Applications of Stochastics — Exercise sheet 3

GÁBOR PETE http://www.math.bme.hu/~gabor

February 27, 2018

There were two gaps in my Erdős-Rényi giant cluster phase transition proof, for the critical case $G(n, \frac{1}{n})$. The following exercises do not completely fill them in, but provide very strong intuitive support. They prove the needed random walk ingredients for simple symmetric random walk on \mathbb{Z} instead of i.i.d. Poisson(1) - 1jumps, plus they suggest some techniques that may be used for the case of Poisson(1) - 1 jumps.

- ▷ **Exercise 1.** Let X_0, X_1, X_2, \ldots be Simple Random Walk on \mathbb{Z} , i.e., with i.i.d. ± 1 jumps, each direction with probability 1/2.
 - (a) For x, y > 0, the number of SRW trajectories that start at $X_0 = x$, end at $X_n = y$, and are 0 at some time in between, is equal to the number of trajectories from $X_0 = -x$ to $X_n = y$. (This is called the reflection principle.)
 - (b) Let $M_n := \max\{X_i : 0 \le i \le n\}$. Using part (a), show that, for any $t \ge 0$,

$$\mathbf{P}[M_n \ge t] \le 2\mathbf{P}[X_n \ge t].$$

(c) Conclude from part (b) that there exists an absolute constant $c \in (0, 1)$ such that

$$c < \mathbf{P}[M_n > \sqrt{n}] < 1 - c.$$

▷ Exercise 2. Still for SRW on \mathbb{Z} , denoted by X_0, X_1, X_2, \ldots , let τ_0 be the first time the walk hits 0, and let τ_k be the first time the walk hits k. For any sequence i_0, \ldots, i_n of integers in $\{1, 2, \ldots, k-1\}$, satisfying $|i_{t+1} - i_t| = 1$ for all $t = 0, 1, \ldots, n-1$, use Bayes' rule to show that

$$\mathbf{P}[X_{n+1} = i_n + 1 \mid X_0 = i_0, \dots, X_n = i_n, \tau_k < \tau_0] = \frac{i_n + 1}{2i_n}.$$

Therefore, the conditioned random walk is a Markov chain again, with transition probabilities just calculated.

 \triangleright Exercise 3. Still for SRW on \mathbb{Z} , using the previous two exercises, show that

$$\mathbf{P}_1[\tau_0 > n] \asymp \mathbf{P}_1[\tau_{\sqrt{n}} < \tau_0] = 1/\sqrt{n}.$$

The second equality we know from the usual martingale argument, hence the first equality needs to be proved. Here are some hints:

- (a) Notice that $\mathbf{P}_1[\tau_0 > n \mid \tau_{\sqrt{n}} < \tau_0] > \mathbf{P}_0[M_n < \sqrt{n}] > c > 0.$
- (b) Show that $X_i | \{\tau_0 > n\}$ stochastically dominates the unconditioned X_i , hence $\mathbf{P}_1[\tau_{\sqrt{n}} < \tau_0 | \tau_0 > n] > \mathbf{P}_1[M_n > \sqrt{n}] > c > 0.$

▷ **Exercise 4.*** Let $(X_i)_{i\geq 0}$ be a random walk on \mathbb{Z} , with i.i.d. increments ξ_i that have zero mean and an exponential tail: there exist $K \in \mathbb{N}$ and 0 < q < 1 such that $\mathbf{P}[\xi \ge k+1] \le q \mathbf{P}[\xi \ge k]$ for all $k \ge K$.

Starting from $X_0 = \ell \in \{1, 2, ..., n-1\}$, let τ_0 be the first time the walk is at most 0, and let τ_n be the first time the walk is at least n. Show that, for any $0 < \ell < n$,

$$\mathbf{P}_{\ell}[\tau_n < \tau_0] \asymp \frac{\ell}{n}$$

For this, first prove that $X_{\tau_n} - n$, conditioned on $\tau_n < \tau_0$, has an exponential tail, independently of n.

\triangleright Exercise 5.

- (a) Let X_0, X_1, \ldots be a random walk on the integers with i.i.d. Poisson(1) 1 jumps. Using $\mathbf{P}[X_{2k} = 0] \approx 1/\sqrt{k}$, which follows from the Local Central Limit Theorem (see, e.g., Theorem 3.5.2 in Durrett's book *Probability: theory and examples*), together with the First and Second Moment Methods, prove that there exist *some* $\kappa > 0$ such that $\mathbf{P}[\#\{1 \le i \le n : X_i = 0\} > \kappa \sqrt{n}] > \kappa$, for all n.
- (b) * For SRW on \mathbb{Z} , calculate explicitly the probability $\mathbf{P}[X_{2k} = 0]$, then use Stirling's formula to show that the number of zeroes up to time n, divided by \sqrt{n} has a limit distribution: the absolute value of a standard normal variable!