Applications of Stochastics — Exercise sheet 5

GÁBOR PETE http://www.math.bme.hu/~gabor

March 29, 2018

For a (possibly directed) graph, the adjacency matrix is $A_{u,v} = \mathbf{1}_{u \to v}$. The probability transition matrix for the corresponding Markov chain is $P_{u,v} = A_{u,v} / \sum_{w} A_{u,w}$. For an undirected graph on the vertex set $\{1, \ldots, n\}$, we know from the Stochastic Processes course (and it is straightforward to verify) that P has a left eigenvector $\pi(i) = \deg(i), 1 \le i \le n$, with eigenvalue 1; i.e., it is a stationary measure. I mentioned in class, incorrectly, that the leading eigenvector of A is $(\sqrt{\deg(i)})_i$. Here is the correct statement:

- \triangleright Exercise 1.
 - (a) When P is the Markov transition matrix for any finite directed graph G(V, E), show that $||Pf||_{\infty} \leq ||f||_{\infty}$ holds for any $f: V \longrightarrow \mathbb{R}$.
 - (b) Let A be the symmetric $n \times n$ adjacency matrix of an undirected finite graph on the vertex set $\{1, \ldots, n\}$. Let D be the diagonal matrix formed by the degrees deg(i), and note that it is clear what $D^{-1/2}$ means. Show that all the eigenvalues of $B = D^{-1/2}AD^{-1/2}$ are real, are between 1 and -1, and that the vector $(\sqrt{\deg(i)})_{1 \le i \le n}$ is an eigenvector for the eigenvalue 1. (Hint: use parts (a) and (c).)
 - (c) Observe that B from part (b) and the Markov transition matrix P are conjugate matrices, hence they have the same eigenvalues. Graph theorists prefer B to P because it is symmetric, and to A because it is normalized to have spectrum between 1 and -1.

We want to rank vertices of a directed graph according to importance. Here is a summary of what we did in class (clarifying why there is no need to talk about the leading eigenvalue for PageRank):

- \triangleright Exercise 2.
 - (a) As a first idea, we used the iteration $\overline{x}_{t+1} := \overline{x}_t A$. Assume that A has a complete basis of eigenvectors \overline{v}_i , i = 1, ..., n (not at all the case in general), with a 1-dimensional eigenspace $\langle \overline{v}_1 \rangle$ corresponding to the eigenvalue λ_1 with the largest absolute value. Show that, for $\overline{x}_0 = \mathbf{1}$, there is a normalization c_t such that \overline{x}_t/c_t converges to \overline{v}_1 .
 - (b) In Google's **PageRank**, the iteration $\overline{x}_{t+1} := \alpha \overline{x}_t P + \mathbf{1}$ is used, with some $\alpha \in (0, 1)$. Show that, for any starting vector \overline{x}_0 , the sequence \overline{x}_t converges to $\mathbf{1} (I \alpha P)^{-1}$. (Hint: use the Banach fixed point theorem, with an appropriate notion of distance. See part (a) of Exercise 1.)
- \triangleright Exercise 3. Consider the undirected graph on the vertex set $\{1, 2, 3, 4\}$, where 1, 2, 3 form a triangle, and 1 and 4 are also connected by an edge.
 - (a) Calculate the eigenvector importance from part (a) of the previous exercise.
 - (b) Calculate the PageRank scores from part (b) of the previous exercise, for several values of α .

You are welcome to use Mathematica or other software.

▷ **Exercise 4.** Recall that we defined the **clustering coefficient** of an undirected graph as

 $\mathsf{CC} := \frac{\# \text{ paths of length 2 with endpoints connected by an edge}}{\# \text{ paths of length 2}}$

With n vertices and 10n edges, find a graph with small CC, and another one with large CC.

As in class, let ξ_1, ξ_2, \ldots be the i.i.d. lifetimes in a renewal process, with $\mathbf{E}\xi_i = \mu \in (0, \infty]$. Then $T_k := \sum_{i=1}^k \xi_i$ are the renewal times, and $N_t := \min\{k : T_k \ge t\}$. Also, $U(t) := \mathbf{E}N_t$, called the renewal function. The **Elementary Renewal Theorem** says that

$$\lim_{t \to \infty} \frac{U(t)}{t} = \frac{1}{\mu} \,. \tag{1}$$

The proof uses **Wald's identity**, a special case of an Optional Stopping Theorem, which we accepted without a proof: if $\mu < \infty$, and $\mathbf{E}N_t < \infty$ for any t, then

$$\mathbf{E}T_{N_t} = \mu \, \mathbf{E}N_t \,. \tag{2}$$

The ingredient $\mathbf{E}N_t < \infty$ was proved in class. Then, $T_{N_t} \ge t$ gives the lower bound $\lim_{t\to\infty} U(t)/t \ge 1/\mu$ (trivial when $\mu = \infty$). But I was puzzled why the books don't just use Fatou's lemma to get this. Well, the reason is that (2) is also needed to get the upper bound! Here it is:

▷ **Exercise 5.** Consider the renewal process with $\overline{\xi_i} := \min\{\xi_i, K\}$ for any K > 0 fixed. Note that $\overline{T}_{\overline{N}_t} \leq t + K$, and get an upper bound for $\overline{U}(t)$. Then let $K \to \infty$ to get the upper bound for U(t). Here, the key technical lemma that you should prove (then apply it to $a_K(t) := \overline{U}(t)/t$) is that if $a_K(t) \geq 0$, monotone decreasing in K for any fixed t, then

$$\limsup_{K \to \infty} \limsup_{t \to \infty} a_K(t) \ge \limsup_{t \to \infty} \limsup_{K \to \infty} a_K(t) \,.$$