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0. Introduction

In this paper we consider some modifications and generalizations of the following nice

combinatorial exercise.

Each square of an 8 × 8 chessboard can have one of two states: “clean” or “weedy”.

We have some originally weedy squares, and each square of the board can change its state

in time according to the following expansion rule: a weedy square remains weedy forever,

and if on the previous day a square was clean, then it stays clean if and only if at most

one of its neighbours was weedy. (Adjacency among the squares is defined by having a

common edge.) What is the minimum number of weedy squares one needs to make the

whole chessboard weedy? Unfortunately, we do not know the origin of this elementary

problem.

We call an n×n chessboard with each of its squares of a specific state a configuration.

In the later parts of the paper we will refer to weedy squares as “black squares” and to

clean squares as “white squares”; so a configuration is just a coloured board. We start

with an initial configuration and a painting rule that tells us which white squares become

black the next day. The expansion rule in the original problem was the 2-neighbour rule:

a white square becomes black iff it has at least two black neighbours.

The initial configuration and the rule define a finite or infinite sequence of configura-

tions. We call this sequence a disease process. The initial configuration is called contagious

or successful if the corresponding sequence has the all-weedy board as a member.

Now let G(n) be the minimal number of weedy (or black) squares in a contagious

configuration. The solution of the initial exercise is G(n) = n, and if we consider a torus

board of n2 squares, we need n − 1; see Fact 1.1 and Fact 1.2 in Chapter 1.

One can easily generalize the problem to the k-dimensional n × . . . × n chessboard

with an l-neighbour painting rule, where 1 ≤ l ≤ 2k, the corresponding function is denoted

by Gk,l(n). In [P], published in Hungarian, we determined the exact order of magnitude

of Gk,l(n) for all k, l fixed, and gave precise asymptotics for the lower dimensional cases.

(See also the Appendix to [BP].) These results and their proofs, together with some open

problems, are described in Chapter 1.

A possible way to modify the original problem would be to determine the minimal

number of initial black squares needed, if we want to paint the whole board with arbitrary

arrangement of these squares, and not only in a special clever way. But it would not be

too interesting: one can immediately see that we would need almost all the squares to

be black at the beginning, as very ugly initial configurations exist. Nevertheless, it may

happen that these bad accidents are rare, and it is worth examining what the probability

of the complete painting is, if we put in our initial black squares randomly. Or, what is

almost equivalent: for a starting configuration we colour black each square of the board

independently with a probability p = p(n). We say that the configuration we obtain in

this way is p-random. Then we have our deterministic painting or expansion rule, and the
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question is the behaviour of the disease process determined by this rule of spreading. (For

a comparison of the possible different models for such random structures see Chapter II

in [Bo]; another standard reference for probabilistic combinatorics is [AS]. For a review on

percolation models see [G].)

In particular, how large must p(n) be to paint the whole chessboard black? The

main topic of Chapter 2 is the determination of the threshold function in the fundamental

case of this random disease problem. This randomized model for the infinite square grid

was first introduced in statistical physics as bootstrap percolation in 1979 by [CLR], and

with mathematically rigorous results in 1987 by [E]. The finite version was thoroughly

discussed by M. Aizenman and J. L. Lebowitz in [AiL]. Then the problem was rediscovered

in [BP] from the combinatorial respect of [P]. Chapter 2 contains a brief survey of the most

important results in this problem and almost the whole of the paper [BP]. Further problems

for future research are also posed.

Of course, the painting rule can itself be randomized: a white square will be black

with a probability proportional to the number of its already black neighbours. This process

may remind us of spreading of opinions in communities, or the mechanism of democratic

societies, and similar physical phenomena occur, as well. For instance, the so-called voter

model is a well-known problem (see e.g. [CG]): on the k-dimensional infinite grid each

square changes its colour to its opposite with a probability of the ratio of the opposite

colour among the 2k neighbours of the square. (Thus the black part can also decrease in

this model, which is very reasonable: each opinion has an opposite to spread.) Or, reaching

the idea of regressing the population of one colour, we refer to J. H. Conway’s Game of

life, where the main question is how an initial configuration changes in time (see [BCG] or

[T]). Besides, the time taken until reaching the final configuration in our original process

could be also of interest, perhaps it would bring new light to the problem. Finally, we can

examine our process on other underlying graphs instead of the square grid, or on random

graphs; some connections with usual graph parameters (connectivity, expander property,

etc.) may occur.

In this paper we are using the following notations:

If for some functions f(n) and g(n) there is a constant c > 0 such that f(n) ≤ cg(n) for

all sufficiently large n, then we write f(n) = O(g(n)), if ∃ d > 0 such that f(n) ≥ dg(n) for

all sufficiently large n, then f(n) = Ω(g(n)), if both conditions hold, then f(n) = Θ(g(n)),

and if the constants c and d can be arbitrarily close to each other, i.e. limn→∞

f(n)
g(n) = c,

then we can speak about asymptotical equality, f(n) ∼ cg(n).

The k-dimensional cube has one k-dimensional face (the cube itself), 2k pieces of the

(k − 1)-dimensional faces, and so on, 2k pieces of the 0-dimensional ones (the vertices).

The number of the i-dimensional faces is denoted by fk(i).

The abbreviation ‘w.h.p.’ stands for ‘with high probability’ and means ‘with a proba-

bility tending to 1’. We also remark that in Chapter 2 we may and will assume, whenever

needed, that n is sufficiently large.
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