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Notation. The probability measure for the Erdős-Rényi random graph G(n, p) is denoted by Pp. For

a random walk {Xt}t≥0 on Z, when started at X0 = ℓ, the probability measure and the corresponding

expectation are denoted by Pℓ and Eℓ.

For an increasing event A ⊂ {0, 1}(
n

2
) for the Erdős-Rényi random graph G(n, p), the critical (threshold)

density will be denoted by pc(n) = pAc (n) := min{p : Pp[A ] ≥ 1/2}.

The comparisons ∼, ≍, ≪, ≫ are used as agreed in class.

“With high probability”, abbreviated as “w.h.p.”, means “with probability tending to 1”.

Exercise⊲ 1. Prove the easy direction of Strassen’s theorem. Namely, let (P,≤) be a partially ordered set,

B a sigma-algebra on P , and π a probability measure on P × P with the product sigma-algebra, with the

property that π
(

{(x, y) ∈ P × P : x ≤ y}
)

= 1. Let the first marginal of π be µ(A) := π(A × P ) and the

second marginal be ν(A) := π(P × A) for any A ∈ B. Then, ν stochastically dominates µ; i.e., for any

increasing set A ∈ B, we have µ(A) ≤ ν(A).

Exercise⊲ 2. Find the order of magnitude of the critical density pc(n) for the random graph G(n, p) con-

taining a copy of the cycle C4. (Hint: as in class, use the 1st and 2nd Moment Methods.)

Exercise⊲ 3.* Let H be the following graph with 5 vertices and 7 edges: a complete graph K4 with an extra

edge from one of the four vertices to a fifth vertex. Find the order of magnitude of pc(n) for the random

graph G(n, p) containing a copy of this H . (Hint: the 1st Moment Method will give you n−5/7, but the

2nd Moment Method now does not work! What goes wrong? What could be the right order of magnitude

instead of n−5/7?)

The critical density for the connectedness of G(n, p) is pc(n) = (1 + o(1)) ln n
n , with a sharp threshold.

The following exercise is not a proof of this, just a small indication for the value.

Exercise⊲ 4. For p = λ lnn
n , with λ > 1 fixed, show that, with probability tending to 1, there are no isolated

vertices in G(n, p). On the other hand, for λ < 1 fixed, there exist isolated vertices w.h.p.

Exercise⊲ 5. Consider a Galton-Watson process with offspring distribution ξ, Eξ = µ. Let Zn be the size

of the nth level, with Z0 = 1, the root. Recall that Zn/µ
n is a martingale.

(a) Assuming that µ > 1 and E[ ξ2 ] < ∞, first show that E
[

Z2
n

]

≤ C(EZn)
2. (Hint: use the conditional

variance formula D2[Zn] = E
[

D2[Zn

∣

∣ Zn−1]
]

+D2
[

E[Zn | Zn−1 ]
]

.) Then, using the Second Moment

Method, deduce that the GW process survives with positive probability.

(b) Extend the above to the case Eξ = ∞ or Dξ = ∞ by a truncation ξ1ξ<K for K large enough.

Exercise⊲ 6. For the GW tree with offspring distribution Poisson(1+ ǫ), show that the survival probability

is asymptotically 2ǫ, as ǫ → 0.

The following exercise is already preparation for the next class, critical Galton-Watson trees.
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Exercise⊲ 7. Let T be the Galton-Watson tree with offspring distribution ξ ∼ Geom(1/2)−1. Draw the tree

into the plane with root ρ, add an extra vertex ρ′ and an edge (ρ, ρ′), and walk around the tree, starting

from ρ′, going through each “corner” of the tree once, through each edge twice (once on each side). At

each corner visited, consider the graph distance from ρ′: let this be process be {Xt}
2n
t=0, which is positive

everywhere except at t = 0, 2n, where n is the number of vertices of the original tree T .

Figure 1: The contour walk around a tree.

(a) Using the memoryless property of Geom(1/2), show that {Xt} is a Simple Random Walk on Z.

(b) Using that Xt is a bounded martingale, and that τ := τ0 ∧ τn is almost surely finite (the minimum of

the hitting times of 0 and n), show that P[T has height ≥ n ] = 1/n. Note that this also implies that

P
[

T has height ≥ 100n
∣

∣ T has height ≥ n
]

is quite small.

(c) Show that Mt := X2
t − t is a martingale. It is not bounded from below, but Mt∧τ is unlikely to get

very small: show that there exists cn > 0 such that P[ τ > t ] < exp(−cnt).

(d) A version of the Optional Stopping Theorem says that the exponential decay for τ in the previous item

implies that EMτ = EM0. Use this to calculate Eℓ[ τ ], for the walk started at X0 = ℓ ∈ {0, 1 . . . , n}.

(e)* Using the previous part, show that E0[ τ | τn < τ0 ] ≍ n2. Thus, conditioning the tree T to have

height at least n, the expected total volume will be around n2.
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