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We used part (a) of the first exercise to understand the basic behaviour of G/G/1 queuing systems with

λ < µ.

ExerciseB 1. Consider a random walk Sn = X1 + · · · + Xn on R, with iid increments satisfying EXi < 0.

Let Smax = max{S0, S1, S2, . . . }, an almost surely finite variable, since Sn → −∞.

(a) Let N := min{n > 0 : Sn < 0}. Show that EN < ∞. (Hint: let M ≥ 0 be the largest m when

Sm = Smax, and look at the two pieces of trajectories SM , SM−1, . . . , S0 and SM , SM+1, . . . separately.)

(b) Assume that E
[
etXi

]
< ∞ for some t > 0. Show that P

[
Smax > m

]
< C exp(−c

√
m) for some

0 < c,C <∞, hence ESmax <∞.

(c) Now assume E(Xi ∨ 0)2 < ∞ only. Show that EST < ∞, where T := min{n > 0 : Sn > 0},
and conclude that ESmax < ∞ still holds. (Hint: for simplicity, assume that Xi is integer valued.

Now estimate P[ST = k ] using a decomposition according to the possible values of T − 1 = n and

ST−1 = −`, and using that
∑
n≥1 P[Sn = −` ] < C <∞, uniformly in ` > 0.)

(d)* Assume now that E(Xi ∨ 0)2 =∞. Is it true that EST =∞?

As in class, consider a G/G/1 queuing system, with iid inter-arrival times A1, A2, . . . of mean 1/λ, iid

service times B1, B2, . . . of mean 1/µ, with λ < µ, the first customer arriving at time 0 at an empty system.

Let Wn be the time the nth customer has to wait for her service to start. Recall or observe that

Wn+1 = (Wn +Bn −An+1) ∨ 0 ,

and let W := E
[

limn→∞Wn

]
, which exists and is finite by the previous exercise.

Let Qt := #{people in the queue at time t} and Q+
t := #{people in the system at time t}. We accepted

without a proof that the average long-term queue size Q := limt→∞
1
t

∫ t
0
Qs ds exists and is non-random;

similarly for Q+. We also stated Little’s law, proved in a very hand-waving manner:

Q = λW and Q+ = λ (W +B) ,

where B = E[B1 ] = 1
µ . Subtracting the first Little identity from the second one, we obtained that the

system utilization ratio is ρ := limt→∞P[Q+
t > 0 ] = λ

µ .

ExerciseB 2. Specialize to the case of M/G/1 systems. Let H1 := inf{t > 0 : Q+
t = 0} be the length of

the first busy period. For the the Laplace transform h(s) := E[ e−sH1 ], we showed in class that

h(s) = b(s+ λ− λh(s)) ,

where b(s) := E[ e−sB1 ] is the Laplace transform of the service time.

(a) Differentiate h(s) once to obtain E[H1 ] = 1
µ−λ . (We already saw this in class by noting that the busy

and idle periods form an alternating renewal process, with the idle periods distributed as Expon(λ),

hence EH1

EH1+1/λ = ρ = λ
µ , by Little’s law.)
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(b) Specialize further to the case of M/M/1 systems. Differentiate h(s) twice to obtain Var[H1] = λ+µ
(µ−λ)3 .

Note that if λ is close to µ, then the standard deviation of H1 (and the subsequent busy periods Hi) is huge,

i.e., there are enormous fluctuations in the system.

Back to M/G/1 systems, we would also like to calculate the average limiting waiting time W . The

next exercise is a preparation for this.

ExerciseB 3. For iid positive variables B1, B2, . . . with finite mean, consider Zn := B1 + · · · + Bn. Take a

random point Un ∼ Unif[0, Zn], and let Kn be the index that satisfies ZKn−1 ≤ Un < ZKn
. Show that BKn

converges in distribution to the size-biased version B̂.

ExerciseB 4. Notice that Wn = Rn +
∑
i∈Qn

Bi, where Rn is the time remaining from servicing the current

costumer (if there is one) at the time of the nth arrival, and Qn is the queue at that moment.

(a)* For an M/G/1 system, show using Exercise 3 that Rn converges in distribution to Ber(ρ)·Unif[0, 1]·B̂,

where ρ is the utilization ratio, B̂ is the size-biased service time, and the three factors are independent

from each other. In particular, the expectation of the limit is ρ
2
E[B2 ]
E[B ] .

(b) Show by example that, without the Markovianity of the arrival process, the previous result is wrong

in general.

(c) From part (a) and Little’s law, obtain the equation

W =
ρ

2

E[B2 ]

E[B ]
+ λW E[B ] ,

then deduce the Pollaczek-Khinchin formula:

W =
λE[B2/2 ]

1− λE[B ]
.

(A different proof can be found in Durrett’s EOSP Section 3.2.3.)

The last exercise is about first order homogeneous infinite buffer fluid queuing models (as in the Telek

lecture notes), with an underlying irreducible finite state Continuous Time Markov Chain with infinitesimal

generator Q = (qi,j)
n
i,j=1, stationary distribution (πi)

n
i=1, and fluid change rates (ri)

n
i=1. The diagonal matrix

formed by these rates is denoted by R. Recall that any stationary density vector pi(x)ni=1 of the fluid level

satisfies the following system of ODE’s: p′(x)R = p(x)Q.

ExerciseB 5.

(a) Show that a first order homogeneous infinite buffer fluid queuing model cannot be stable (i.e., the fluid

level cannot have a stationary distribution) if
∑
i πiri > 0.

(b) Show by examples that, if
∑
i πiri < 0, then the characteristic equation det(λR−Q) = 0 may or may

not have a negative root λ < 0 with a non-zero vector φ ∈ ker(λR − Q) that has only non-negative

entries. If we do have such a solution φ, then we get a stationary density of the form pi(x) = ceλxφ(i).
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