CEU Probability 2 problems

Gábor Pete
http://www.math.bme.hu/~gabor
March 29, 2017
\triangleright Exercise 1 (The Fourier expansion of Brownian motion). Let Z_{n} be iid standard normal variables, $n=0,1, \ldots$, and

$$
B(t):=\frac{t}{\sqrt{\pi}} \cdot Z_{0}+\sqrt{\frac{2}{\pi}} \sum_{m=1}^{\infty} \frac{\sin (m t)}{m} \cdot Z_{m}
$$

Prove that:
(a) For any $t \geq 0$ fixed, $B(t)$ is almost surely finite.
(b) Almost surely, $B(t)$ is finite for all $t \geq 0$.
(c) $\operatorname{Cov}(B(s), B(t))=\min \{s, t\}$.
(d) * Can you show that $B(t)$ is a.s. continuous?

Hints:

- $\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta$.
- Taking the Fourier transform of the right hand side below, show and then use:

$$
\sum_{k=1}^{\infty} \frac{\cos (k x)}{k^{2}}=\frac{3 x^{2}-6 \pi x+2 \pi^{2}}{12}, \quad 0 \leq x \leq 2 \pi .
$$

$\triangleright \quad$ Exercise 2. For any sequence $X_{1}, X_{2} \ldots$ of random variables, their tail σ-field is $\bigcap_{n=1}^{\infty} \sigma\left\{X_{n}, X_{n+1}, \ldots\right\}$. On the other hand, the exchangeable σ-field consists of events that are invariant under finitely supported permutations of the variables. Kolmogorov's 0-1 law says that for independent variables, any event in their tail field has probability 0 or 1, while the Hewitt-Savage 0-1 law says that exchangeable events for independent variables have probability 0 or 1 . Show that the tail field is contained in the exchangeable field, but not vice versa, hence HS01 is stronger than K01.
\triangleright Exercise 3. Let $\left\{B_{t}: t \geq 0\right\}$ be standard 1-dimensional Brownian motion, and $f:[0, \infty) \longrightarrow \mathbb{R}$ be any fixed continuous function.
(a) Prove that for any $\epsilon>0$, we have $\mathbf{P}\left[\left|B_{t}-f(t)\right|<\epsilon\right.$ for all $\left.t \in[0,1]\right]>0$.
(b) Prove that for any $K>0$, we have $\mathbf{P}\left[\left|B_{t}-f(t)\right|<K\right.$ for all $\left.t \in[0, \infty)\right]=0$.
\triangleright Exercise 4. Let $\left\{W_{t}: t \in[0,1]\right\}$ be standard 1-dimensional Brownian motion, and consider $B_{t}:=W_{t}-t W_{1}$ for $t \in[0,1]$. It is called the standard Brownian bridge.
(a) Show that this is a Gaussian process with continuous paths, with $\operatorname{Cov}\left(B_{s}, B_{t}\right)=s(1-t)$ for $0 \leq s \leq$ $t \leq 1$.
(b) Deduce that $\left\{B_{t}: t \in[0,1]\right\}$ and $\left\{B_{1-t}: t \in[0,1]\right\}$ have the same distribution.
(c)* For $\epsilon>0$, let $\left\{W_{t}^{\epsilon}: t \in[0,1]\right\}$ be the process W_{t} conditioned on the event that $\left\{W_{1} \in(-\epsilon, \epsilon)\right\}$. Show that the weak limit of $\left\{W_{t}^{\epsilon}: t \in[0,1]\right\}$ as $\epsilon \rightarrow 0$ is the Brownian bridge $\left\{B_{t}: t \in[0,1]\right\}$.
$\triangleright \quad$ Exercise 5. Let T be the Galton-Watson tree with offspring distribution $\xi \sim \operatorname{Geom}(1 / 2)$. Draw the tree into the plane with root ρ, add an extra vertex ρ^{\prime} and an edge (ρ, ρ^{\prime}), and walk around the tree, starting from ρ^{\prime}, going through each "corner" of the tree once, through each edge twice (once on each side). At each corner visited, consider the graph distance from ρ^{\prime} : let this be process be $\left\{X_{t}\right\}_{t=0}^{2 n}$, which is positive everywhere except at $t=0,2 n$, where n is the number of vertices of the original tree T.

