Applications of Stochastics - Exercise sheet 9

Gábor Pete
http://www.math.bme.hu/~gabor

May 13, 2018

We used part (a) of the first exercise to understand the basic behaviour of $G / G / 1$ queuing systems with $\lambda<\mu$.
$\triangleright \quad$ Exercise 1. Consider a random walk $S_{n}=X_{1}+\cdots+X_{n}$ on \mathbb{R}, with iid increments satisfying $\mathbf{E} X_{i}<0$. Let $S_{\max }=\max \left\{S_{0}, S_{1}, S_{2}, \ldots\right\}$, an almost surely finite variable, since $S_{n} \rightarrow-\infty$.
(a) Let $N:=\min \left\{n>0: S_{n}<0\right\}$. Show that $\mathbf{E} N<\infty$. (Hint: let $M \geq 0$ be the largest m when $S_{m}=S_{\max }$, and look at the two pieces of trajectories $S_{M}, S_{M-1}, \ldots, S_{0}$ and S_{M}, S_{M+1}, \ldots separately.)
(b) Assume that $\mathbf{E}\left[e^{t X_{i}}\right]<\infty$ for some $t>0$. Show that $\mathbf{P}\left[S_{\max }>m\right]<C \exp (-c \sqrt{m})$ for some $0<c, C<\infty$, hence $\mathbf{E} S_{\max }<\infty$.
(c) Now assume $\mathbf{E}\left(X_{i} \vee 0\right)^{2}<\infty$ only. Show that $\mathbf{E} S_{T}<\infty$, where $T:=\min \left\{n>0: S_{n}>0\right\}$, and conclude that $\mathbf{E} S_{\max }<\infty$ still holds. (Hint: for simplicity, assume that X_{i} is integer valued. Now estimate $\mathbf{P}\left[S_{T}=k\right]$ using a decomposition according to the possible values of $T-1=n$ and $S_{T-1}=-\ell$, and using that $\sum_{n \geq 1} \mathbf{P}\left[S_{n}=-\ell\right]<C<\infty$, uniformly in $\ell>0$.)
(d) ${ }^{*}$ Assume now that $\mathbf{E}\left(X_{i} \vee 0\right)^{2}=\infty$. Is it true that $\mathbf{E} S_{T}=\infty$?

As in class, consider a $\mathbf{G} / \mathbf{G} / \mathbf{1}$ queuing system, with iid inter-arrival times A_{1}, A_{2}, \ldots of mean $1 / \lambda$, iid service times B_{1}, B_{2}, \ldots of mean $1 / \mu$, with $\lambda<\mu$, the first customer arriving at time 0 at an empty system. Let W_{n} be the time the nth customer has to wait for her service to start. Recall or observe that

$$
W_{n+1}=\left(W_{n}+B_{n}-A_{n+1}\right) \vee 0
$$

and let $\bar{W}:=\mathbf{E}\left[\lim _{n \rightarrow \infty} W_{n}\right]$, which exists and is finite by the previous exercise.
Let $Q_{t}:=\#\{$ people in the queue at time $t\}$ and $Q_{t}^{+}:=\#\{$ people in the system at time $t\}$. We accepted without a proof that the average long-term queue size $\bar{Q}:=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} Q_{s} d s$ exists and is non-random; similarly for $\overline{Q^{+}}$. We also stated Little's law, proved in a very hand-waving manner:

$$
\bar{Q}=\lambda \bar{W} \quad \text { and } \quad \overline{Q^{+}}=\lambda(\bar{W}+\bar{B}),
$$

where $\bar{B}=\mathbf{E}\left[B_{1}\right]=\frac{1}{\mu}$. Subtracting the first Little identity from the second one, we obtained that the system utilization ratio is $\rho:=\lim _{t \rightarrow \infty} \mathbf{P}\left[Q_{t}^{+}>0\right]=\frac{\lambda}{\mu}$.
\triangleright Exercise 2. Specialize to the case of $\mathbf{M} / \mathbf{G} / \mathbf{1}$ systems. Let $H_{1}:=\inf \left\{t>0: Q_{t}^{+}=0\right\}$ be the length of the first busy period. For the the Laplace transform $h(s):=\mathbf{E}\left[e^{-s H_{1}}\right]$, we showed in class that

