MATC16 Cryptography and Coding Theory
Gábor Pete
University of Toronto Scarborough
gpete at utsc dot utoronto dot ca

Solutions to HW Assignment 4

Problem 1. Peggy claims she knows an RSA plaintext. That is, n, e, c are public, and she claims to know an m such that $m^{e} \equiv c(\bmod n)$. She wants to prove this to Victor using a zero-knowledge protocol. They perform the following steps:

1. Peggy chooses a random integer r_{1} with $\operatorname{gcd}\left(r_{1}, n\right)=1$, and computes $r_{2} \equiv m \cdot r_{1}^{-1}(\bmod$ $n)$.
2. Peggy computes $x_{i} \equiv r_{i}^{e}(\bmod n)$ for $i=1,2$, and sends x_{1}, x_{2} to Victor.
3. Victor checks if $x_{1} x_{2} \equiv c(\bmod n)$.

Give the remaining steps of the protocol. Victor wants to be at least 99% sure that Peggy is not lying. (2 pts)

Solution. Victor asks for one of the r_{i} 's, $i=1$ or 2 , randomly. Then he checks if this satisfies $r_{i}^{e} \equiv x_{i}(\bmod n)$. They repeat this 6 more times, with Peggy choosing a new random r_{1} each time. (Note that $2^{-7}<1 \%$.)
(Explanation: if Peggy does not know m, then she could still produce r_{1} and $x_{1} \equiv r_{1}^{e}(\bmod$ n) then $x_{2} \equiv c \cdot x_{1}^{-1}(\bmod n)$, but would not have a suitable r_{2}. Or she could choose r_{2} and compute x_{2} then x_{1} from it, but would not have a suitable r_{1}. Whatever she does, if Victor asks r_{1} or r_{2} randomly, she will have only 50% chance of surviving his test.)

Problem 2. List the points on the elliptic curve $\left\{(x, y): y^{2} \equiv x^{3}-2(\bmod 7)\right\}$. (2 pts)
Solution. Let $x=0,1,2, \ldots, 6$, and see which yield quadratic residues ($\bmod 7$), hence values of y. The quadratic residues are $1 \equiv(\pm 1)^{2}$ and $4 \equiv(\pm 2)^{2}$ and $2 \equiv(\pm 3)^{2}(\bmod 7)$. We obtain the seven points $(3,2),(3,5),(5,2),(5,5),(6,2),(6,5), \infty$.

Problem 3. Factor $n=35$ by the elliptic curve method, using the curve $y^{2}=x^{3}+26$ and calculating $P \boxplus P \boxplus P$ for $P=(10,9)$. (2 pts)

Solution. Using the addition formulas in the book, you first have to compute the slope $m=d y / d x=3 x^{2} /(2 y)=300 / 18=100 / 6 \equiv 100 \cdot 6 \equiv 5(\bmod 35)$, which worked without problems, then plug this into the other formulas to get $P \boxplus P=(5,16)$. Then you have to calculate the coordinates of $(P \boxplus P) \boxplus P$, starting with the slope $m=(16-9) /(5-10)=-7 / 5$. But $\operatorname{gcd}(5,35)=5 \neq 1$, so this point does not exist, but we don't care, because have just found the nontrivial factor 5 of 35 .

Problem 4. On Thursday we will prove that, for any random variable X and any function f, we have $H(f(X)) \leq H(X)$. (In words, we cannot increase the entropy by doing something deterministic to X.)
(a) Letting X take on the values ± 1, and letting $f(x)=x^{2}$, show that it is possible that $H(f(X))<H(X)$. (1 pt)
(b) Show that $H(f(X))=H(X)$ if and only if f is one-to-one on the set of values that are taken by X with positive probability. (2 pts)

Solution. For (a), if $\mathbf{P}[X=1]=p=1-\mathbf{P}[X=-1]$ with $p \notin\{0,1\}$, then $H(X)=$ $-p \log _{2} p-(1-p) \log _{2}(1-p)>0$, while $f(X)=1$ with probability one, hence $H(f(X))=$ $-1 \log _{2} 1=0$, and we are done.