Figure 1: The contour walk around a tree.
(a) Using the memoryless property of $\operatorname{Geom}(1 / 2)$, show that $\left\{X_{t}\right\}$ is SRW on \mathbb{Z}.
(b) Using martingale techniques, show that $\mathbf{P}[T$ has height $\geq n]=1 / n$.
(c) Show that, conditioning T to have height at least n, with high probability the height will be around n and the total volume will be around n^{2}, where "around" means "up to constant factors".
(d)* Any ideas how one could use 1-dimensional Brownian motion to define a "continuum random tree"?
$\triangleright \quad$ Exercise 6.
(a) Show that $\operatorname{dim}_{M}\left(\left\{\frac{1}{n}: n=1,2, \ldots\right\}\right)=1 / 2$, where dim_{M} denotes Minkowski dimension.
(b) Show that Hausdorff dimension has the countable stability property: $\operatorname{dim}_{H} \bigcup_{i} E_{i}=\sup _{i} \operatorname{dim}_{H} E_{i}$.

A bit of a diversion, but I cannot help myself. For the study of random walks and percolation on general locally finite rooted trees T, Russ Lyons (1990) defined an "average branching number"

$$
\begin{equation*}
\operatorname{br}(T):=\sup \left\{\lambda \geq 1: \inf _{\Pi} \sum_{e \in \Pi} \lambda^{-|e|}>0\right\} \tag{1}
\end{equation*}
$$

where the infimum is taken over all cutsets $\Pi \subset E(T)$ separating the root $o \in V(T)$ from infinity, and $|e|$ denotes the distance of the edge e from o.
$\triangleright \quad$ Exercise 7. Let T be a locally finite infinite tree with root o.
(a) Show that $\operatorname{br}(T)$ does not depend on the choice of the root o.
(b) Show that the $d+1$-regular tree has $\operatorname{br}\left(\mathbb{T}_{d+1}\right)=d$.
(c) Define the lower growth rate of T by $\underline{\operatorname{gr}}(T):=\lim _{\inf }^{n}\left|T_{n}\right|^{1 / n}$, where T_{n} is the set of vertices at distance exactly n from o. Show that $\operatorname{br}(T) \leq \underline{\operatorname{gr}}(T)$.

A clear motivation for definition (11) is given by the following interpretation. Let us denote the set of non-backtracking infinite rays starting from o by ∂T, the boundary of the tree, equipped with the metric $d(\xi, \eta):=e^{-|\xi \wedge \eta|}$, where $\xi \wedge \eta$ is the last common vertex of the two rays, and $|\xi \wedge \eta|$ is its distance from o. Then, basically by definition,

$$
e^{\operatorname{dim}_{H}(\partial T, d)}=\operatorname{br}(T) \quad \text { and } \quad e^{\underline{\operatorname{dim}}_{M}(\partial T, d)}=\underline{\operatorname{gr}}(T) .
$$

Since Hausdorff dimension has, over the past hundred years, proved a better notion than Minkowski dimension, the branching number ought to be a better way of measuring average branching than growth.
\triangleright Exercise 8. Find the branching number of the following two trees (see Figure 2):
(a) The quasi-transitive tree with degree 3 and degree 2 vertices alternating.
(b) The so-called 3-1-tree, which has 2^{n} vertices on each level n, with the left 2^{n-1} vertices each having one child, the right 2^{n-1} vertices each having three children; the root has two children.

