
1. Deterministic disease on the k-dimensional board

In this chapter we are discussing the behaviour of the function Gk,l(n), what is the

minimal number of initial black cubes needed for a contagious configuration, i.e. for the

complete painting of the k-dimensional n× . . .×n cube board if we follow the l-neighbour

painting rule, where 1 ≤ l ≤ 2k. For more definitions and background see the Introduction.

First of all let us describe the solution of the initial exercise, i.e. the case G2,2(n) =

G(n):

Fact 1.1. [Folklore] G(n) = n.

Proof. If we paint black the squares of a diagonal, it will be a contagious configuration,

so G(n) ≤ n. For a lower bound we can use the so-called invariant method: a suitable

invariant is the perimeter of the black part of the board, which can never increase if we

use our 2-neighbour painting rule. If we succeed in painting black the whole chessboard,

we will have a perimeter 4n, so we need at least n black squares at the beginning.

We also give a second proof, which can be applied for some other versions of this

original problem, as well. In Chapter 2 we will see that from some respect it is more

natural to consider a torus of n2 squares instead of the n × n square board, or, as a

middle figure, a cylinder board. The corresponding functions are GT (n) and GC(n). It

is clear that GT (n) ≤ GC(n) ≤ G(n), as we have the same number of squares, but more

adjacencies.

Fact 1.2. GT (n) = n − 1, GC(n) = G(n) = n.

Proof. Clearly, we can order the initial black squares of a contagious configuration in such

a way that if we consider the final configuration determined by the first k initial squares,

this will always be connected until we reach the all-black board. Let us consider now the

diameter of this growing black part of the board, where the metric is generated by the

L1-norm, i.e. dist((a1, a2), (b1, b2)) = |a1 − b1|+ |a2 − b2|. (This metric on the square grid

is sometimes called the Manhattan-distance, inspite of the tradition that for almost all the

metropolises the antique Rome served as a model, so it would be more respectful to call

it the Rome-distance.) Thus the all-black n × n square board has a diameter of 2n, the

cylinder of 2n − 1 and the torus of 2n − 2.

When we put in the initial black squares one by one according to the ordering de-

scribed above, using our 2-neighbour painting rule the diameter of the resulting final black

configuration can increase by at most 2 at each step. We start with an all-white board

without initial black squares, so we need at least n squares for the square board and the

cylinder, and n− 1 for the torus. On the other hand, it is easy to see that this amount of

initial black squares will suffice indeed.

Now we are going to apply these simple methods and other ideas to determine the

exact order of magnitude of our function Gk,l(n).
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1.1. General bounds

We can achieve exact values for the function Gk,l(n) only in some very special cases.

It is trivial that Gk,1(n) = 1, and that for l = 2k we need a chessboard-like initial config-

uration of black cubes, thus Gk,2k(n) ∼ 1
2
nk. One may expect that the perimeter method

can work exactly only for l = k — what can we hope for the other cases? Generalizing the

method of our starting exercise we get a relevant result for l ≥ k:

Perimeter Lemma. Gk,l(n) ≥ l−k
l

nk + k
l
nk−1. Furthermore, Gk,k(n) = nk−1.

Proof. During the spreading of black cubes let us watch those (k − 1)-dimensional faces

of the cubes who are in between a black and a white cube. We call them “free black

faces”, and the number of them is exactly the surface of the black part in the board. If

we follow an l-neighbour painting rule, when a white cube becomes black, we lose at least

l free black faces, and gain at most 2k − l of them, so we lose at least 2(l − k) of the

surface altogether. Now let us suppose that we have x initial black cubes, and they form

a contagious configuration. They have at most 2kx free black faces, during the process

nk − x new black cubes arise, and the all-black board has a surface of 2knk−1, so

2kx − 2(l − k)(nk − x) ≥ 2knk−1,

which gives the desired bound for x.

For l = k this lower bound is nk−1. For the same upper bound we need a generalization

of the diagonal construction used for G(n) = n.

For k=l=1 there exist n contagious configuration of size 1 (here n=4):

Figure 1.1.a

For k=l=2 we can find n solutions again, with a cyclic combination of the 1-dimen-

sional constructions:

Figure 1.1.b

For three dimensions we use the cyclic combinations of the k = 2 configurations, and

so on, we always can build up the n appropriate solutions. (On the figure we can see two

possibilities from the k = l = 3, n = 4 case.)
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Figure 1.1.c

These constructions consist of nk−1 black cubes, so we are done.

Thus for fixed l ≥ k we have Gk,l(n) = Ω(nk). With a simple geometric trick we can

get a lower bound even for the cases l < k:

Projection Lemma. Gk,l(n) ≥ Gk−1,l(n).

