Applications of Stochastics - Exercise sheet 1

Gábor Pete
http://www.math.bme.hu/~gabor

February 11, 2018

Notation. The probability measure for the Erdős-Rényi random graph $G(n, p)$ is denoted by \mathbf{P}_{p}. For a random walk $\left\{X_{t}\right\}_{t \geq 0}$ on \mathbb{Z}, when started at $X_{0}=\ell$, the probability measure and the corresponding expectation are denoted by \mathbf{P}_{ℓ} and \mathbf{E}_{ℓ}.

For an increasing event $A \subset\{0,1\} \begin{gathered}\binom{n}{2} \\ \text { for the Erdős-Rényi random graph } G(n, p) \text {, the critical (threshold) }\end{gathered}$ density will be denoted by $p_{c}(n)=p_{c}^{A}(n):=\min \left\{p: \mathbf{P}_{p}[A] \geq 1 / 2\right\}$.

The comparisons \sim, \asymp, \ll, \gg are used as agreed in class.
"With high probability", abbreviated as "w.h.p.", means "with probability tending to 1 ".
\triangleright Exercise 1. Prove the easy direction of Strassen's theorem. Namely, let (P, \leq) be a partially ordered set, \mathcal{B} a sigma-algebra on P, and π a probability measure on $P \times P$ with the product sigma-algebra, with the property that $\pi(\{(x, y) \in P \times P: x \leq y\})=1$. Let the first marginal of π be $\mu(A):=\pi(A \times P)$ and the second marginal be $\nu(A):=\pi(P \times A)$ for any $A \in \mathcal{B}$. Then, ν stochastically dominates μ; i.e., for any increasing set $A \in \mathcal{B}$, we have $\mu(A) \leq \nu(A)$.
$\triangleright \quad$ Exercise 2. Find the order of magnitude of the critical density $p_{c}(n)$ for the random graph $G(n, p)$ containing a copy of the cycle C_{4}. (Hint: as in class, use the 1 st and 2nd Moment Methods.)
$\triangleright \quad$ Exercise 3.* Let H be the following graph with 5 vertices and 7 edges: a complete graph K_{4} with an extra edge from one of the four vertices to a fifth vertex. Find the order of magnitude of $p_{c}(n)$ for the random graph $G(n, p)$ containing a copy of this H. (Hint: the 1st Moment Method will give you $n^{-5 / 7}$, but the 2nd Moment Method now does not work! What goes wrong? What could be the right order of magnitude instead of $n^{-5 / 7}$?)

The critical density for the connectedness of $G(n, p)$ is $p_{c}(n)=(1+o(1)) \frac{\ln n}{n}$, with a sharp threshold. The following exercise is not a proof of this, just a small indication for the value.
\triangleright Exercise 4. For $p=\frac{\lambda \ln n}{n}$, with $\lambda>1$ fixed, show that, with probability tending to 1 , there are no isolated vertices in $G(n, p)$. On the other hand, for $\lambda<1$ fixed, there exist isolated vertices w.h.p.
\triangleright Exercise 5. Consider a Galton-Watson process with offspring distribution $\xi, \mathbf{E} \xi=\mu$. Let Z_{n} be the size of the nth level, with $Z_{0}=1$, the root. Recall that Z_{n} / μ^{n} is a martingale.
(a) Assuming that $\mu>1$ and $\mathbf{E}\left[\xi^{2}\right]<\infty$, first show that $\mathbf{E}\left[Z_{n}^{2}\right] \leq C\left(\mathbf{E} Z_{n}\right)^{2}$. (Hint: use the conditional variance formula $\mathbf{D}^{2}\left[Z_{n}\right]=\mathbf{E}\left[\mathbf{D}^{2}\left[Z_{n} \mid Z_{n-1}\right]\right]+\mathbf{D}^{2}\left[\mathbf{E}\left[Z_{n} \mid Z_{n-1}\right]\right]$.) Then, using the Second Moment Method, deduce that the GW process survives with positive probability.
(b) Extend the above to the case $\mathbf{E} \xi=\infty$ or $\mathbf{D} \xi=\infty$ by a truncation $\xi \mathbf{1}_{\xi<K}$ for K large enough.
\triangleright Exercise 6. For the GW tree with offspring distribution Poisson $(1+\epsilon)$, show that the survival probability is asymptotically 2ϵ, as $\epsilon \rightarrow 0$.

The following exercise is already preparation for the next class, critical Galton-Watson trees.
$\triangleright \quad$ Exercise 7. Let T be the Galton-Watson tree with offspring distribution $\xi \sim \operatorname{Geom}(1 / 2)-1$. Draw the tree into the plane with root ρ, add an extra vertex ρ^{\prime} and an edge (ρ, ρ^{\prime}), and walk around the tree, starting from ρ^{\prime}, going through each "corner" of the tree once, through each edge twice (once on each side). At each corner visited, consider the graph distance from ρ^{\prime} : let this be process be $\left\{X_{t}\right\}_{t=0}^{2 n}$, which is positive everywhere except at $t=0,2 n$, where n is the number of vertices of the original tree T.

Figure 1: The contour walk around a tree.
(a) Using the memoryless property of $\operatorname{Geom}(1 / 2)$, show that $\left\{X_{t}\right\}$ is a Simple Random Walk on \mathbb{Z}.
(b) Using that X_{t} is a bounded martingale, and that $\tau:=\tau_{0} \wedge \tau_{n}$ is almost surely finite (the minimum of the hitting times of 0 and n), show that $\mathbf{P}[T$ has height $\geq n]=1 / n$. Note that this also implies that $\mathbf{P}[T$ has height $\geq 100 n \mid T$ has height $\geq n]$ is quite small.
(c) Show that $M_{t}:=X_{t}^{2}-t$ is a martingale. It is not bounded from below, but $M_{t \wedge \tau}$ is unlikely to get very small: show that there exists $c_{n}>0$ such that $\mathbf{P}[\tau>t]<\exp \left(-c_{n} t\right)$.
(d) A version of the Optional Stopping Theorem says that the exponential decay for τ in the previous item implies that $\mathbf{E} M_{\tau}=\mathbf{E} M_{0}$. Use this to calculate $\mathbf{E}_{\ell}[\tau]$, for the walk started at $X_{0}=\ell \in\{0,1 \ldots, n\}$.
(e)* Using the previous part, show that $\mathbf{E}_{0}\left[\tau \mid \tau_{n}<\tau_{0}\right] \asymp n^{2}$. Thus, conditioning the tree T to have height at least n, the expected total volume will be around n^{2}.

