MATC16 Cryptography and Coding Theory Gábor Pete University of Toronto Scarborough gpete at utsc dot utoronto dot ca

Homework Assignment 4 (Due April 7 Thu)

Problem 1. Peggy claims she knows an RSA plaintext. That is, n, e, c are public, and she claims to know an m such that $m^e \equiv c \pmod{n}$. She wants to prove this to Victor using a zero-knowledge protocol. They perform the following steps:

- 1. Peggy chooses a random integer r_1 with $gcd(r_1, n)=1$, and computes $r_2 \equiv m \cdot r_1^{-1} \pmod{n}$.
- 2. Peggy computes $x_i \equiv r_i^e \pmod{n}$ for i = 1, 2, and sends x_1, x_2 to Victor.
- 3. Victor checks if $x_1x_2 \equiv c \pmod{n}$.

Give the remaining steps of the protocol. Victor wants to be at least 99% sure that Peggy is not lying. (2 pts)

Problem 2. List the points on the elliptic curve $\{(x, y) : y^2 \equiv x^3 - 2 \pmod{7}\}$. (2 pts)

Problem 3. Factor n = 35 by the elliptic curve method, using the curve $y^2 = x^3 + 26$ and calculating $P \boxplus P \boxplus P$ for P = (10, 9). (2 pts)

Problem 4. On Thursday we will prove that, for any random variable X and any function f, we have $H(f(X)) \leq H(X)$. (In words, we cannot increase the entropy by doing something deterministic to X.)

- (a) Letting X take on the values ± 1 , and letting $f(x) = x^2$, show that it is possible that H(f(X)) < H(X). (1 pt)
- (b) Show that H(f(X)) = H(X) if and only if f is one-to-one on the set of values that are taken by X with positive probability. (2 pts)

Problem 5. Consider the Hadamard matrix H that is used in defining the Hadamard code, Example 6 of page 397. Namely, H is the 32×32 matrix whose entry h_{ij} in the *i*th row and *j*th column, for $0 \le i, j \le 31$, is given by

$$h_{ij} = (-1)^{a_0 b_0 + a_1 b_1 + \dots + a_4 b_4},$$

where $i = a_4 \dots a_0$ and $j = b_4 \dots b_0$ in binary. For instance, for i = 31 and j = 3, we have i = 11111 and j = 00011, hence $h_{31,3} = (-1)^2 = 1$.

Prove that the dot product of any two different rows of H is 0. (2 pts)

Problem 6. The following is a parity check matrix for a binary [n, k] code C:

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} .$$

What is n and k? Find a generating matrix for C. List the codewords in C. What is the minimal distance in C? What is the code rate of C? (4 pts)

(Max possible score: 15 pts)