MATC16 Cryptography and Coding Theory Gábor Pete University of Toronto Scarborough gpete at utsc dot utoronto dot ca

Homework Assignment 3 (Due March 22)

Problem 1. Let e, d be encryption and decryption exponents for RSA with modulus n = pq.

- (a) Show that $m^p \equiv m \pmod{p}$ for any m (not necessarily relatively prime to p). You can assume Fermat's little theorem. (1 pt)
- (b) Show that $m^{ed} \equiv m \pmod{n}$ for any m. Again, we've seen the case gcd(m, n) = 1, so you may assume that $gcd \neq 1$. Hint: use the Chinese Remainder Theorem. (3 pts)

Problem 2. Take the 4-digit number formed by the end of your student ID. Find a number with difference at most 4 from it that is not divisible by any of 2,3,5, call it n. Choose a random base b (make an attempt to make it really random in $\{2, 3, \ldots, n-2\}$, not just 2 or 3), and test the primality of n with (a) the Fermat prime test and (b) the Miller-Rabin test, both times using the same base b. (2+2 pts)

Problem 3. Suppose you want to factor n = 2288233, and you discover that $880525^2 \equiv 2 \pmod{n}$, and $2057202^2 \equiv 3 \pmod{n}$, and $648581^2 \equiv 6 \pmod{n}$, and $668676^2 \equiv 77 \pmod{n}$. Use this information to factor n. (2 pts)

Problem 4. $\alpha = 2$ is a primitive root mod p = 101. Alice and Bob want to use ElGamal with these parameters.

- (a) What are the largest a for Bob and k for Alice that are worth choosing? In other words, these exponents should be random elements of what set? (1 pt)
- (b) Assume that a = 24 and k = 69. Choose a message 1 < m < 100 for Alice to send, and encrypt it. Then check that Bob can decrypt the ciphertext correctly, without knowing k. (2 pts)

Problem 5. Suppose you have discovered that $3^6 \equiv 44 \pmod{137}$ and $3^{10} \equiv 2 \pmod{137}$. Find a value of x with $0 \le x \le 135$ such that $3^x \equiv 11 \pmod{137}$. (2 pts)

Problem 6. Consider the function $h(x) = x^2 \pmod{p}$, where p is a "large" prime, p = 8848607. Show that h is not preimage-resistant even for typical values (for 1, 4, 9, 16, etc, it is obviously easy to find preimages), and that it is not weakly collision free, either. (2 pts)

Problem 7. What is the probability that, in a family of five, all birthdays are in different months?

- (a) First assume that all twelve months have equal lengths. (1 pt)
- (b) In reality, different months have different lengths. Do you think this increases or decreases or doesn't change the above probability? You don't need to give a proof, but do give some support to your guess. (2 pt)
- (c) How big does a family have to be to make the above probability zero? (1 pt)

(Max possible score: 21 pts)