Applications of Stochastics — Exercise sheet 9

Gábor Pete

http://www.math.bme.hu/~gabor

May 13, 2018

We used part (a) of the first exercise to understand the basic behaviour of G/G/1 queuing systems with $\lambda < \mu$.

- ▷ **Exercise 1.** Consider a random walk $S_n = X_1 + \cdots + X_n$ on \mathbb{R} , with iid increments satisfying $\mathbf{E}X_i < 0$. Let $S_{\max} = \max\{S_0, S_1, S_2, \dots\}$, an almost surely finite variable, since $S_n \to -\infty$.
 - (a) Let $N := \min\{n > 0 : S_n < 0\}$. Show that $\mathbf{E}N < \infty$. (Hint: let $M \ge 0$ be the largest m when $S_m = S_{\max}$, and look at the two pieces of trajectories $S_M, S_{M-1}, \ldots, S_0$ and S_M, S_{M+1}, \ldots separately.)
 - (b) Assume that $\mathbf{E}[e^{tX_i}] < \infty$ for some t > 0. Show that $\mathbf{P}[S_{\max} > m] < C \exp(-c\sqrt{m})$ for some $0 < c, C < \infty$, hence $\mathbf{E}S_{\max} < \infty$.
 - (c) Now assume $\mathbf{E}(X_i \vee 0)^2 < \infty$ only. Show that $\mathbf{E}S_T < \infty$, where $T := \min\{n > 0 : S_n > 0\}$, and conclude that $\mathbf{E}S_{\max} < \infty$ still holds. (Hint: for simplicity, assume that X_i is integer valued. Now estimate $\mathbf{P}[S_T = k]$ using a decomposition according to the possible values of T - 1 = n and $S_{T-1} = -\ell$, and using that $\sum_{n \ge 1} \mathbf{P}[S_n = -\ell] < C < \infty$, uniformly in $\ell > 0$.)

(d) * Assume now that $\mathbf{E}(X_i \vee 0)^2 = \infty$. Is it true that $\mathbf{E}S_T = \infty$?

As in class, consider a **G/G/1 queuing system**, with iid inter-arrival times A_1, A_2, \ldots of mean $1/\lambda$, iid service times B_1, B_2, \ldots of mean $1/\mu$, with $\lambda < \mu$, the first customer arriving at time 0 at an empty system. Let W_n be the time the *n*th customer has to wait for her service to start. Recall or observe that

$$W_{n+1} = (W_n + B_n - A_{n+1}) \lor 0,$$

and let $\overline{W} := \mathbf{E} \left[\lim_{n \to \infty} W_n \right]$, which exists and is finite by the previous exercise.

Let $Q_t := \#\{\text{people in the queue at time } t\}$ and $Q_t^+ := \#\{\text{people in the system at time } t\}$. We accepted without a proof that the average long-term queue size $\overline{Q} := \lim_{t\to\infty} \frac{1}{t} \int_0^t Q_s \, ds$ exists and is non-random; similarly for $\overline{Q^+}$. We also stated **Little's law**, proved in a very hand-waving manner:

$$\overline{Q} = \lambda \, \overline{W}$$
 and $\overline{Q^+} = \lambda \left(\overline{W} + \overline{B} \right),$

where $\overline{B} = \mathbf{E}[B_1] = \frac{1}{\mu}$. Subtracting the first Little identity from the second one, we obtained that the system utilization ratio is $\rho := \lim_{t \to \infty} \mathbf{P}[Q_t^+ > 0] = \frac{\lambda}{\mu}$.

▷ Exercise 2. Specialize to the case of M/G/1 systems. Let $H_1 := \inf\{t > 0 : Q_t^+ = 0\}$ be the length of the first busy period. For the Laplace transform $h(s) := \mathbf{E}[e^{-sH_1}]$, we showed in class that

$$h(s) = b(s + \lambda - \lambda h(s))$$

where $b(s) := \mathbf{E}[e^{-sB_1}]$ is the Laplace transform of the service time.