Figure 2: A quasi-transitive tree and the 3-1 tree.
\triangleright Exercise 9. If you know at this point what it means, prove that the 3-1 tree above is recurrent for simple random walk.
$\triangleright \quad$ Exercise 10.
(a) Let X and Y be independent standard normals. Show that X / Y has Cauchy distribution.
(b) Prove that the harmonic measure on the line $x=1$ for 2-dim BM started at the origin is given by the Cauchy distribution.
$\triangleright \quad$ Exercise 11. Let X_{i} be iid variables with distribution $\mathbf{P}\left[X_{i}>t\right]=\mathbf{P}\left[X_{i}<-t\right]=t^{-2} / 2$ for all $t \geq 1$. Find deterministic scaling factors a_{n} and a non-degenerate distribution Y such that $\left(X_{1}+\cdots+X_{n}\right) / a_{n} \rightarrow Y$ in distribution.
\triangleright Exercise 12. The Hungarian Media Police has observed five possible TV-watching behaviours that people may have: (1) never watches the TV; (2) watches only state channels; (3) regularly watches the TV; (4) TV-addict; (5) brain-dead. The transitions between these states may be modelled by a Markov chain, with the following transition matrix:

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0.6 & 0 & 0.4 & 0 & 0 \\
0.3 & 0 & 0.3 & 0.1 & 0.3 \\
0 & 0 & 0.4 & 0.4 & 0.2 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

In particular, nobody becomes a state channel fan - one has to be born like that.
(a) If one starts as a state channel fan, what is the probability that they end up brain-dead?
(b) What is the expected time for a state channel fan to reach a terminal state: to quit TV completely, or to become brain-dead?
$\triangleright \quad$ Exercise 13. Let X be a $\operatorname{Poi}(\lambda)$ variable, $p \in(0,1)$, and given X, let Y be $\operatorname{Binom}(X, p)$, while $Z=X-Y$. By noticing that the two-variable moment generating function $\phi_{Y, Z}(t, s):=\mathbf{E}\left[e^{t Y+s Z}\right]$ decomposes as a product, show that Y and Z are independent $\operatorname{Poi}(\lambda p)$ and $\operatorname{Poi}(\lambda(1-p))$ variables, respectively.
$\triangleright \quad$ Exercise 14. Give symmetric weights $w(i, i+1)$ for $i=0,1,2, \ldots$ such that the resulting continuous time random walk on \mathbb{N}, started from any vertex, almost surely reaches infinity in finite time.
\triangleright Exercise 15. Prove that any finite state Markov chain has a recurrent state. (Hint: consider the smallest subset U with the property that starting the chain from anywhere inside U will not take you out of U. And note that you are not supposed to use Banach-Alaoglu here: the idea is to give an elementary proof.)
\triangleright Exercise 16. Prove that in any irreducible and aperiodic Markov chain $P=(p(x, y))_{x, y \in V}$ on a finite state space V, there is some n such that $p_{n}(x, y)>0$ for all $x, y \in V$.

Recall the notation

$$
d(t):=\sup _{x \in V} d_{\mathrm{TV}}\left(p_{t}(x, \cdot), \pi(\cdot)\right) \quad \text { and } \quad \bar{d}(t):=\sup _{x, y \in V} d_{\mathrm{TV}}\left(p_{t}(x, \cdot), p_{t}(y, \cdot)\right)
$$

