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Problem 1. A common way to store passwords on a computer is to use DES with the
password as the key to encrypt a fixed plaintext (usually 00 · · ·0). The ciphertext is then
stored in the file. When you log in, the procedure is repeated, and the ciphertexts are
compared. Why is this method more secure than the similar-sounding method of using the
password as the plaintext and using a fixed known key (for example, 00 · · ·0)? (1 pt)

Solution. With the first method, if one steals the file of encrypted passwords, plus knows
the fixed plaintext (e.g., by reading the documentation of the password software), then has
a plaintext-ciphertext pair for each key, but won’t be able to find the key, because DES
is safe against such an attack. With the second method, by learning the fixed key from
somewhere, one could simply decrypt any ciphertext (since DES is a symmetric key system),
thus stealing the encrypted password file would give away the passwords.

Problem 2. Viewing the affine cipher as a double encryption, first multiplication by α,
then shift by β, describe how a meet-in-the middle attack on a known plaintext-ciphertext
pair works. Is this faster here than brute force key search? (2 pts)

Solution. Given plaintext p and ciphertext c, we have αp + β ≡ c (mod 26). Here p and c
represent long texts, and αp+β is understood letter by letter. (If you had just a pair of single
letters, then there are several possible (α, β) keys that work, so you couldn’t find the key.) α
has 12 possible values, β has 26. Make the lists L1 = {αp : 0 ≤ α < 26, gcd(α, 26) = 1} and
L2 = {c − β : 0 ≤ β < 26}. There must be a joint element in the two lists, and if the texts
are long enough so that they determine the key, then there can be only one joint element,
given by some specific α and β. That pair is the key.
We had to compute 12 + 26 texts, while brute force search would have needed computing
12 ·26 texts, so, ignoring the time to find the common element in the list, meet-in-the-middle
is faster. (Note that the lengths of the texts needed in the two methods to determine the
key uniquely are the same, say, t (around 2 or 3 or 4 or something like that), so in some
sense it’s (12 + 26)t versus 12 · 26 · t computations, but that gives the same result.)

Problem 3. Consider the Cipher Block Chaining (CBC) mode of operation for some block
cipher (say, AES), applied to the plaintext P with blocks P1, P2, . . . , Pn. If an error occurs
in the transmission of a ciphertext block Cj from Alice to Bob, but all other blocks are
transmitted correctly, how many blocks will be affected at decryption? (2 pts)

Solution. Since Cj+1 = EK(Cj ⊕ Pj+1) is the encryption rule, Bob decrypts by Pj+1 =
DK(Cj+1) ⊕ Cj. If Cj is wrong, then Pj and Pj+1 will be messed up in the decryption,
nothing else.
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Problem 4. Consider the substitution-permutation network
depicted on the right, encrypting 6-bit plaintexts. The P -box
is shown on the picture; the S-boxes act by multiplying row
vectors from the right by the following matrices:

S1 =





1 1 0
0 1 0
0 1 1



 and S2 =





0 1 1
1 1 1
1 1 0



 .

A 6-bit key k = k1k2 . . . k6 gives the three rounds keys k′ =
k1k3k5k2k4k6, k′′ = k5k6k3k4k1k2, and k′′′ = k6k1k4k3k2k5.

Choose a pair of random 6-bit sequences, x and y; say, flip
coins or take your student ID (mod 64) and rewrite the result
in binary. Assume that the plaintext x gets encrypted into the
ciphertext y. Find the key! (Hint: each transformation here
is linear, acting on vectors of length 6.) (4 pts)

Solution. In a SP network everything is linear, except possibly the S-boxes, but now those
are also linear, so this whole cryptosystem y = Ek(x) is just a linear system of six equations,
with six unknowns: the coordinates of k. We will write these equations elegantly with
matrices (which makes the argument easier to follow, but is not necessary for full credit.)
We can combine S1 and S2 in one matrix, and write P as a permutation matrix:

S =

















1 1 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 0 0 0 1 1
0 0 0 1 1 1
0 0 0 1 1 0

















, P =

















0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0

















.

Can also write the round key permutations as matrices: k′ = kK ′, etc, with

K ′ =

















1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

















, K ′′ =

















0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0

















, K ′′′ =

















0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0

















.

Then,

y =
(

(x + kK ′)SP + kK ′′
)

SP + kK ′′′

= xSPSP + kK ′SPSP + kK ′′SP + kK ′′′ ,

2



where + is coordinate-wise addition (mod 2), and

SPSP =

















0 0 0 1 0 0
1 0 1 0 0 0
1 0 1 0 0 1
1 0 0 1 1 1
1 1 0 1 1 0
0 1 0 0 1 0

















, K ′SPSP + K ′′SP + K ′′′ =

















1 1 1 0 0 0
0 0 1 1 0 1
1 1 1 1 0 1
0 1 1 0 1 0
1 0 1 0 1 1
1 1 0 0 1 1

















.

Then,

k = (y + xSPSP )
(

K ′SPSP + K ′′SP + K ′′′
)

−1
,

where the inverse of that matrix does exist:

(K ′SPSP + K ′′SP + K ′′′)−1 =

















1 0 0 0 1 1
1 1 1 0 1 1
1 1 1 0 0 0
1 1 0 1 1 0
0 0 0 1 1 1
0 1 1 1 1 0

















.

So, for any x, y one can get the unique key k, let me not do an example.

Problem 5.

(a) Show that if p is a prime and 1 ≤ k ≤ p − 1, then p
∣

∣

(

p

k

)

= p!
k! (p−k)!

