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Exercise⊲ 1 (The Fourier expansion of Brownian motion). Let Zn be iid standard normal variables,

n = 0, 1, . . . , and

B(t) : =
t√
π
· Z0 +

√

2

π

∞
∑

m=1

sin(mt)

m
· Zm.

Prove that:

(a) For any t ≥ 0 fixed, B(t) is almost surely finite.

(b) Almost surely, B(t) is finite for all t ≥ 0.

(c) Cov(B(s), B(t)) = min{s, t}.
(d)* Can you show that B(t) is a.s. continuous?

Hints:

• cos(α± β) = cosα cosβ ∓ sinα sinβ.

• Taking the Fourier transform of the right hand side below, show and then use:

∞
∑

k=1

cos(kx)

k2
=

3x2 − 6πx+ 2π2

12
, 0 ≤ x ≤ 2π.

Exercise⊲ 2. For any sequence X1, X2 . . . of random variables, their tail σ-field is
⋂∞

n=1 σ{Xn, Xn+1, . . . } .
On the other hand, the exchangeable σ-field consists of events that are invariant under finitely supported

permutations of the variables. Kolmogorov’s 0-1 law says that for independent variables, any event in

their tail field has probability 0 or 1, while the Hewitt-Savage 0-1 law says that exchangeable events for

independent variables have probability 0 or 1. Show that the tail field is contained in the exchangeable field,

but not vice versa, hence HS01 is stronger than K01.

Exercise⊲ 3. Let {Bt : t ≥ 0} be standard 1-dimensional Brownian motion, and f : [0,∞) −→ R be any

fixed continuous function.

(a) Prove that for any ǫ > 0, we have P
[

|Bt − f(t)| < ǫ for all t ∈ [0, 1]
]

> 0 .

(b) Prove that for any K > 0, we have P
[

|Bt − f(t)| < K for all t ∈ [0,∞)
]

= 0 .

Exercise⊲ 4. Let {Wt : t ∈ [0, 1]} be standard 1-dimensional Brownian motion, and consider Bt := Wt− tW1

for t ∈ [0, 1]. It is called the standard Brownian bridge.

(a) Show that this is a Gaussian process with continuous paths, with Cov(Bs, Bt) = s(1 − t) for 0 ≤ s ≤
t ≤ 1.

(b) Deduce that {Bt : t ∈ [0, 1]} and {B1−t : t ∈ [0, 1]} have the same distribution.

(c) * For ǫ > 0, let {W ǫ
t : t ∈ [0, 1]} be the process Wt conditioned on the event that {W1 ∈ (−ǫ, ǫ)}. Show

that the weak limit of {W ǫ
t : t ∈ [0, 1]} as ǫ → 0 is the Brownian bridge {Bt : t ∈ [0, 1]}.
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Exercise⊲ 5. Let T be the Galton-Watson tree with offspring distribution ξ ∼ Geom(1/2). Draw the tree

into the plane with root ρ, add an extra vertex ρ′ and an edge (ρ, ρ′), and walk around the tree, starting

from ρ′, going through each “corner” of the tree once, through each edge twice (once on each side). At

each corner visited, consider the graph distance from ρ′: let this be process be {Xt}2nt=0, which is positive

everywhere except at t = 0, 2n, where n is the number of vertices of the original tree T .

Figure 1: The contour walk around a tree.

(a) Using the memoryless property of Geom(1/2), show that {Xt} is SRW on Z.

(b) Using martingale techniques, show that P[T has height ≥ n] = 1/n.

(c) Show that, conditioning T to have height at least n, with high probability the height will be around n

and the total volume will be around n2, where “around” means “up to constant factors”.

(d)* Any ideas how one could use 1-dimensional Brownian motion to define a “continuum random tree”?

Exercise⊲ 6.

(a) Show that dimM

(

{ 1
n : n = 1, 2, . . .}

)

= 1/2, where dimM denotes Minkowski dimension.