For (b), if we go back to the proof of the inequality in Exercise 6 (a) on page 343-344, we see that we need to show $H(X \mid f(X))=0$ if and only if f is 1-to-1. By definition,

$$
H(X \mid f(X))=\sum_{y} \mathbf{P}[f(X)=y] H(X \mid f(X)=y)
$$

where y in the summation runs over all the possible values of $f(X)$. If f is 1-to- 1 , then, for any y, the condition $f(X)=y$ determines the value of X, i.e., the conditioned random variable $(X \mid f(X)=y)$ takes a single value with probability one, hence its entropy is $H(X \mid f(X)=$ $y)=0$, and the total sum is 0 . On the other hand, if f is not 1 -to- 1 , then there is a y such that $\mathbf{P}[f(X)=y]>0$ and the conditioned random variable $(X \mid f(X)=y)$ has actual randomness, i.e., its entropy has a non-zero term $-p \log _{2} p>0$ for some $p \notin\{0,1\}$. Thus the total sum will also be positive.

Problem 5. Consider the Hadamard matrix H that is used in defining the Hadamard code, Example 6 of page 397. Namely, H is the 32×32 matrix whose entry $h_{i j}$ in the i th row and j th column, for $0 \leq i, j \leq 31$, is given by

$$
h_{i j}=(-1)^{a_{0} b_{0}+a_{1} b_{1}+\cdots+a_{4} b_{4}},
$$

where $i=a_{4} \ldots a_{0}$ and $j=b_{4} \ldots b_{0}$ in binary. For instance, for $i=31$ and $j=3$, we have $i=11111$ and $j=00011$, hence $h_{31,3}=(-1)^{2}=1$.

Prove that the dot product of any two different rows of H is 0 . ($2 \mathbf{p t s}$)
Solution. Let the index of the two rows be $i=a_{4} \ldots a_{0}$ and $i^{\prime}=a_{4}^{\prime} \ldots a_{0}^{\prime}$. The dot product is then

$$
\begin{aligned}
\sum_{j=0}^{31}(-1)^{\left(a_{0}+a_{0}^{\prime}\right) b_{0}(j)+\cdots+\left(a_{4}+a_{4}^{\prime}\right) b_{4}(j)} & =\sum_{b_{0}=0}^{1} \sum_{b_{1}=0}^{1} \sum_{b_{2}=0}^{1} \sum_{b_{3}=0}^{1} \sum_{b_{4}=0}^{1}(-1)^{\left(a_{0}+a_{0}^{\prime}\right) b_{0}+\cdots+\left(a_{4}+a_{4}^{\prime}\right) b_{4}} \\
& =\left(\sum_{b_{0}=0}^{1}(-1)^{\left(a_{0}+a_{0}^{\prime}\right) b_{0}}\right) \cdots\left(\sum_{b_{4}=0}^{1}(-1)^{\left(a_{4}+a_{4}^{\prime}\right) b_{4}}\right)
\end{aligned}
$$

If $i \neq i^{\prime}$, then there is some $k \in\{0,1, \ldots, 4\}$ with $a_{k} \neq a_{k}^{\prime}$, hence $a_{k}+a_{k}^{\prime} \not \equiv 0(\bmod 2)$, hence, in the above product of five factors, the k th factor is $+1-1=0$, hence the entire product is 0 , as we wanted.

Problem 6. The following is a parity check matrix for a binary $[n, k]$ code C :

$$
\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

What is n and k ? Find a generating matrix for C. List the codewords in C. What is the minimal distance in C ? What is the code rate of C ? (4 pts)

Solution. This is a 4×6 matrix, with a 4×4 identity matrix at the end. Cut that off, transpose the beginning, get a 2×4 matrix, then append a 2×2 identity matrix at the beginning, say, to get

$$
G=\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
$$

This is a 2×6 generating matrix in systematic form. Clearly, $n=6$ and $k=2$. We get all the codewords as the linear combinations of the rows of this G. Since we are over the field \mathbb{Z}_{2}, the linear combinations are just the sums, so we get four codewords: (101011), (01111101$)$, (0000000), (1110110$)$. The minimal distance in a linear code equals the minimal Hamming weight (the number of nonzero coordinates) over all non-zero vectors, which is 4 here. Finally, the code rate in a linear $[n, k]$ code is always k / n, which is $1 / 3$ here.
(Max possible score: 15 pts)

