Applications of Stochastics — Exercise sheet 1

Gábor Pete

http://www.math.bme.hu/~gabor

February 11, 2018

Notation. The probability measure for the Erdős-Rényi random graph G(n,p) is denoted by \mathbf{P}_p . For a random walk $\{X_t\}_{t\geq 0}$ on \mathbb{Z} , when started at $X_0 = \ell$, the probability measure and the corresponding expectation are denoted by \mathbf{P}_{ℓ} and \mathbf{E}_{ℓ} .

For an increasing event $A \subset \{0, 1\}^{\binom{n}{2}}$ for the Erdős-Rényi random graph G(n, p), the critical (threshold) density will be denoted by $p_c(n) = p_c^A(n) := \min\{p : \mathbf{P}_p[A] \ge 1/2\}.$

The comparisons \sim, \approx, \ll, \gg are used as agreed in class.

"With high probability", abbreviated as "w.h.p.", means "with probability tending to 1".

- Exercise 1. Prove the easy direction of Strassen's theorem. Namely, let (P, \leq) be a partially ordered set, \mathcal{B} a sigma-algebra on P, and π a probability measure on $P \times P$ with the product sigma-algebra, with the property that $\pi(\{(x, y) \in P \times P : x \leq y\}) = 1$. Let the first marginal of π be $\mu(A) := \pi(A \times P)$ and the second marginal be $\nu(A) := \pi(P \times A)$ for any $A \in \mathcal{B}$. Then, ν stochastically dominates μ ; i.e., for any increasing set $A \in \mathcal{B}$, we have $\mu(A) \leq \nu(A)$.
- \triangleright Exercise 2. Find the order of magnitude of the critical density $p_c(n)$ for the random graph G(n, p) containing a copy of the cycle C_4 . (Hint: as in class, use the 1st and 2nd Moment Methods.)
- ▷ Exercise 3.* Let *H* be the following graph with 5 vertices and 7 edges: a complete graph K_4 with an extra edge from one of the four vertices to a fifth vertex. Find the order of magnitude of $p_c(n)$ for the random graph G(n,p) containing a copy of this *H*. (Hint: the 1st Moment Method will give you $n^{-5/7}$, but the 2nd Moment Method now does not work! What goes wrong? What could be the right order of magnitude instead of $n^{-5/7}$?)

The critical density for the connectedness of G(n,p) is $p_c(n) = (1 + o(1))\frac{\ln n}{n}$, with a sharp threshold. The following exercise is not a proof of this, just a small indication for the value.

- \triangleright Exercise 4. For $p = \frac{\lambda \ln n}{n}$, with $\lambda > 1$ fixed, show that, with probability tending to 1, there are no isolated vertices in G(n, p). On the other hand, for $\lambda < 1$ fixed, there exist isolated vertices w.h.p.
- \triangleright Exercise 5. Consider a Galton-Watson process with offspring distribution ξ , $\mathbf{E}\xi = \mu$. Let Z_n be the size of the *n*th level, with $Z_0 = 1$, the root. Recall that Z_n/μ^n is a martingale.
 - (a) Assuming that $\mu > 1$ and $\mathbf{E}[\xi^2] < \infty$, first show that $\mathbf{E}[Z_n^2] \le C(\mathbf{E}Z_n)^2$. (Hint: use the conditional variance formula $\mathbf{D}^2[Z_n] = \mathbf{E}[\mathbf{D}^2[Z_n \mid Z_{n-1}]] + \mathbf{D}^2[\mathbf{E}[Z_n \mid Z_{n-1}]]$.) Then, using the Second Moment Method, deduce that the GW process survives with positive probability.
 - (b) Extend the above to the case $\mathbf{E}\xi = \infty$ or $\mathbf{D}\xi = \infty$ by a truncation $\xi \mathbf{1}_{\xi < K}$ for K large enough.
- ▷ **Exercise 6.** For the GW tree with offspring distribution $Poisson(1 + \epsilon)$, show that the survival probability is asymptotically 2ϵ , as $\epsilon \to 0$.

The following exercise is already preparation for the next class, critical Galton-Watson trees.

Exercise 7. Let T be the Galton-Watson tree with offspring distribution $\xi \sim \text{Geom}(1/2) - 1$. Draw the tree into the plane with root ρ , add an extra vertex ρ' and an edge (ρ, ρ') , and walk around the tree, starting from ρ' , going through each "corner" of the tree once, through each edge twice (once on each side). At each corner visited, consider the graph distance from ρ' : let this be process be $\{X_t\}_{t=0}^{2n}$, which is positive everywhere except at t = 0, 2n, where n is the number of vertices of the original tree T.

Figure 1: The contour walk around a tree.

- (a) Using the memoryless property of Geom(1/2), show that $\{X_t\}$ is a Simple Random Walk on \mathbb{Z} .
- (b) Using that X_t is a bounded martingale, and that $\tau := \tau_0 \wedge \tau_n$ is almost surely finite (the minimum of the hitting times of 0 and n), show that $\mathbf{P}[T$ has height $\geq n] = 1/n$. Note that this also implies that $\mathbf{P}[T$ has height $\geq 100n \mid T$ has height $\geq n]$ is quite small.
- (c) Show that $M_t := X_t^2 t$ is a martingale. It is not bounded from below, but $M_{t \wedge \tau}$ is unlikely to get very small: show that there exists $c_n > 0$ such that $\mathbf{P}[\tau > t] < \exp(-c_n t)$.
- (d) A version of the Optional Stopping Theorem says that the exponential decay for τ in the previous item implies that $\mathbf{E}M_{\tau} = \mathbf{E}M_0$. Use this to calculate $\mathbf{E}_{\ell}[\tau]$, for the walk started at $X_0 = \ell \in \{0, 1..., n\}$.
- (e)* Using the previous part, show that $\mathbf{E}_0[\tau \mid \tau_n < \tau_0] \simeq n^2$. Thus, conditioning the tree T to have height at least n, the expected total volume will be around n^2 .