Applications of Stochastics — Exercise sheet 2

Gábor Pete

http://www.math.bme.hu/~gabor

January 16, 2020

Bonus exercises are marked with a star. They can be handed in for extra points.

The first exercise was needed in the analysis of $\nu_t := N_k(t)/t$, the expected ratio of degree k vertices at time t of the preferential attachment graph process.

 \triangleright Exercise 1. Let $\beta, \gamma > 0$ be constants, and let ν_1, ν_2, \ldots be positive reals satisfying the recursion

$$\nu_{t+1} = \left(1 - \frac{\beta}{t}\right)\nu_t + \frac{\gamma}{t}$$

for all $t \ge T > \beta$, starting with some $\nu_T \ge 0$. Prove that $\lim_{t\to\infty} \nu_t = \frac{\gamma}{1+\beta}$. In more detail:

- (a) Notice that, if $\nu_t < \frac{\gamma}{1+\beta}$, then $\nu_{t+1} > \nu_t$. Similarly, if $\nu_t > \frac{\gamma}{1+\beta}$, then $\nu_{t+1} < \nu_t$.
- (b) Show that there can not exist an $\epsilon > 0$ such that $\nu_t < \frac{\gamma}{1+\beta} \epsilon$ for all large enough $t > t_0(\epsilon)$. Similarly, there is no $\epsilon > 0$ such that $\nu_t > \frac{\gamma}{1+\beta} + \epsilon$ for all large enough $t > t_0(\epsilon)$.
- (c) Show that $\nu_{t+1} \nu_t \rightarrow 0$.
- (d) Deduce the existence and value of the limit.
- ▷ Exercise 2. Recall that we defined the clustering coefficient of an undirected graph as

$$\mathsf{CC} := \frac{\# \text{ paths of length 2 with endpoints connected by an edge}}{\# \text{ paths of length 2}}.$$

With n vertices and 10n edges, find a graph with small CC, and another one with large CC.

Linear algebra brush-up:

- ▷ **Exercise 3.** For $u, v \in \mathbb{C}^n$ column vectors, define the inner product $(u, v) := u^T \overline{v}$, where \overline{v} is coordinate-wise complex conjugation. Let A be a symmetric $n \times n$ real matrix.
 - (a) Show that (v, u) = (u, v), and (Au, v) = (u, Av). Deduce that if $v \in \mathbb{C}^n$ is an eigenvector of A with eigenvalue λ , then $\lambda \in \mathbb{R}$.
 - (b) From the fundamental theorem of algebra we know that $det(A \lambda I)$ has a root $\lambda \in \mathbb{C}$. Recall that this implies that there exists a nonzero $v \in \mathbb{C}^n$ in the kernel of $A \lambda I$, hence λ is an eigenvalue, with eigenvector v.
 - (c) Show that $v^{\perp} := \{ u \in \mathbb{C}^n : (u, v) = 0 \}$ is a linear subspace, and $Av^{\perp} \subseteq v^{\perp}$.
 - (d) Prove by induction that A has an orthonormal basis of eigenvectors $v_1, \ldots, v_n \in \mathbb{C}^n$, with all real eigenvalues $\lambda_1, \ldots, \lambda_n$.
 - (e) Show that A also has an orthonormal basis of eigenvectors $u_1, \ldots, u_n \in \mathbb{R}^n$, with the same eigenvalues.

If G is an undirected simple graph on the vertex set $\{1, \ldots, n\}$, then its adjacency matrix A is a real symmetric $n \times n$ matrix, and $P = D^{-1}A$ is the Markov transition matrix of the associated simple random walk, where D is the diagonal matrix formed by the degrees deg(i).

\triangleright Exercise 4.

- (a) Show that $||Pf||_{\infty} \leq ||f||_{\infty}$ holds for any $f: V \longrightarrow \mathbb{R}$ (considered as a row vector).
- (b) Deduce from part (a) that all the eigenvalues of P have absolute value at most 1.
- (c) Note that it is clear what $D^{-1/2}$ means. Show that $B = D^{-1/2}AD^{-1/2}$ is a symmetric matrix that is conjugate to P, hence has the same eigenvalues. Deduce that all the eigenvalues of B are real, are between 1 and -1, and that the vector $(\sqrt{\deg(i)})_{1 \le i \le n}$ is an eigenvector for the eigenvalue 1.
- (d) Find a left eigenvector and a right eigenvector for P with eigenvalue 1.

Remark. Graph theorists prefer B to P because it is symmetric, and sometimes to A because it is normalized to have spectrum between 1 and -1.

- \triangleright Exercise 5. Let *P* be the Markov transition matrix for the simple random walk on a finite undirected simple graph *G*. Write $-1 \leq \lambda_n \leq \cdots \leq \lambda_1 = 1$ for its eigenvalues (see the previous exercise).
 - (a) Show that $\lambda_2 < 1$ if and only if G is connected (the chain is irreducible), and this is precisely when P has a unique stationary distribution.
 - (b) Show that $\lambda_n > -1$ if and only if G is not bipartite. (Recall here the easy lemma that a graph is bipartite if and only if all cycles are even.)
 - (c) Let $\pi_t := \pi_0 P^t$ be the distribution of the random walker after t steps. Show that π_t converges coordinate-wise to the unique stationary distribution precisely when $\lambda_2 < 1$ and $\lambda_n > -1$.

Now back to general directed graphs and their associated Markov transition matrix P.

▷ **Exercise 6.** In Google's **PageRank**, the iteration $\overline{x}_{t+1} := \alpha \overline{x}_t P + (1 - \alpha) \mathbf{1}$ is used, with some $\alpha \in (0, 1)$. Show that, for any starting vector \overline{x}_0 , the sequence \overline{x}_t converges to $(1 - \alpha) \mathbf{1} (I - \alpha P)^{-1}$.

(Hint: use the Banach fixed point theorem, with an appropriate notion of distance; see part (a) of Exercise 4. In order to have a strict contraction, don't forget to use that $\alpha < 1$. Also, note that part (b) implies that $I - \alpha P$ is invertible for any $\alpha \in (0, 1)$.)

- \triangleright Exercise 7. Consider the undirected graph on the vertex set $\{1, 2, 3, 4\}$, where 1, 2, 3 form a triangle, and 1 and 4 are also connected by an edge.
 - (a) Calculate the Eigenvector centrality of the four vertices.
 - (b) Calculate the PageRank scores, for several values of α .

You are welcome to use Mathematica or other software.

- \triangleright Exercise 8. Let G be a directed graph on 3 vertices, where there is an undirected path through vertices 1, 2, 3, plus a directed edge from 1 to 3. Let A be its adjacency matrix.
 - (a) Find the eigenvalues of A and an orthonormal basis of eigenvectors.
 - (b) Consider the iteration $\overline{x}_{t+1} := \overline{x}_t A$, with $\overline{x}_0 = \mathbf{1}$. Find a sequence of scalars c_t such that $c_t \overline{x}_t$ converges to a nonzero vector.