Applications of Stochastics - Exercise sheet 3

Gábor Pete
http://www.math.bme.hu/~gabor

February 27, 2018

There were two gaps in my Erdős-Rényi giant cluster phase transition proof, for the critical case $G\left(n, \frac{1}{n}\right)$. The following exercises do not completely fill them in, but provide very strong intuitive support. They prove the needed random walk ingredients for simple symmetric random walk on \mathbb{Z} instead of i.i.d. Poisson(1) - 1 jumps, plus they suggest some techniques that may be used for the case of Poisson(1) -1 jumps.
\triangleright Exercise 1. Let $X_{0}, X_{1}, X_{2}, \ldots$ be Simple Random Walk on \mathbb{Z}, i.e., with i.i.d. ± 1 jumps, each direction with probability $1 / 2$.
(a) For $x, y>0$, the number of SRW trajectories that start at $X_{0}=x$, end at $X_{n}=y$, and are 0 at some time in between, is equal to the number of trajectories from $X_{0}=-x$ to $X_{n}=y$. (This is called the reflection principle.)
(b) Let $M_{n}:=\max \left\{X_{i}: 0 \leq i \leq n\right\}$. Using part (a), show that, for any $t \geq 0$,

$$
\mathbf{P}\left[M_{n} \geq t\right] \leq 2 \mathbf{P}\left[X_{n} \geq t\right]
$$

(c) Conclude from part (b) that there exists an absolute constant $c \in(0,1)$ such that

$$
c<\mathbf{P}\left[M_{n}>\sqrt{n}\right]<1-c
$$

\triangleright Exercise 2. Still for SRW on \mathbb{Z}, denoted by $X_{0}, X_{1}, X_{2}, \ldots$, let τ_{0} be the first time the walk hits 0 , and let τ_{k} be the first time the walk hits k. For any sequence i_{0}, \ldots, i_{n} of integers in $\{1,2, \ldots, k-1\}$, satisfying $\left|i_{t+1}-i_{t}\right|=1$ for all $t=0,1, \ldots, n-1$, use Bayes' rule to show that

$$
\mathbf{P}\left[X_{n+1}=i_{n}+1 \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}, \tau_{k}<\tau_{0}\right]=\frac{i_{n}+1}{2 i_{n}}
$$

Therefore, the conditioned random walk is a Markov chain again, with transition probabilities just calculated.
$\triangleright \quad$ Exercise 3. Still for SRW on \mathbb{Z}, using the previous two exercises, show that

$$
\mathbf{P}_{1}\left[\tau_{0}>n\right] \asymp \mathbf{P}_{1}\left[\tau_{\sqrt{n}}<\tau_{0}\right]=1 / \sqrt{n}
$$

The second equality we know from the usual martingale argument, hence the first equality needs to be proved. Here are some hints:
(a) Notice that $\mathbf{P}_{1}\left[\tau_{0}>n \mid \tau_{\sqrt{n}}<\tau_{0}\right]>\mathbf{P}_{0}\left[M_{n}<\sqrt{n}\right]>c>0$.
(b) Show that $X_{i} \mid\left\{\tau_{0}>n\right\}$ stochastically dominates the unconditioned X_{i}, hence $\mathbf{P}_{1}\left[\tau_{\sqrt{n}}<\tau_{0} \mid \tau_{0}>n\right]>$ $\mathbf{P}_{1}\left[M_{n}>\sqrt{n}\right]>c>0$.
$\triangleright \quad$ Exercise 4.* Let $\left(X_{i}\right)_{i \geq 0}$ be a random walk on \mathbb{Z}, with i.i.d. increments ξ_{i} that have zero mean and an exponential tail: there exist $K \in \mathbb{N}$ and $0<q<1$ such that $\mathbf{P}[\xi \geq k+1] \leq q \mathbf{P}[\xi \geq k]$ for all $k \geq K$.

Starting from $X_{0}=\ell \in\{1,2, \ldots, n-1\}$, let τ_{0} be the first time the walk is at most 0 , and let τ_{n} be the first time the walk is at least n. Show that, for any $0<\ell<n$,

$$
\mathbf{P}_{\ell}\left[\tau_{n}<\tau_{0}\right] \asymp \frac{\ell}{n} .
$$

For this, first prove that $X_{\tau_{n}}-n$, conditioned on $\tau_{n}<\tau_{0}$, has an exponential tail, independently of n.

$\triangleright \quad$ Exercise 5.

(a) Let X_{0}, X_{1}, \ldots be a random walk on the integers with i.i.d. Poisson(1)-1 jumps. Using $\mathbf{P}\left[X_{2 k}=0\right] \asymp$ $1 / \sqrt{k}$, which follows from the Local Central Limit Theorem (see, e.g., Theorem 3.5.2 in Durrett's book Probability: theory and examples), together with the First and Second Moment Methods, prove that there exist some $\kappa>0$ such that $\mathbf{P}\left[\#\left\{1 \leq i \leq n: X_{i}=0\right\}>\kappa \sqrt{n}\right]>\kappa$, for all n.
(b)* For SRW on \mathbb{Z}, calculate explicitly the probability $\mathbf{P}\left[X_{2 k}=0\right]$, then use Stirling's formula to show that the number of zeroes up to time n, divided by \sqrt{n} has a limit distribution: the absolute value of a standard normal variable!