Proof. Let us consider a k-dimensional board with a contagious configuration of Gk,l(n)

black cubes, and observe the process projected down to a fixed (k− 1)-dimensional face of

the board. In this projected image a (k − 1)-cube is black iff at least one of its n originals

was black. If such a cube in the image becomes black, then it has an original becoming

black, and the images of the at least l black neighbours are distinct neighbours of our

(k − 1)-cube in the image. So the projected process itself follows an l-neighbour painting

rule, and the image of the initial black cubes was contagious for this (k − 1)-dimensional

process, so Gk,l(n) ≥ Gk−1,l(n).

Iterating this result for k ≥ l − 1 we get Gk,l(n) ≥ Gl−1,l(n), where the right hand

side can just be estimated by the Perimeter Lemma: Gk,l(n) = Ω(nl−1).

Now we need a good upper bound, which will come from the following recursive

painting technique:

Recursion Lemma. Gk,l(n) ≤ fk(k)Gk,l(n − 2) + fk(k − 1)Gk−1,l−1(n − 2) + fk(k −

2)Gk−2,l−2(n− 2) + . . .+ fk(0)G0,l−k(n− 2), where fk(m) is the number of m-faces of the

k-dimensional cube.

Proof. Into the middle of a k-dimensional board of size n place a board of size n − 2,

with a contagious configuration of Gk,l(n − 2) black cubes. Still we have to paint black

the cubes next to the surface of the board, these cubes form fk(k− 1) (k− 1)-dimensional,

fk(k − 2) (k − 2)-dimensional, etc., fk(0) 0-dimensional subboards of size n − 2 each. In

the (k− 1)-dimensional subboards all the cubes have already a black neighbour because of

the black k-dimensional subboard in the middle, so we need only Gk−1,l−1(n − 2) initial

black cubes for each these (k − 1)-dimensional subboards to paint them black all. In the

(k − 2)-dimensional subboards the cubes have already two black neighbours, so we need

only Gk−2,l−2(n − 2) initial black cubes for each, and so on. (Note that for l ≤ k we have

Gi,l−k(m) = 0.) Summing up these numbers of initial black cubes we get the result.
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Figure 1.2

This result roughly says that our function does not grow too quickly. We can make

this observation more precise by a double induction on k and l. Let us suppose that for

some fixed k, l we have Gk,l(n) = O(nl−1), what is trivial for k = 0, l arbitrary, and

for l = 1, k arbitrary. Plugging this inductional hypothesis for less than k and l in the

Recursion Lemma we get that the difference Gk,l(n)−Gk,l(n− 2) is smaller than the sum

of k (that is, a fixed number of) O(nl−2) terms, so it is O(nl−2) itself. Thus, as known

about the discrete differential operator of sequences, Gk,l(n) = O(nl−1), and our upper

bound has been proved.

Combining these results we have

Theorem 1.1. For fixed k, l we have

Gk,l(n) =

{

Θ(nl−1), if 1 ≤ l ≤ k
Θ(nk), if k + 1 ≤ l ≤ 2k

(1)

Our next task is to determine exact asymptotics for as many special cases as possible.

1.2. Asymptotics for two and three dimensions

First we consider the disease problem on the two-dimensional square.

Theorem 1.2.

(a) G2,1(n) = 1

(b) G2,2(n) = n

(c) G2,3(n) ∼ 1
3n2,

or more exactly, 1
3
n2 + 2

3
n ≤ G2,3(n) ≤ 1

3
n2 + 4

3
n + O(1).

(d) G2,4(n) ∼ 1
2n2,
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or more exactly, 1
2n2 + 1

2n ≤ G2,4(n) ≤ 1
2n2 + 2n + O(1).

Proof. The parts (a) and (b) have already been proved. For (c) and (d) the lower bounds

come from the Perimeter Lemma. The construction for the upper bound of (c):

Figure 1.3.a

The exact realization depends on the mod 6 residue of n. The result we get is the best

for the case n ≡ 2 (mod 6), namely 1
3n2 + n + O(1), and the worst for n ≡ 0, 1 (mod 6),

namely 1
3
n2 + 4

3
n + O(1).

The construction for (d), slightly depending on whether n is odd or even:

Figure 1.3.b

Now let us see the three-dimensional cube board.

Theorem 1.3.

(a) G3,1(n) = 1

(b) G3,2(n) ∼ 3
2
n,

or more exactly, G3,2(n) = b 3
2nc

(c) G3,3(n) = n2

(d) G3,4(n) ∼ 1
4n3,
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or more exactly, 1
4n3 + 3

4n2 ≤ G3,4(n) ≤ 1
4n3 + 2n2

(e) 2
5n3 + 3

5n2 ≤ G3,5(n) ≤ 3
7n3 + O(n2)

(f) G3,6(n) ∼ 1
2n3,

or more exactly, 1
2
n3 + 1

2
n2 ≤ G3,6(n) ≤ 1

2
n3 + 3n2.

