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The first exercise appeared in class verbatim, but I put it here for those who were not present.

ExerciseB 1. Let ξ1, ξ2, . . . be the i.i.d. lifetimes of the light bulbs used by the university, with Eξi = µ ∈
(0,∞]. We have a janitor who visits the corridor in front of my office at times given by a Poisson process

with intensity λ, and if he sees that the bulb is dead, he replaces it by a new one. Thus the times τ1, τ2, . . .

passing between the death of a light bulb and the next visit of the janitor are i.i.d. Expon(λ) variables.

(a) At what rate are bulbs replaced?

(b) What is the almost sure limiting fraction of visits by the janitor on which the bulb is working?

(c) What is the limiting fraction of time that the light works?

ExerciseB 2. Mr Smith likes the brand UniCar. These cars break down after a uniform Uni[0, 2] years of use,

independently of everything. Mr Smith wants to replace each of his old cars after a fixed T years of use, or

the time of breakdown, whichever happens earlier. When a car breaks down, there is a cost of USD 1000 for

towing it from the road and getting rid of it, and a new car costs USD 12000. If he replaces a car when it

still works, he gets a discount at the store for the old car, so the new car costs only USD 10000 (and there

is no extra cost of getting rid of the old car). How should Mr Smith choose T to optimize his spendings on

the long run?

ExerciseB 3. If X is a non-negative random variable with finite expectation, then its size-biased version

X̂ is defined by

P[X̂ ∈ A] =
E[X 1{X∈A} ]

E[X ]
.

If this looks incomprehensible to you, think of just two special cases (we will NOT use the general one):

when X is discrete, with possible values {xk}k≥1, then P[X̂ = xk] = xkP[X = xk]/EX; when X has a

density function fX(x), then X̂ has density fX̂(x) = xf(x)/EX.

(a) Show that the size-biased version of Poi(λ) is just Poi(λ) + 1.

(b) Show that the size-biased version of Expon(λ) is the sum of two independent Expon(λ)’s.

(c)* Take a Poisson point process of intensity λ on R. Condition on the interval (−ε, ε) to contain at least

one arrival. As ε → 0, what is the point process we obtain in the limit? What does this have to do

with parts (a) and (b)?

Let ξ1, ξ2, . . . be the i.i.d. lifetimes in a renewal process, with non-arithmetic distribution function F (s) =

P[ ξ ≤ s ] and mean Eξ = µ ∈ (0,∞). Then Tk :=
∑k
i=1 ξi are the renewal times, Nt := min{k : Tk ≥ t},

and U(t) := ENt. The excess lifetime (or overshoot) is γt := TNt
− t, the current lifetime is δt := t− TNt−1,

and the total lifetime is βt := γt + δt.

ExerciseB 4.

(a) Find the renewal equation H(t) = h(t) + H ∗ F (t) for H(t) := P[βt > x ], where x ≥ 0 is fixed

arbitrarily. (We actually did this in class.)
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(b) Find the renewal equation for H(t) := P[ γt > x ].

(c) Using the Renewal Theorem, find the limit distributions of βt and γt as t→∞.

(d) Identify the limit distribution of the total lifetime βt as the size-biased version of ξ, and the limit

distribution of the overshoot γt as the size-biased version ξ̂ multiplied with an independent Unif[0, 1]

variable. In order to avoid working with Stieltjes-integrals, you may assume that ξ has a density

function.

The next exercise proves the renewal paradox in the case when ξ has arithmetic distribution.

ExerciseB 5. Let P[ ξ = k ] = pk, for k = 1, 2 . . . and
∑
k≥1 pk = 1. Let Nt := min{n ≥ 0 : Tn > t}, and, as

before, let δt := t− TNt−1 ≥ 0 be the current lifetime. Note that δ0 = 0.

(a) Show that (δt)
∞
t=0 is an irreducible aperiodic Markov chain, and find its transition probabilities.

(b) Show that δt converges in distribution to Unif{0, 1, . . . , ξ̂ − 1}, where ξ̂ is the size biased version of ξ.

ExerciseB 6.

(a) Recall (or prove now again) that if ξ1 + η1 + ξ2 + η2 + . . . is an alternating renewal process with

expectations Eξi = µ ∈ (0,∞) and Eηi = λ ∈ (0,∞), then the asymptotic proportion of time spent in

ξ-intervals is µ/(µ+ λ).

(b) A harder, local version can be proved using an appropriate renewal equation and the Renewal Theorem:

if the distribution of the independent sum ξi + ηi is non-arithmetic, then the probability that moment

t is in a ξ-interval converges to µ/(µ+ λ) as t→∞.

(c) As a special case, show that in a renewal process with a non-arithmetic renewal distribution with finite

mean, limt→∞P
[

number of renewals in [0, t] is odd
]

= 1/2.

(d)** Does the last conclusion remain true if the renewal time has infinite mean?

