MATC16 Cryptography and Coding Theory Gábor Pete University of Toronto Scarborough gpete at utsc dot utoronto dot ca

Solutions to HW Assignment 4

Problem 1. Peggy claims she knows an RSA plaintext. That is, n, e, c are public, and she claims to know an m such that $m^e \equiv c \pmod{n}$. She wants to prove this to Victor using a zero-knowledge protocol. They perform the following steps:

- 1. Peggy chooses a random integer r_1 with $gcd(r_1, n)=1$, and computes $r_2 \equiv m \cdot r_1^{-1} \pmod{n}$.
- 2. Peggy computes $x_i \equiv r_i^e \pmod{n}$ for i = 1, 2, and sends x_1, x_2 to Victor.
- 3. Victor checks if $x_1x_2 \equiv c \pmod{n}$.

Give the remaining steps of the protocol. Victor wants to be at least 99% sure that Peggy is not lying. (2 pts)

Solution. Victor asks for one of the r_i 's, i = 1 or 2, randomly. Then he checks if this satisfies $r_i^e \equiv x_i \pmod{n}$. They repeat this 6 more times, with Peggy choosing a new random r_1 each time. (Note that $2^{-7} < 1\%$.)

(Explanation: if Peggy does not know m, then she could still produce r_1 and $x_1 \equiv r_1^e \pmod{n}$ then $x_2 \equiv c \cdot x_1^{-1} \pmod{n}$, but would not have a suitable r_2 . Or she could choose r_2 and compute x_2 then x_1 from it, but would not have a suitable r_1 . Whatever she does, if Victor asks r_1 or r_2 randomly, she will have only 50% chance of surviving his test.)

Problem 2. List the points on the elliptic curve $\{(x, y) : y^2 \equiv x^3 - 2 \pmod{7}\}$. (2 pts)

Solution. Let x = 0, 1, 2, ..., 6, and see which yield quadratic residues (mod 7), hence values of y. The quadratic residues are $1 \equiv (\pm 1)^2$ and $4 \equiv (\pm 2)^2$ and $2 \equiv (\pm 3)^2 \pmod{7}$. We obtain the seven points $(3, 2), (3, 5), (5, 2), (5, 5), (6, 2), (6, 5), \infty$.

Problem 3. Factor n = 35 by the elliptic curve method, using the curve $y^2 = x^3 + 26$ and calculating $P \boxplus P \boxplus P$ for P = (10, 9). (2 pts)

Solution. Using the addition formulas in the book, you first have to compute the slope $m = dy/dx = 3x^2/(2y) = 300/18 = 100/6 \equiv 100 \cdot 6 \equiv 5 \pmod{35}$, which worked without problems, then plug this into the other formulas to get $P \boxplus P = (5, 16)$. Then you have to calculate the coordinates of $(P \boxplus P) \boxplus P$, starting with the slope m = (16-9)/(5-10) = -7/5. But $gcd(5,35) = 5 \neq 1$, so this point does not exist, but we don't care, because have just found the nontrivial factor 5 of 35.

Problem 4. On Thursday we will prove that, for any random variable X and any function f, we have $H(f(X)) \leq H(X)$. (In words, we cannot increase the entropy by doing something deterministic to X.)

- (a) Letting X take on the values ± 1 , and letting $f(x) = x^2$, show that it is possible that H(f(X)) < H(X). (1 pt)
- (b) Show that H(f(X)) = H(X) if and only if f is one-to-one on the set of values that are taken by X with positive probability. (2 pts)

Solution. For (a), if $\mathbf{P}[X = 1] = p = 1 - \mathbf{P}[X = -1]$ with $p \notin \{0, 1\}$, then $H(X) = -p \log_2 p - (1-p) \log_2(1-p) > 0$, while f(X) = 1 with probability one, hence $H(f(X)) = -1 \log_2 1 = 0$, and we are done.