(1 pt)

(b) Using part (a), show that if p is a prime, then xp +1 is a reducible polynomial in Zp[x].
(Hint: consider first the p = 2 case.) (1 pt)

(c) How many elements does Z3[x] (mod x3 + 1) have? Show that with the usual + and ·
operations it is not a field. (2 pts)

(d) Show that the polynomial x2 + 1 is irreducible in Z3[x]. (1 pts)

(e) Take your student ID, a8a7 . . . a0. What is the polynomial a8x
8 + a7x

7 + · · ·+ a1x + a0

in the finite field Z3[x]/(x2 + 1)? What is its multiplicative inverse? (3 pts)

Solution. (a) In the denominator of
(

p

k

)

we see only factors between 1 and p− 1, which are
all relatively prime to p, hence the prime factor p in the numerator cannot be killed by the
denominator, proving the claim.

(b) By the binomial theorem, (x + 1)p =
∑p

k=0

(

p

k

)

xk, hence part (a) gives that (x + 1)p ≡
xp + 1 (mod p), which means that xp + 1 is a product of p terms.

(c) After reducing Z3[x] polynomials (mod x3 +1), the set of remainders is {c2x
2 + c1x+ c0 :

c0, c1, c2 ∈ Z3}, hence we have 33 polynomials. This set is not a field, because x + 1 does
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not have a multiplicative inverse: part (b) shows that x + 1 is a factor of x3 + 1, hence if
we multiply x + 1 by anything and then reduce (mod x3 + 1), the result will be divisible by
x + 1, i.e., cannot be 1.

(d) There is one way to decompose 2 as a sum of strictly smaller positive numbers: 2 = 1+1.
Hence, if x2 + 1 is reducible, then it must be the product of two linear polynomials.
The irreducible linear polynomials in Z3[x] are ax + b, a = 1, 2, b = 0, 1, 2. Since Z3 is
a field, every nonzero element has a multiplicative inverse, hence, if f(x) | g(x), then also
c f(x) | g(x) for any c ∈ Z3. This means that it is enough to check x, x+1, 2x+1, x+2, and
can skip 2x and 2x + 2. Checking can be done with long division.
Alternatively, if x2 + 1 had a linear factor, then it would also have a root. But 02 + 1 ≡ 1,
12 + 1 ≡ 2, 22 + 1 ≡ 2 (mod 3), so there is no root.

(e) Say, my number is 994509281. The polynomial in Z3[x] is x6 + 2x5 + 2x2 + 2x + 1.
Reducing (mod x2 +1), we get x6 +2x5 +2x2 +2x+1 = (x2 +1)(x4 +2x3 +2x2 +x)+(x+1),
so the polynomial in Z3[x]/(x2 + 1) is x + 1.
What is its inverse? Euclidean algorithm: x2 + 1 = (x + 1)(x + 2) + 2, where we can stop
because 2 divides 1 in Z3. This gives 2 = (x2 + 1)− (x + 2)(x + 1), so, dividing by 2, which
is the same as multiplying by 2, get 1 = 2(x2 + 1) + (x + 2)(x + 1). Therefore, the inverse
of x + 1 is x + 2.

Problem 6. What is the last digit of 777

(i.e., 7 to the power 77)? (3 pts)

Solution. Finding the last digit means we want to find the value (mod 10). So, we can
reduce the exponent by φ(10) = 4. So, what is 77 (mod 4)? Here can reduce the base mod
4 and the exponent by φ(4) = 2. So 77 ≡ 31 ≡ 3 (mod 4). So, 777

≡ 73 ≡ 3 (mod 10).

A route without Euler’s theorem is to notice that (10a + b)(10a′ + b′) ≡ bb′ (mod 10), hence
multiplying the last digits gives the last digit. Therefore, looking at the last digits in 7k,
k = 1, 2, 3, . . . , we see 7, 9, 3, 1, 7, oops, repetition, so the sequence repeats from here on, it
has period 4, so we have to find 77 (mod 4). By successive squaring, 7 ≡ 3, 72 ≡ 1, 74 ≡ 1
(mod 4), so 77 ≡ 1 · 1 · 3 ≡ 3 (mod 4). So, we have to take the third element of the periodic
sequence, which is 3.

Problem 7. Consider n = 17 · 31 = 527. How many square roots can a given number have
(mod n)? Find an example for each possibility. (4 pts)

Solution. By the Chinese Remainder Theorem, x2 ≡ y (mod 527) if and only if x2 ≡ y
both (mod 17) and (mod 31). The number of solutions modulo a prime can be 0 (y is not a
quadratic residue), 1 (y ≡ 0), or 2 (y is a nonzero quadratic residue). So, when combining
these using the CRT, we can get 0 · {0, 1, 2} = 0, or 1 · 1 = 1, or 1 · 2 = 2, or 2 · 2 = 4
solutions.

To give examples, one has to find a quadratic non-residue and a non-zero residue mod each
prime. Since x2 ≡ (−x)2, one can list the 8 nonzero residues (mod 17) and the 15 nonzero
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residues (mod 31) quite quickly:

1 4 9 16 8 2 15 13 (mod 17) and 1 4 9 16 25 5 18 2 19 7 28 20 14 10 8 (mod 31).

Thus, for instance, 3 is not a residue modulo either, and 1 and 2 are residues modulo both.
Combining them with the CRT, here are four examples:

0: x2 ≡ 0 (mod 17) and x2 ≡ 3 (mod 31) ⇔ x2 ≡ 34 (mod 527)

1: x2 ≡ 0 (mod 17) and x2 ≡ 0 (mod 31) ⇔ x2 ≡ 0 (mod 527)

2: x2 ≡ 2 (mod 17) and x2 ≡ 0 (mod 31) ⇔ x2 ≡ 155 (mod 527)

4: x2 ≡ 1 (mod 17) and x2 ≡ 1 (mod 31) ⇔ x2 ≡ 1 (mod 527) .

(Max possible score: 24 pts)
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