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For a (possibly directed) graph, the adjacency matrix is Au,v = 1u→v. The probability transition matrix

for the corresponding Markov chain is Pu,v = Au,v/
∑

w Au,w. For an undirected graph on the vertex set

{1, . . . , n}, we know from the Stochastic Processes course (and it is straightforward to verify) that P has a

left eigenvector π(i) = deg(i), 1 ≤ i ≤ n, with eigenvalue 1; i.e., it is a stationary measure. I mentioned in

class, incorrectly, that the leading eigenvector of A is
(√

deg(i)
)
i
. Here is the correct statement:

ExerciseB 1.

(a) When P is the Markov transition matrix for any finite directed graph G(V,E), show that ‖Pf‖∞ ≤
‖f‖∞ holds for any f : V −→ R.

(b) Let A be the symmetric n×n adjacency matrix of an undirected finite graph on the vertex set {1, . . . , n}.
Let D be the diagonal matrix formed by the degrees deg(i), and note that it is clear what D−1/2 means.

Show that all the eigenvalues of B = D−1/2AD−1/2 are real, are between 1 and −1, and that the vector(√
deg(i)

)
1≤i≤n is an eigenvector for the eigenvalue 1. (Hint: use parts (a) and (c).)

(c) Observe that B from part (b) and the Markov transition matrix P are conjugate matrices, hence they

have the same eigenvalues. Graph theorists prefer B to P because it is symmetric, and to A because

it is normalized to have spectrum between 1 and −1.

We want to rank vertices of a directed graph according to importance. Here is a summary of what we

did in class (clarifying why there is no need to talk about the leading eigenvalue for PageRank):

ExerciseB 2.

(a) As a first idea, we used the iteration xt+1 := xtA. Assume that A has a complete basis of eigenvectors

vi , i = 1, . . . , n (not at all the case in general), with a 1-dimensional eigenspace 〈v1〉 corresponding to

the eigenvalue λ1 with the largest absolute value. Show that, for x0 = 1, there is a normalization ct
such that xt/ct converges to v1.

(b) In Google’s PageRank, the iteration xt+1 := αxtP + 1 is used, with some α ∈ (0, 1). Show that, for

any starting vector x0, the sequence xt converges to 1 (I − αP )−1. (Hint: use the Banach fixed point

theorem, with an appropriate notion of distance. See part (a) of Exercise 1.)

ExerciseB 3. Consider the undirected graph on the vertex set {1, 2, 3, 4}, where 1, 2, 3 form a triangle, and

1 and 4 are also connected by an edge.

(a) Calculate the eigenvector importance from part (a) of the previous exercise.

(b) Calculate the PageRank scores from part (b) of the previous exercise, for several values of α.

You are welcome to use Mathematica or other software.

ExerciseB 4. Recall that we defined the clustering coefficient of an undirected graph as

CC :=
# paths of length 2 with endpoints connected by an edge

# paths of length 2
.

With n vertices and 10n edges, find a graph with small CC, and another one with large CC.
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As in class, let ξ1, ξ2, . . . be the i.i.d. lifetimes in a renewal process, with Eξi = µ ∈ (0,∞]. Then

Tk :=
∑k

i=1 ξi are the renewal times, and Nt := min{k : Tk ≥ t}. Also, U(t) := ENt, called the renewal

function. The Elementary Renewal Theorem says that

lim
t→∞

U(t)

t
=

1

µ
. (1)

The proof uses Wald’s identity, a special case of an Optional Stopping Theorem, which we accepted

without a proof: if µ <∞, and ENt <∞ for any t, then

ETNt
= µENt . (2)

The ingredient ENt < ∞ was proved in class. Then, TNt
≥ t gives the lower bound limt→∞ U(t)/t ≥ 1/µ

(trivial when µ =∞). But I was puzzled why the books don’t just use Fatou’s lemma to get this. Well, the

reason is that (2) is also needed to get the upper bound! Here it is:

ExerciseB 5. Consider the renewal process with ξi := min{ξi,K} for anyK > 0 fixed. Note that TNt
≤ t+K,

and get an upper bound for U(t). Then let K →∞ to get the upper bound for U(t). Here, the key technical

lemma that you should prove (then apply it to aK(t) := U(t)/t) is that if aK(t) ≥ 0, monotone decreasing

in K for any fixed t, then

lim sup
K→∞

lim sup
t→∞

aK(t) ≥ lim sup
t→∞

lim sup
K→∞

aK(t) .
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