Proof. The cases (a) and (c) are already known. The lower bounds for (d), (e) and (f)

come from the Perimeter Lemma. The lower bound for (b) can be verified by the method

of Fact 1.2.: in the L1-norm the k-dimensional cube board of size n has a diameter of kn,

the first initial black cube has a diameter of k, each of the other initial black cubes can

increase the diameter by at most 2, so for k = 3 we need b 3
2
nc initial black cubes at least.

And this is enough, as the figure shows:

Figure 1.4.a

For the upper bound of (d) let us divide our board into n slabs; each of these slabs can

be considered as a two-dimensional subboard. If into each odd slab we place a contagious

configuration corresponding to G2,4(n), these slabs become black by themselves, and for

the even slabs it is enough to start with G2,2(n)-configurations. This is approximately
n
2 ( 1

2n2 + 2n) + n
2 n ∼ 1

4n3 altogether, which can be calculated exactly for even and odd

values of n.

Figure 1.4.b

The case (f) is very similar to Theorem 1.2. (d). All the cubes on the boundary have

to be black initially, and we need a chessboard-like configuration inside the board. This is

approximately 1
2 (n − 2)3 + 6n2 ∼ 1

2n3 initial black squares.
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Finally, here is the first unsolved problem, the case of G3,5(n). The lower bound is

around 2
5n3, but, if we generalize the construction of Theorem 1.2 (c) to the case l = k−1,

we get only 4
9n3:

Let us divide the board into slabs again. The slabs with number 1 and 2 get a

chessboard-like initial configuration, this is enough to paint them black all. Thus we need

only G2,3(n)-configurations for the slabs with number 3, the final result is ∼ 2
3n 1

2n2 +
1
3
n 1

3
n2 = 4

9
n3 initial black cubes.

Figure 1.4.c

We may consider the generalization of another construction for G2,3(n) ≤ 1
3n2 +O(n)

to get G3,5(n) ≤ 3
7
n3+O(n2). But we think that the truth is 2

5
n3 (see Conjecture 1.1 in the

next section), and the exact description of this construction would be rather complicated,

so we save the Reader it. This construction is inductive: in two dimensions we pick four

rotated copies of an already existing n × n construction, and glue them together into a

(2n− 1)× (2n− 1) construction, deleting a lot of black squares becoming unnecessary. In

three dimensions we do the same with eight rotated copies, but here we already do not get

the desired result, only ∼ 3
7n3.

1.3. Higher dimensions

For the higher dimensional cases we have the generalizations of our previous results.

Theorem 1.4.

(a) Gk,2(n) ∼ k
2n,

or more exactly, Gk,2(n) =
⌈

k(n−1)
2

⌉

+ 1.

(b)
(

Gk,k+2(n) ∼ 2
k+2

nk
)

⇒
(

Gk+1,k+2(n) ∼ 1
k+2

nk+1
)

.

(c) Gk,2k(n) ∼ 1
2
nk,

or more exactly, 1
2nk + 1

2nk−1 ≤ Gk,2k(n) ≤ 1
2nk + knk−1.
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Proof. One can easily apply the methods of Theorem 1.3 (b), (d) and (f). However, the

construction for Gk,2(n), when n is even, is not so straightforward as was for k = 3. First

we construct it for n = 2:

Our k-dimensional cube board is nothing else in this case, but the partially ordered

set
(

2{1,...,k},⊆
)

, with edges between subsets differing by exactly one element in addition

or deletion. (In fact, this is the Hasse-diagram of our poset.) We can divide our poset into

k + 1 levels according to the number of elements in the subsets: 0th, 1st, . . . , kth. Now we

choose the following dk/2e + 1 subsets (i.e. cubes of the board) to be black in the initial

configuration: two arbitrary subsets from the 1st level, and d(k − 2)/2e subsets from the

2nd level, such that their union covers exactly those k − 2 points which are not in the two

subsets chosen from the 1st level. These subsets paint black the entire 1st level at once,

and all the other subsets afterwards, so we are ready.

For n > 2 (n is even) we only have to add k(n−2)/2 initial black cubes to the previous

construction, i.e. (n− 2)/2 for each direction. This can be carried out in the natural way,

similarly to Figure 1.4.a.

Finally, based on our results above, we state the following conjecture:

Conjecture 1.1. For k + 1 ≤ l ≤ 2k the Perimeter Lemma is sharp, i.e. Gk,l(n) =
l−k

l
nk + O(nk−1).

The case l < k seems to be hopeless at this time.
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