$$
h(s)=b(s+\lambda-\lambda h(s))
$$

where $b(s):=\mathbf{E}\left[e^{-s B_{1}}\right]$ is the Laplace transform of the service time.
(a) Differentiate $h(s)$ once to obtain $\mathbf{E}\left[H_{1}\right]=\frac{1}{\mu-\lambda}$. (We already saw this in class by noting that the busy and idle periods form an alternating renewal process, with the idle periods distributed as Expon (λ), hence $\frac{\mathbf{E} H_{1}}{\mathbf{E} H_{1}+1 / \lambda}=\rho=\frac{\lambda}{\mu}$, by Little's law.)
(b) Specialize further to the case of $\mathbf{M} / \mathbf{M} / \mathbf{1}$ systems. Differentiate $h(s)$ twice to obtain $\operatorname{Var}\left[H_{1}\right]=\frac{\lambda+\mu}{(\mu-\lambda)^{3}}$. Note that if λ is close to μ, then the standard deviation of H_{1} (and the subsequent busy periods H_{i}) is huge, i.e., there are enormous fluctuations in the system.

Back to $\mathbf{M} / \mathbf{G} / \mathbf{1}$ systems, we would also like to calculate the average limiting waiting time \bar{W}. The next exercise is a preparation for this.
\triangleright Exercise 3. For iid positive variables B_{1}, B_{2}, \ldots with finite mean, consider $Z_{n}:=B_{1}+\cdots+B_{n}$. Take a random point $U_{n} \sim \operatorname{Unif}\left[0, Z_{n}\right]$, and let K_{n} be the index that satisfies $Z_{K_{n}-1} \leq U_{n}<Z_{K_{n}}$. Show that $B_{K_{n}}$ converges in distribution to the size-biased version \widehat{B}.
$\triangleright \quad$ Exercise 4. Notice that $W_{n}=R_{n}+\sum_{i \in \mathcal{Q}_{n}} B_{i}$, where R_{n} is the time remaining from servicing the current costumer (if there is one) at the time of the nth arrival, and \mathcal{Q}_{n} is the queue at that moment.
(a)* For an M/G/1 system, show using Exercise 3 that R_{n} converges in distribution to $\operatorname{Ber}(\rho) \cdot \operatorname{Unif}[0,1] \cdot \widehat{B}$, where ρ is the utilization ratio, \widehat{B} is the size-biased service time, and the three factors are independent from each other. In particular, the expectation of the limit is $\frac{\rho}{2} \frac{\mathbf{E}\left[B^{2}\right]}{\mathbf{E}[B]}$.
(b) Show by example that, without the Markovianity of the arrival process, the previous result is wrong in general.
(c) From part (a) and Little's law, obtain the equation

$$
\bar{W}=\frac{\rho}{2} \frac{\mathbf{E}\left[B^{2}\right]}{\mathbf{E}[B]}+\lambda \bar{W} \mathbf{E}[B],
$$

then deduce the Pollaczek-Khinchin formula:

$$
\bar{W}=\frac{\lambda \mathbf{E}\left[B^{2} / 2\right]}{1-\lambda \mathbf{E}[B]}
$$

(A different proof can be found in Durrett's EOSP Section 3.2.3.)
The last exercise is about first order homogeneous infinite buffer fluid queuing models (as in the Telek lecture notes), with an underlying irreducible finite state Continuous Time Markov Chain with infinitesimal generator $Q=\left(q_{i, j}\right)_{i, j=1}^{n}$, stationary distribution $\left(\pi_{i}\right)_{i=1}^{n}$, and fluid change rates $\left(r_{i}\right)_{i=1}^{n}$. The diagonal matrix formed by these rates is denoted by R. Recall that any stationary density vector $p_{i}(x)_{i=1}^{n}$ of the fluid level satisfies the following system of ODE's: $p^{\prime}(x) R=p(x) Q$.

$\triangleright \quad$ Exercise 5.

(a) Show that a first order homogeneous infinite buffer fluid queuing model cannot be stable (i.e., the fluid level cannot have a stationary distribution) if $\sum_{i} \pi_{i} r_{i}>0$.
(b) Show by examples that, if $\sum_{i} \pi_{i} r_{i}<0$, then the characteristic equation $\operatorname{det}(\lambda R-Q)=0$ may or may not have a negative root $\lambda<0$ with a non-zero vector $\phi \in \operatorname{ker}(\lambda R-Q)$ that has only non-negative entries. If we do have such a solution ϕ, then we get a stationary density of the form $p_{i}(x)=c e^{\lambda x} \phi(i)$.