(a) Differentiate h(s) once to obtain $\mathbf{E}[H_1] = \frac{1}{\mu - \lambda}$. (We already saw this in class by noting that the busy and idle periods form an alternating renewal process, with the idle periods distributed as $\mathsf{Expon}(\lambda)$, hence $\frac{\mathbf{E}H_1}{\mathbf{E}H_1+1/\lambda} = \rho = \frac{\lambda}{\mu}$, by Little's law.)

(b) Specialize further to the case of $\mathbf{M}/\mathbf{M}/\mathbf{1}$ systems. Differentiate h(s) twice to obtain $\operatorname{Var}[H_1] = \frac{\lambda + \mu}{(\mu - \lambda)^3}$. Note that if λ is close to μ , then the standard deviation of H_1 (and the subsequent busy periods H_i) is huge, i.e., there are enormous fluctuations in the system.

Back to M/G/1 systems, we would also like to calculate the average limiting waiting time \overline{W} . The next exercise is a preparation for this.

- ▷ **Exercise 3.** For iid positive variables B_1, B_2, \ldots with finite mean, consider $Z_n := B_1 + \cdots + B_n$. Take a random point $U_n \sim \text{Unif}[0, Z_n]$, and let K_n be the index that satisfies $Z_{K_n-1} \leq U_n < Z_{K_n}$. Show that B_{K_n} converges in distribution to the size-biased version \widehat{B} .
- \triangleright Exercise 4. Notice that $W_n = R_n + \sum_{i \in Q_n} B_i$, where R_n is the time remaining from servicing the current costumer (if there is one) at the time of the *n*th arrival, and Q_n is the queue at that moment.
 - (a) * For an M/G/1 system, show using Exercise 3 that R_n converges in distribution to $\text{Ber}(\rho) \cdot \text{Unif}[0,1] \cdot \hat{B}$, where ρ is the utilization ratio, \hat{B} is the size-biased service time, and the three factors are independent from each other. In particular, the expectation of the limit is $\frac{\rho}{2} \frac{\mathbf{E}[B^2]}{\mathbf{E}[B]}$.
 - (b) Show by example that, without the Markovianity of the arrival process, the previous result is wrong in general.
 - (c) From part (a) and Little's law, obtain the equation

$$\overline{W} = \frac{\rho}{2} \frac{\mathbf{E}[B^2]}{\mathbf{E}[B]} + \lambda \,\overline{W} \,\mathbf{E}[B],$$

then deduce the **Pollaczek-Khinchin formula**:

$$\overline{W} = \frac{\lambda \mathbf{E}[B^2/2]}{1 - \lambda \mathbf{E}[B]}.$$

(A different proof can be found in Durrett's EOSP Section 3.2.3.)

The last exercise is about first order homogeneous infinite buffer **fluid queuing models** (as in the Telek lecture notes), with an underlying irreducible finite state Continuous Time Markov Chain with infinitesimal generator $Q = (q_{i,j})_{i,j=1}^n$, stationary distribution $(\pi_i)_{i=1}^n$, and fluid change rates $(r_i)_{i=1}^n$. The diagonal matrix formed by these rates is denoted by R. Recall that any stationary density vector $p_i(x)_{i=1}^n$ of the fluid level satisfies the following system of ODE's: p'(x)R = p(x)Q.

- \triangleright Exercise 5.
 - (a) Show that a first order homogeneous infinite buffer fluid queuing model cannot be stable (i.e., the fluid level cannot have a stationary distribution) if $\sum_{i} \pi_{i} r_{i} > 0$.
 - (b) Show by examples that, if $\sum_i \pi_i r_i < 0$, then the characteristic equation $\det(\lambda R Q) = 0$ may or may not have a negative root $\lambda < 0$ with a non-zero vector $\phi \in \ker(\lambda R - Q)$ that has only non-negative entries. If we do have such a solution ϕ , then we get a stationary density of the form $p_i(x) = ce^{\lambda x}\phi(i)$.