MATC16 Cryptography and Coding Theory
Gábor Pete
University of Toronto Scarborough
gpete at utsc dot utoronto dot ca

Homework Assignment 4 (Due April 7 Thu)

Problem 1. Peggy claims she knows an RSA plaintext. That is, n, e, c are public, and she claims to know an m such that $m^{e} \equiv c(\bmod n)$. She wants to prove this to Victor using a zero-knowledge protocol. They perform the following steps:

1. Peggy chooses a random integer r_{1} with $\operatorname{gcd}\left(r_{1}, n\right)=1$, and computes $r_{2} \equiv m \cdot r_{1}^{-1}(\bmod$ $n)$.
2. Peggy computes $x_{i} \equiv r_{i}^{e}(\bmod n)$ for $i=1,2$, and sends x_{1}, x_{2} to Victor.
3. Victor checks if $x_{1} x_{2} \equiv c(\bmod n)$.

Give the remaining steps of the protocol. Victor wants to be at least 99% sure that Peggy is not lying. (2 pts)

Problem 2. List the points on the elliptic curve $\left\{(x, y): y^{2} \equiv x^{3}-2(\bmod 7)\right\}$. (2 pts)
Problem 3. Factor $n=35$ by the elliptic curve method, using the curve $y^{2}=x^{3}+26$ and calculating $P \boxplus P \boxplus P$ for $P=(10,9)$. (2 pts)

Problem 4. On Thursday we will prove that, for any random variable X and any function f, we have $H(f(X)) \leq H(X)$. (In words, we cannot increase the entropy by doing something deterministic to X.)
(a) Letting X take on the values ± 1, and letting $f(x)=x^{2}$, show that it is possible that $H(f(X))<H(X)$. (1 pt)
(b) Show that $H(f(X))=H(X)$ if and only if f is one-to-one on the set of values that are taken by X with positive probability. (2 pts)

Problem 5. Consider the Hadamard matrix H that is used in defining the Hadamard code, Example 6 of page 397. Namely, H is the 32×32 matrix whose entry $h_{i j}$ in the i th row and j th column, for $0 \leq i, j \leq 31$, is given by

$$
h_{i j}=(-1)^{a_{0} b_{0}+a_{1} b_{1}+\cdots+a_{4} b_{4}},
$$

where $i=a_{4} \ldots a_{0}$ and $j=b_{4} \ldots b_{0}$ in binary. For instance, for $i=31$ and $j=3$, we have $i=11111$ and $j=00011$, hence $h_{31,3}=(-1)^{2}=1$.

Prove that the dot product of any two different rows of H is 0 . ($2 \mathbf{p t s}$)

Problem 6. The following is a parity check matrix for a binary $[n, k]$ code C :

$$
\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

What is n and k ? Find a generating matrix for C. List the codewords in C. What is the minimal distance in C ? What is the code rate of C ? (4 pts)
(Max possible score: 15 pts)

