cipher Block Chaining (CBC) mode of operation for some block cipher (say, AES), applied to the plaintext P with blocks $P_{1}, P_{2}, \ldots, P_{n}$. If an error occurs in the transmission of a ciphertext block C_{j} from Alice to Bob, but all other blocks are transmitted correctly, how many blocks will be affected at decryption? (2 pts)

Problem 4. Consider the substitution-permutation network depicted on the right, encrypting 6 -bit plaintexts. The P-box is shown on the picture; the S-boxes act by multiplying row vectors from the right by the following matrices:

$$
S_{1}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \text { and } S_{2}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

A 6 -bit key $\underline{k}=k_{1} k_{2} \ldots k_{6}$ gives the three rounds keys $\underline{k}^{\prime}=$ $k_{1} k_{3} k_{5} k_{2} k_{4} k_{6}, \underline{k}^{\prime \prime}=k_{5} k_{6} k_{3} k_{4} k_{1} k_{2}$, and $\underline{k}^{\prime \prime \prime}=k_{6} k_{1} k_{4} k_{3} k_{2} k_{5}$.

Choose a pair of random 6-bit sequences, \underline{x} and y; say, flip coins or take your student ID $(\bmod 64)$ and rewrite the result in binary. Assume that the plaintext \underline{x} gets encrypted into the ciphertext y. Find the key! (Hint: each transformation here is linear, acting on vectors of length 6.) (4 pts)

Problem 5.

(a) Show that if p is a prime and $1 \leq k \leq p-1$, then $p \left\lvert\,\binom{ p}{k}=\frac{p!}{k!(p-k)!}(\mathbf{1} \mathbf{p t})\right.$
(b) Using part (a), show that if p is a prime, then $x^{p}+1$ is a reducible polynomial in $\mathbb{Z}_{p}[x]$. (Hint: consider first the $p=2$ case.) ($\mathbf{1} \mathbf{p t}$)
(c) How many elements does $\mathbb{Z}_{3}[x]\left(\bmod x^{3}+1\right)$ have? Show that with the usual + and . operations it is not a field. (2 pts)
(d) Show that the polynomial $x^{2}+1$ is irreducible in $\mathbb{Z}_{3}[x]$. ($\mathbf{1} \mathbf{p t s}$)
(e) Take your student ID, $a_{8} a_{7} \ldots a_{0}$. What is the polynomial $a_{8} x^{8}+a_{7} x^{7}+\cdots+a_{1} x+a_{0}$ in the finite field $\mathbb{Z}_{3}[x] /\left(x^{2}+1\right)$? What is its multiplicative inverse? ($3 \mathbf{~ p t s}$)

Problem 6. What is the last digit of $7^{7^{7}}$ (i.e., 7 to the power 7^{7})? ($\mathbf{3} \mathbf{~ p t s}$)
Problem 7. Consider $n=17 \cdot 31=527$. How many square roots can a given number have $(\bmod n)$? Find an example for each possibility. (4 pts)
(Max possible score: $\mathbf{2 4} \mathbf{~ p t s}$)

