MATC16 Cryptography and Coding Theory

Gábor Pete
University of Toronto Scarborough

What you should know for the final exam

Principles and goals of cryptography:

Kerckhoff's principle. Shannon's confusion and diffusion. Possible attack situations (ciphertext only, chosen plaintext, etc.). Possible goals of attacker, and the corresponding tasks of cryptography (confidentiality, data integrity, authentication, non-repudiation). [Chapter 1, plus page 38 and http://en.wikipedia.org/wiki/Confusion_and_diffusion for diffusion \& confusion.]

Classical cryptosystems:

Number theory basics: infinitely many primes exist, basics of modular arithmetic, extended Euclidean algorithm, solving $a x+b y=d$, inverting numbers and matrices $(\bmod n)$. [Sections 3.1-3 and 3.8.]

Shift and affine ciphers. Their ciphertext only and known plaintext attacks. Composition of two affine ciphers is again an affine cipher. [Sections 2.1-2.]

Substitution ciphers in general. [Section 2.4]
Vigenère cipher. Known plaintext attack. Ciphertext only: finding the key length, then frequency analysis. [Section 2.3.]

Hill cipher. Known plaintext attack. [Section 2.7.]
One-time pad. LFSR sequences. Known plaintext attack, finding the recursion. [Sections 2.9 and 11.]

Basics of Enigma. [Section 2.12, up to middle of page 53.]

The DES:

Feistel systems, simplified and real DES (without the exact expansion functions and S-boxes and permutations, of course), how decryption works in these DES versions. How the extra parity check bits in the real DES key ensure error detection. How confusion and diffusion are fulfilled in DES. [Sections 4.1-2 and 4.4.]

Double and Triple DES. Meet-in-the-middle attack. (I mentioned here that one can organize the two lists of length n and find a match between them in almost linear time $(n \log n)$ instead of the naive approach that would give only n^{2}, and hence would ruin the attack completely.

If you want more details, see http://en.wikipedia.org/wiki/Binary_search_tree, but this won't be on the test.) Basic idea of password security, salt. [Sections 4.6-8.]

Modes of operation for block ciphers: ECB, CBC, CFB, OFB. [Section 4.5].

The AES (Rijndael) algorithm:

Algebra prerequisite: definition of a group and a field. How to check if a $\mathbb{Z}_{p}[x]$ polynomial is irreducible, how to construct a finite field by taking polynomials modulo an irreducible polynomial, how to do arithmetic in this field (including extended Euclidean algorithm for polynomials), what is $G F\left(p^{k}\right)$. [Section 3.11, except for 3.11.2 and 3.11.3.]

Shannon's Substitution/Permutation networks, how they ensure confusion and diffusion. [This is not in the book. Seehttp://en.wikipedia.org/wiki/Substitution-permutation_network.

The basic structure of the AES algorithm, construction of the S-box. [Sections 5.1-2, except for the exact form of the key schedule.]

The RSA algorithm:

Number theory prerequisites: Chinese remainder theorem. If $x^{2} \equiv y^{2}(\bmod n)$ with $x \not \equiv$ $\pm y(\bmod n)$, then n is composite; in fact, $\operatorname{gcd}(x \pm y, n) \neq 1, n$. Modular exponentiation (repeated squaring). Euler's $\phi(n)$ function, Fermat's little and Euler's theorem. [Sections 3.4-6.]

The algorithm. For $n=p q$, knowing $\phi(n)$ is equivalent to knowing the prime factors p, q. How to achieve authentication and non-repudiation in RSA. [Sections 6.1 and 6.7.]

Knowing that some care is needed what p, q, d, e to choose, even though you won't be asked to reproduce the statements. [Section 6.2.]

The Fermat and Miller-Rabin primality tests. [First two thirds of Section 6.3.]
Fermat's factorization, Pollard's $p-1$ algorithm, the quadratic sieve. [Section 6.4, excluding 6.4.2.]

Discrete logarithms:

Primitive roots $(\bmod p)$. If α is a primitive root, then $\alpha^{x} \equiv \alpha^{y}(\bmod p) \Leftrightarrow x \equiv y(\bmod$ $p-1)$. [End of Section 3.6 and Section 3.11].

Definition of the discrete \log problem. Computing discrete logs: how to find $x(\bmod 2)$ in $\alpha^{x} \equiv \beta(\bmod p) ;$ Baby Step Giant Step; Index calculus. [Sections 7.1 and 7.2, except for 7.2.1 and 7.2.4.]

Three-pass protocol. Diffie-Hellman key exchange. ElGamal cryptosystem. [Sections 3.6.1 and 7.4-5, except for 7.5.1.]
Intruder-in-the-middle attack on Diffie-Hellman key agreement. The difference between key
agreement and key distribution. [The beginning of Chapter 10, up to Section 10.2.1.]

Hash functions and digital signatures:

The three criteria of a cryptographic hash function. [First three pages of Chapter 8.]
How to construct hash functions from block ciphers. [This is not in the book for some unknown reason. See http://en.wikipedia.org/wiki/Hash_function_(cryptography) instead, Section 4.]

The RSA signature scheme. Hashing and signing. Birthday attack on hashing and signing. [Sections 9.1, 9.3-4.]

Zero-knowledge protocols:

The basic goal and a mathematical realization of it. [First three pages of Chapter 14.]

Information theory:

Definition and interpretation of entropy and conditional entropy of random variables. Chain rule and other basic properties. Perfect secrecy. [Sections 15.1-2, 4, and Exercise 6 (a).]

Elliptic curves:

Definition of an elliptic curve over \mathbb{R} and $(\bmod n)$. The addition rule. (You should be able to deduce the algebraic formulas from the geometric description if enough time is given, but you don't have to memorize the formulas, they will be given in the exam if you need to use them.) The number of points on a curve $(\bmod p)$. The analog of the discrete log problem on elliptic curves. How to represent plaintexts on the curve. Elliptic curve cryptosystems: ElGamal and Diffie-Hellman. [Sections 16.1-2. and 16.5.1-2.]

How to factorize integers using elliptic curves. [Section 16.3, except for 16.3.1. In case you can't follow the explanation why the elliptic curve algorithm works, you can try http://en.wikipedia.org/wiki/Lenstra_elliptic_curve_factorization.]

Error-correcting codes:

The purpose of error correcting codes. Some basic examples: repetition codes, parity check, Hadamard code. The definition of Hamming distance, the error-detecting and errorcorrecting capability of (n, M, d) codes. Code rate. The Singleton and Sphere packing bounds. [Sections 18.1-2, 18.3.1]
$[n, k]$ linear codes, systematic form for a generating matrix, parity check matrices. [Beginning of Section 18.4, up to the end of page 411.]