(b) Show that Hausdorff dimension has the countable stability property: dimH

⋃

i Ei = supi dimH Ei.

A bit of a diversion, but I cannot help myself. For the study of random walks and percolation on general

locally finite rooted trees T , Russ Lyons (1990) defined an “average branching number”

br(T ) := sup

{

λ ≥ 1 : inf
Π

∑

e∈Π

λ−|e| > 0

}

, (1)

where the infimum is taken over all cutsets Π ⊂ E(T ) separating the root o ∈ V (T ) from infinity, and |e|
denotes the distance of the edge e from o.

Exercise⊲ 7. Let T be a locally finite infinite tree with root o.

(a) Show that br(T ) does not depend on the choice of the root o.

(b) Show that the d+ 1-regular tree has br(Td+1) = d.

(c) Define the lower growth rate of T by gr(T ) := lim infn |Tn|1/n, where Tn is the set of vertices at distance

exactly n from o. Show that br(T ) ≤ gr(T ).

A clear motivation for definition (1) is given by the following interpretation. Let us denote the set of

non-backtracking infinite rays starting from o by ∂T , the boundary of the tree, equipped with the metric

d(ξ, η) := e−|ξ∧η|, where ξ ∧ η is the last common vertex of the two rays, and |ξ ∧ η| is its distance from o.

Then, basically by definition,

edimH (∂T,d) = br(T ) and edimM
(∂T,d) = gr(T ) .

Since Hausdorff dimension has, over the past hundred years, proved a better notion than Minkowski dimen-

sion, the branching number ought to be a better way of measuring average branching than growth.
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Exercise⊲ 8. Find the branching number of the following two trees (see Figure 2):

(a) The quasi-transitive tree with degree 3 and degree 2 vertices alternating.

(b) The so-called 3-1-tree, which has 2n vertices on each level n, with the left 2n−1 vertices each having

one child, the right 2n−1 vertices each having three children; the root has two children.

Figure 2: A quasi-transitive tree and the 3-1 tree.

Exercise⊲ 9. If you know at this point what it means, prove that the 3-1 tree above is recurrent for simple

random walk.

Exercise⊲ 10.

(a) Let X and Y be independent standard normals. Show that X/Y has Cauchy distribution.

(b) Prove that the harmonic measure on the line x = 1 for 2-dim BM started at the origin is given by the

Cauchy distribution.

Exercise⊲ 11. Let Xi be iid variables with distribution P[Xi > t ] = P[Xi < −t ] = t−2/2 for all t ≥ 1. Find

deterministic scaling factors an and a non-degenerate distribution Y such that (X1 + · · ·+Xn)/an → Y in

distribution.

Exercise⊲ 12. The Hungarian Media Police has observed five possible TV-watching behaviours that people

may have: (1) never watches the TV; (2) watches only state channels; (3) regularly watches the TV; (4)

TV-addict; (5) brain-dead. The transitions between these states may be modelled by a Markov chain, with

the following transition matrix:
















1 0 0 0 0

0.6 0 0.4 0 0

0.3 0 0.3 0.1 0.3

0 0 0.4 0.4 0.2

0 0 0 0 1

















.

In particular, nobody becomes a state channel fan — one has to be born like that.

(a) If one starts as a state channel fan, what is the probability that they end up brain-dead?

(b) What is the expected time for a state channel fan to reach a terminal state: to quit TV completely, or

to become brain-dead?

Exercise⊲ 13. Let X be a Poi(λ) variable, p ∈ (0, 1), and given X , let Y be Binom(X, p), while Z = X −Y .

By noticing that the two-variable moment generating function φY,Z(t, s) := E[ etY+sZ ] decomposes as a

product, show that Y and Z are independent Poi(λp) and Poi(λ(1− p)) variables, respectively.