ExerciseB 7. Let Sn := X1 + · · ·+Xn be a random walk on R, with iid increments satisfying EXi < 0.

(a) Recall (or prove now again) that Sn is transient, and Smax = max{0, S1, S2, . . . } is an almost surely

finite variable. Moreover, if E[ et0Xi ] < ∞ for some t0 > 0, then P
[
Smax > m

]
< C exp(−cm) for

some 0 < c,C <∞, for all m > 0. In particular, ESmax <∞.

(b) Let (Wn)n≥0 be random variables on a single probability space with marginal distributions Wn
d
=

max{0, S1, . . . , Sn}, but arbitrary joint distribution otherwise. Assuming ESmax <∞ from the previous

item, show that Wn/n→ 0 almost surely.

(c) Give an example of a sequence of random variables Vn on a single probability space so that they

converge in distribution to an almost surely finite variable V∞, but Vn/n does not converge almost

surely to 0.

(d)** If we do not assume the finite moment generating function for Xi, is it still always the case that

ESmax <∞?

The next exercise is just a repetition of what we did in class, but I don’t want you to forget these.

ExerciseB 8. Consider a queueing process with iid inter-arrival times (An)n≥1 and iid service times (Bn)n≥0,

with EAn = 1/λ and EBn = 1/µ. Assume that λ < µ, moreover, that the walk Sn := X1 + · · · + Xn with

jumps Xn := Bn−1 −An, n = 1, 2, . . . , satisfies the condition ESmax <∞ from the previous exercise.

(a) Combine the argument on the scan from Feller’s book with part (c) of the previous exercise and with

Durrett’s EOSP Theorem 3.5 to get that the limiting utilization ratio is λ/µ.

(b) Deduce the same result from comparing the two versions of Little’s law (which we proved only on an

intuitive level, but never mind).
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ExerciseB 9. Consider an M/M/1 queuing system: the interarrival times are iid Expon(λ), the service

times are iid Expon(µ). Assume λ < µ. Let’s start at time 0 with nobody in the system.

Let N0 = 0, N1, N2, . . . be the time moments when a customer arrives at the system or leaves it (having

been just served). Let Yi be the number of people in the system (including the one currently being served,

if there is any), at time Ni.

(a) Show that (Yi)i≥0 is an irreducible aperiodic Markov chain. Find its transition probabilities and

stationary distribution.

(b) Assume that µ and λ are such that the utilization ratio in the queueing process is 99%. On the long

run, what is the average number of people in the system?

(c) Now assume that the expected service time increases by 1%, from λ to 1.01λ. How does the average

number of people in the system change?

ExerciseB 10. Consider an M/G/1 queuing system: the arrival process is Markovian, with rate λ, the

service is general, with rate µ. Let H1 := inf{t > 0 : Q+
t = 0} be the length of the first busy period. Assume

λ < µ.

Show that the busy and idle periods form an alternating renewal process. Using Exercise 6 (a) and the

limiting utilization ratio from Exercise 8, show that EH1 = 1
µ−λ .

ExerciseB 11. Show that the copula C(u1, . . . , un) of any n-dimensional joint distribution satisfies

max

{
1− n+

n∑
i=1

ui , 0

}
≤ C(u1, . . . , un) ≤ min{u1, . . . , un} .

Show by examples that the upper bound is sharp for any n ≥ 1, while the lower bound is sharp for n = 1, 2.

ExerciseB 12. Consider site percolation on Z2. Show that 1/3 ≤ pc(Z2) ≤ 5/6.

As in class, the Ising model on a finite graph G(V,E) is the random spin configuration σ : V −→ {±1}
defined as follows. Given an external magnetic field h ∈ R, the Hamiltonian is

Hh(σ) := −h
∑

x∈V (G)

σ(x)−
∑

(x,y)∈E(G)

σ(x)σ(y) ,

and then the measure, at inverse temperature β = 1/T ≥ 0, is

Pβ,h[σ] :=
exp(−βHh(σ))

Zβ,h
, where Zβ,h :=

∑
σ

exp(−βHh(σ)) .

ExerciseB 13. The partition function Zβ,h contains a lot of information about the model:

(a) Show that the expected total energy is

Eβ,h[H ] = − ∂

∂β
lnZβ,h , with variance Varβ,h[H] = − ∂

∂β
Eβ,h[H ] .

(b) The average free energy or pressure is defined by f(β, h) := (β|V |)−1 lnZβ,h. Show that for the

average total magnetization M(σ) := |V |−1
∑
x∈V σ(x), we have

m(β, h) := Eβ,h[M ] =
∂

∂h
f(β, h) .

(c) The susceptibility of the total magnetization to a change in the external magnetic field is

χ(β, h) :=
1

β

∂

∂h
m(β, h) =

1

β

∂2

∂h2
f(β, h) .

Relate this quantity to Varβ,h[M ]. Deduce that f(β, h) is convex in h.
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