Applications of Stochastics — Exercise sheet 6

GÁBOR PETE http://www.math.bme.hu/~gabor

April 26, 2018

Let ξ_1, ξ_2, \ldots be the i.i.d. lifetimes in a renewal process, with distribution function $F(s) = \mathbf{P}[\xi \leq s]$ and mean $\mathbf{E}\xi = \mu \in (0, \infty)$. Then $T_k := \sum_{i=1}^k \xi_i$ are the renewal times, $N_t := \min\{k : T_k \geq t\}$, and $U(t) := \mathbf{E}N_t$. The excess lifetime (or overshoot) is $\gamma_t := T_{N_t} - t$, the current lifetime is $\delta_t := t - T_{N_{t-1}}$, and the total lifetime is $\beta_t := \gamma_t + \delta_t$.

 \triangleright **Exercise 1.** Find the renewal equation H(t) = h(t) + H * F(t) for $H(t) := \mathbf{P}[\beta_t > x]$, where $x \ge 0$ is fixed arbitrarily.

If you did the previous exercise correctly, you understand why we are interested in the next one:

 \triangleright **Exercise 2.** Show that, for any distribution function F(t),

$$\int_0^\infty 1 - F(\max\{x, t\}) dt = \int_x^\infty s dF(s).$$

> **Exercise 3.*** Consider the so-called stationary renewal process, i.e., the delayed process with delay T_0 that has distribution function

$$\mathbf{P}[T_0 \le s] = G(s) := \frac{1}{\mu} \int_0^s 1 - F(y) \, dy.$$

Show that, in this G-delayed process, the overshoot γ_t^G has distribution G, for any $t \geq 0$. (Hint: first, write down a renewal type equation by conditioning on T_0 . Then, use the solution from Durrett's Theorem 4.4.4 for $H_x(t) = \mathbf{P}[\gamma_t > x]$ in the undelayed process.)

- \triangleright **Exercise 4.** Show that the stationary renewal process for $\xi_i \sim \mathsf{Expon}(\lambda)$, defined using the delay from the previous exercise, has the same distribution as the original undelayed one.
- \triangleright **Exercise 5.** If X is a non-negative random variable with finite expectation, then its **size-biased version** \widehat{X} is defined by $\mathbf{P}[\widehat{X} \in A] = \mathbf{E}[X \mathbf{1}_{\{X \in A\}}]/\mathbf{E}X$.
 - (a) Show that if X has distribution function F(t), then \widehat{X} has distribution function $\frac{1}{EX} \int_0^t s \, dF(s)$.
 - (b) Show that the size-biased version of $Poi(\lambda)$ is just $Poi(\lambda) + 1$.
 - (c) Show that the size-biased version of $\mathsf{Expon}(\lambda)$ is the sum of two independent $\mathsf{Expon}(\lambda)$'s.
 - (d)* Take Poisson point process of intensity λ on \mathbb{R} . Condition on the interval $(-\epsilon, \epsilon)$ to contain at least one arrival. As $\epsilon \to 0$, what is the point process we obtain in the limit? What does this have to do with parts (a) and (b)?
- \triangleright Exercise 6.
 - (a) Using Exercises 1, 2, 5(a), and the Renewal Theorem, conclude that the limit distribution of the total lifetime β_t is the size-biased version of ξ .
 - (b) Write a renewal equation for the current lifetime δ_t , then use the Renewal Theorem to find it has the same limit distribution as the overshoot γ_t . Are we surprised?

- Exercise 7.* Consider the random walk $S_k := \xi_1 + \dots + \xi_k$ on the integers, with $S_0 = 1$ and i.i.d. jumps $\xi_i \sim \mathsf{Poi}(1) 1$, and let $\tau(n) := \min\{k : S_k \ge n\}$. Recall from the martingale arguments in the Erdős-Rényi largest cluster phase transition (specifically, Exercise 4 from Sheet 3) that we were interested in the overshoot $S_{\tau(n)} n$. Using the Renewal Theorem, find the limit distribution of this overshoot, as $n \to \infty$.
- \triangleright **Exercise 8.** Consider the renewal process with a non-arithmetic renewal distribution with finite mean. Show that $\lim_{t\to\infty} \mathbf{P}[$ number of renewals in [0,t] is odd]=1/2.