Exercise⊲ 14. Give symmetric weights w(i, i + 1) for i = 0, 1, 2, . . . such that the resulting continuous time

random walk on N, started from any vertex, almost surely reaches infinity in finite time.
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Exercise⊲ 15. Prove that any finite state Markov chain has a recurrent state. (Hint: consider the smallest

subset U with the property that starting the chain from anywhere inside U will not take you out of U . And

note that you are not supposed to use Banach-Alaoglu here: the idea is to give an elementary proof.)

Exercise⊲ 16. Prove that in any irreducible and aperiodic Markov chain P =
(

p(x, y)
)

x,y∈V
on a finite state

space V , there is some n such that pn(x, y) > 0 for all x, y ∈ V .

Recall the notation

d(t) := sup
x∈V

dTV

(

pt(x, ·), π(·)
)

and d̄(t) := sup
x,y∈V

dTV

(

pt(x, ·), pt(y, ·)
)

,

and τTV
mix := inf{t : d(t) < 1/4}.

Exercise⊲ 17.

(a) Show that d(t) ≤ d̄(t) ≤ 2d(t).

(b) Using the coupling definition of TV-distance, show that d̄(t+ s) ≤ d̄(t) d̄(s).

(c) Using the previous items, show that d(ℓτTV
mix) ≤ 2−ℓ, hence τTV

mix indeed captures closeness to stationarity.

Exercise⊲ 18. Consider simple random walk on the dumbbell graph: take two copies of the complete graph

Kn, add a loop at each vertex (so that the degrees become n), except at one distinguished vertex in each

copy, which will be connected to each other by an edge. Show that d(1) = 1/2, but τTV
mix ≍ n2. That is, in

the definition of τTV
mix, the 1/4 cannot be replaced by 1/2.

Exercise⊲ 19. Consider lazy SRW on the cycle Cn. Show that for any t > 0 there exists δ0(t), δ1(t) > 0,

with limt→0 δ0(t) = 1, such that, for any n, we have δ0(t) < d(tn2) < 1 − δ1(t). Conclude that there is no

cutoff here in total variation. (It is also true that limt→∞ δ1(t) = 1 can be achieved, but this is not part of

the exercise now.)

Exercise⊲ 20. Show that limǫ→0 dTV

(

N(0, 1), N(ǫ, 1)
)

= 0, where N(µ, σ2) is the normal distribution. Using

this and the local version of the de Moivre–Laplace theorem, prove that dTV

(

Binom(n, 1/2), Binom(n, 1/2)+

nβ
)

→ 0 for any fixed β < 1/2.

Exercise⊲ 21. Let M0,M1,M2, . . . be a martingale, and let Xi = Mi − Mi−1 be its difference sequence.

Show that E[Xi1 · · ·Xik ] = 0 for any k ≥ 1 and i1 < · · · < ik. Hence the Azuma-Hoeffding inequality (from

the class of March 8) can be used for MG differences.

Exercise⊲ 22. Consider a reversible Markov chain P on a finite state space V with stationary distribution

π and absolute spectral gap gabs. This exercise explains why τrelax = 1/gabs is called the relaxation time.

(a) For f : V −→ R, let Varπ[f ] := Eπ[f
2] − (Eπf)

2 =
∑

x f(x)
2π(x) −

(
∑

x f(x)π(x)
)2
. Show that

gabs > 0 implies that limt→∞ P tf(x) = Eπf for all x ∈ V . Moreover,

Varπ[P
tf ] ≤ (1− gabs)

2t Varπ[f ] ,

with equality at the eigenfunction corresponding to the λi giving gabs = 1 − |λi|. Hence τrelax is the

time needed to reduce the standard deviation of any function to 1/e of its original standard deviation.

(b) Using part (a), prove that there is a universal constant C < ∞ such that τrelax < C τTV
mix.

Exercise⊲ 23. Consider the first digits of 1, 2, 4, . . . , 2n, . . . , in base 10. Do we ever see 7? And 8? Which is

more frequent? (Hint: log10 2 is irrational.)
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