Applications of Stochastics - Exercise sheet 2

Gábor Pete
http://www.math.bme.hu/~gabor
February 17, 2018

From Sheet 1, we have not done Exercises 4, 5(b), and 7(c)(d)(e). You should do them now. Please note that $7(\mathrm{c})$ had a typo: it should be $X_{t}^{2}-t$ instead of $X_{t}-t^{2}$ (now corrected there).
$\triangleright \quad$ Exercise 1 (Discrete Chung-Fuchs theorem).
(a) Let $S_{n}=X_{1}+\cdots+X_{n}$ be a random walk with i.i.d. jumps in \mathbb{Z}^{d}. Show that, for any $m \in \mathbb{Z}_{+}$,

$$
\sum_{n=0}^{\infty} \mathbf{P}\left[\left\|S_{n}\right\|_{\infty} \leq m\right] \leq(2 m+1)^{d} \sum_{n=0}^{\infty} \mathbf{P}\left[S_{n}=\underline{0}\right]
$$

(Hint: for any $v \in \mathbb{Z}^{d}$ with $\|v\|_{\infty} \leq m$, the event $\left\{S_{n}=v\right\}$ can be decomposed as $\bigcup_{\ell=0}^{n}\left\{S_{n}=v, T_{v}=\right.$ $\ell\}$, according to the first hitting time of v.)
(b) Assume now that $d=1$, and that S_{n} satisfies the following Weak Law of Large Numbers: $S_{n} / n \xrightarrow{p} 0$. Notice that, for any $m \in \mathbb{Z}_{+}$and $A>0$, part (a) implies

$$
\sum_{n=0}^{\infty} \mathbf{P}\left[S_{n}=0\right] \geq \frac{1}{2 m+1} \sum_{n=0}^{\infty} \mathbf{P}\left[\left|S_{n}\right| \leq m\right] \geq \frac{1}{2 m+1} \sum_{n=0}^{\lfloor A m\rfloor} \mathbf{P}\left[\left|S_{n}\right| \leq n / A\right]
$$

Deduce from this and the WLLN that the expected number of returns to 0 is infinite. Conclude that the walk is recurrent.
\triangleright Exercise 2. Show that if $\left\{M_{i}\right\}_{i=0}^{\infty}$ is a martingale, then the differences $X_{i}=M_{i}-M_{i-1}$ satisfy the uncorrelatedness condition $\mathbf{E}\left[X_{i_{1}} \cdots X_{i_{k}}\right]=0$, for any $k \in \mathbb{Z}_{+}$and $i_{1}<i_{2}<\cdots<i_{k}$.
\triangleright Exercise 3. Using the exponential Markov inequality as in class, together with the moment generating function $m_{X}(t)=\mathbf{E}\left[e^{t X}\right]$, prove the following two exponential concentration inequalities:
(a) If $S_{n}=X_{1}+\cdots+X_{n}$ is a sum of i.i.d. variables with $\mathbf{E} X_{i}=\mu$ and $m_{X}\left(t_{0}\right)<\infty$ for some $t_{0}>0$, then, for any $\delta>0$ there exist $c_{\delta}>0$ and $C_{\delta}<\infty$ (which also depend on the distribution of X_{i}) such that

$$
\mathbf{P}\left[\left|S_{n} / n-\mu\right|>\delta\right]<C_{\delta} e^{-c_{\delta} n}
$$

for any n. (Hint: use that $\left.\frac{d}{d t} \log m_{X}(t)\right|_{t=0}=0$, while $\left.\frac{d}{d t} \delta t\right|_{t=0}>0$.)
(b) For any $\delta>0$ there exist $c_{\delta}>0$ and $C_{\delta}<\infty$ such that

$$
\mathbf{P}[|\operatorname{Poi}(\lambda)-\lambda|>\delta \lambda]<C_{\delta} e^{-c_{\delta} \lambda}
$$

for any $\lambda>0$. (Hint: we know what the exponential generating function of $\operatorname{Poi}(\lambda)$ is.)
\triangleright Exercise 4. Let $X_{k}(n)$ be the number of degree k vertices in the Erdős-Rényi random graph $G(n, \lambda / n)$, with any $\lambda \in \mathbb{R}_{+}$fixed. Show that $X_{k}(n) / n$ converges in probability, as $n \rightarrow \infty$, to $\mathbf{P}[\operatorname{Poisson}(\lambda)=k]$. (Hint: the 1st moment of $X_{k}(n)$ is clear; then use the 2 nd moment method.)