and $\tau_{\text {mix }}^{\mathrm{TV}}:=\inf \{t: d(t)<1 / 4\}$.
$\triangleright \quad$ Exercise 17.
(a) Show that $d(t) \leq \bar{d}(t) \leq 2 d(t)$.
(b) Using the coupling definition of TV-distance, show that $\bar{d}(t+s) \leq \bar{d}(t) \bar{d}(s)$.
(c) Using the previous items, show that $d\left(\ell \tau_{\text {mix }}^{\mathrm{TV}}\right) \leq 2^{-\ell}$, hence $\tau_{\text {mix }}^{\mathrm{TV}}$ indeed captures closeness to stationarity.
$\triangleright \quad$ Exercise 18. Consider simple random walk on the dumbbell graph: take two copies of the complete graph K_{n}, add a loop at each vertex (so that the degrees become n), except at one distinguished vertex in each copy, which will be connected to each other by an edge. Show that $d(1)=1 / 2$, but $\tau_{\text {mix }}^{\mathrm{TV}} \asymp n^{2}$. That is, in the definition of $\tau_{\text {mix }}^{\mathrm{TV}}$, the $1 / 4$ cannot be replaced by $1 / 2$.
\triangleright Exercise 19. Consider lazy SRW on the cycle C_{n}. Show that for any $t>0$ there exists $\delta_{0}(t), \delta_{1}(t)>0$, with $\lim _{t \rightarrow 0} \delta_{0}(t)=1$, such that, for any n, we have $\delta_{0}(t)<d\left(t n^{2}\right)<1-\delta_{1}(t)$. Conclude that there is no cutoff here in total variation. (It is also true that $\lim _{t \rightarrow \infty} \delta_{1}(t)=1$ can be achieved, but this is not part of the exercise now.)
$\triangleright \quad$ Exercise 20. Show that $\lim _{\epsilon \rightarrow 0} d_{\mathrm{TV}}(\mathrm{N}(0,1), \mathrm{N}(\epsilon, 1))=0$, where $\mathrm{N}\left(\mu, \sigma^{2}\right)$ is the normal distribution. Using this and the local version of the de Moivre-Laplace theorem, prove that $d_{\mathrm{TV}}(\operatorname{Binom}(n, 1 / 2), \operatorname{Binom}(n, 1 / 2)+$ $\left.n^{\beta}\right) \rightarrow 0$ for any fixed $\beta<1 / 2$.
\triangleright Exercise 21. Let $M_{0}, M_{1}, M_{2}, \ldots$ be a martingale, and let $X_{i}=M_{i}-M_{i-1}$ be its difference sequence. Show that $\mathbf{E}\left[X_{i_{1}} \cdots X_{i_{k}}\right]=0$ for any $k \geq 1$ and $i_{1}<\cdots<i_{k}$. Hence the Azuma-Hoeffding inequality (from the class of March 8) can be used for MG differences.
$\triangleright \quad$ Exercise 22. Consider a reversible Markov chain P on a finite state space V with stationary distribution π and absolute spectral gap $g_{\text {abs }}$. This exercise explains why $\tau_{\text {relax }}=1 / g_{\text {abs }}$ is called the relaxation time.
(a) For $f: V \longrightarrow \mathbb{R}$, let $\operatorname{Var}_{\pi}[f]:=\mathbf{E}_{\pi}\left[f^{2}\right]-\left(\mathbf{E}_{\pi} f\right)^{2}=\sum_{x} f(x)^{2} \pi(x)-\left(\sum_{x} f(x) \pi(x)\right)^{2}$. Show that $g_{\text {abs }}>0$ implies that $\lim _{t \rightarrow \infty} P^{t} f(x)=\mathbf{E}_{\pi} f$ for all $x \in V$. Moreover,

$$
\operatorname{Var}_{\pi}\left[P^{t} f\right] \leq\left(1-g_{\mathrm{abs}}\right)^{2 t} \operatorname{Var}_{\pi}[f]
$$

with equality at the eigenfunction corresponding to the λ_{i} giving $g_{\mathrm{abs}}=1-\left|\lambda_{i}\right|$. Hence $\tau_{\text {relax }}$ is the time needed to reduce the standard deviation of any function to $1 / e$ of its original standard deviation.
(b) Using part (a), prove that there is a universal constant $C<\infty$ such that $\tau_{\text {relax }}<C \tau_{\text {mix }}^{\mathrm{TV}}$.
\triangleright Exercise 23. Consider the first digits of $1,2,4, \ldots, 2^{n}, \ldots$, in base 10. Do we ever see 7? And 8 ? Which is more frequent? (Hint: $\log _{10} 2$ is irrational.)