For (b), if we go back to the proof of the inequality in Exercise 6 (a) on page 343-344, we see that we need to show H(X | f(X)) = 0 if and only if f is 1-to-1. By definition,

$$H(X \mid f(X)) = \sum_{y} \mathbf{P}[f(X) = y] H(X \mid f(X) = y),$$

where y in the summation runs over all the possible values of f(X). If f is 1-to-1, then, for any y, the condition f(X) = y determines the value of X, i.e., the conditioned random variable (X | f(X) = y) takes a single value with probability one, hence its entropy is H(X | f(X) = y) = 0, and the total sum is 0. On the other hand, if f is not 1-to-1, then there is a y such that $\mathbf{P}[f(X) = y] > 0$ and the conditioned random variable (X | f(X) = y) has actual randomness, i.e., its entropy has a non-zero term $-p \log_2 p > 0$ for some $p \notin \{0, 1\}$. Thus the total sum will also be positive.

Problem 5. Consider the Hadamard matrix H that is used in defining the Hadamard code, Example 6 of page 397. Namely, H is the 32×32 matrix whose entry h_{ij} in the *i*th row and *j*th column, for $0 \le i, j \le 31$, is given by

$$h_{ij} = (-1)^{a_0 b_0 + a_1 b_1 + \dots + a_4 b_4},$$

where $i = a_4 \dots a_0$ and $j = b_4 \dots b_0$ in binary. For instance, for i = 31 and j = 3, we have i = 11111 and j = 00011, hence $h_{31,3} = (-1)^2 = 1$.

Prove that the dot product of any two different rows of H is 0. (2 pts)

Solution. Let the index of the two rows be $i = a_4 \dots a_0$ and $i' = a'_4 \dots a'_0$. The dot product is then

$$\sum_{j=0}^{31} (-1)^{(a_0+a_0')b_0(j)+\dots+(a_4+a_4')b_4(j)} = \sum_{b_0=0}^{1} \sum_{b_1=0}^{1} \sum_{b_2=0}^{1} \sum_{b_3=0}^{1} \sum_{b_4=0}^{1} (-1)^{(a_0+a_0')b_0+\dots+(a_4+a_4')b_4} \\ = \left(\sum_{b_0=0}^{1} (-1)^{(a_0+a_0')b_0}\right) \dots \left(\sum_{b_4=0}^{1} (-1)^{(a_4+a_4')b_4}\right).$$

If $i \neq i'$, then there is some $k \in \{0, 1, \ldots, 4\}$ with $a_k \neq a'_k$, hence $a_k + a'_k \not\equiv 0 \pmod{2}$, hence, in the above product of five factors, the kth factor is +1 - 1 = 0, hence the entire product is 0, as we wanted.

Problem 6. The following is a parity check matrix for a binary [n, k] code C:

1	1	1	1	0	0	0	
	1	0	0	1	0	0	
	0	1	0	0	1	0	·
	1	1	0	0	0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$	

What is n and k? Find a generating matrix for C. List the codewords in C. What is the minimal distance in C? What is the code rate of C? (4 pts)

Solution. This is a 4×6 matrix, with a 4×4 identity matrix at the end. Cut that off, transpose the beginning, get a 2×4 matrix, then append a 2×2 identity matrix at the beginning, say, to get

$$G = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix} \,.$$

This is a 2 × 6 generating matrix in systematic form. Clearly, n = 6 and k = 2. We get all the codewords as the linear combinations of the rows of this G. Since we are over the field \mathbb{Z}_2 , the linear combinations are just the sums, so we get four codewords: $(1 \ 0 \ 1 \ 0 \ 1 \ 1)$, $(0 \ 1 \ 1 \ 1 \ 0 \ 1)$, $(0 \ 0 \ 0 \ 0 \ 0)$, $(1 \ 1 \ 0 \ 1 \ 1 \ 0)$. The minimal distance in a linear code equals the minimal Hamming weight (the number of nonzero coordinates) over all non-zero vectors, which is 4 here. Finally, the code rate in a linear [n, k] code is always k/n, which is 1/3 here.

(Max possible score: 15 pts)