Applications of Stochastics: Final Exam 1

\qquad
NAME: .
January 10, 2020

The absolute maximum is 51 points, but 40 counts as 100%.
$\triangleright \quad$ Exercise 1.
(a) Compute the moment-generating function of $\operatorname{Expon}(\lambda)$. [2 points]
(b) Let T_{1}, T_{2}, \ldots be the iid lifetimes of light bulbs, having exponential distribution with mean $1 / 2$ year. Give a good upper bound on the probability that 50 of these light bulbs (used one after the other) suffice for 50 years. [$\mathbf{5}$ points]
$\triangleright \quad$ Exercise 2.
(a) Consider the Erdős-Rényi random graph $G(n, p)$. Show that $f(p):=\mathbf{P}[G(n, p)$ contains a triangle $]$ is strictly monotone increasing in p. [3 points]
(b) Define the clustering coefficient of a graph. Can it decrease when one edge is added to the graph? [2 points]
(c) Define the Barabási-Albert preferential attachment graph sequence with m incoming edges in each step. (More than one versions exist, any of them is good, as long as you are precise.) [2 points]
\triangleright Exercise 3. Let X_{1}, X_{2}, \ldots be iid integer-valued random variables, and let $S_{n}:=X_{1}+\cdots+X_{n}$.
(a) Define what it means that $S_{n} / n \rightarrow 0$ in probability. [1.5 points]
(b) Define what it means that the random walk $\left\{S_{n}\right\}_{n=1}^{\infty}$ is recurrent. [1.5 points]
(c) Prove the integer-valued Chung-Fuchs theorem: if (a) holds, then (b) holds. [7 points]
\triangleright Exercise 4. Let G be the triangle, an undirected graph on 3 vertices. Let A be its adjacency matrix.
(a) Find the eigenvalues of A and an orthonormal basis of eigenvectors. [5 points]
(b) Consider the iteration $\bar{x}_{t+1}:=\bar{x}_{t} A$, with $\bar{x}_{0}=(1,0,0)$. Is there a sequence of scalars c_{t} such that $c_{t} \bar{x}_{t}$ converges to a nonzero vector? If so, then find the limit. [5 points]
$\triangleright \quad$ Exercise 5. Let $\mathbf{P}[\xi=k]=p_{k}$, for $k=1,2 \ldots$ and $\sum_{k \geq 1} p_{k}=1$. Let $N_{t}:=\min \left\{n \geq 0: T_{n}>t\right\}$, and let $\delta_{t}:=t-T_{N_{t}-1} \geq 0$ be the current lifetime. Note that $\delta_{0}=0$.
(a) Show that $\left(\delta_{t}\right)_{t=0}^{\infty}$ is an irreducible aperiodic Markov chain, and find its transition probabilities. [5 points]
(b) Show that δ_{t} converges in distribution to $\operatorname{Unif}\{0,1, \ldots, \hat{\xi}-1\}$, where $\hat{\xi}$ is the size biased version of ξ. [5 points]

$\triangleright \quad$ Exercise 6.

(a) Define the copula of an n-dimensional joint distribution. [3 points]
(b) Does there exist a 2-dimensional distribution whose marginals are Expon (λ) and $\operatorname{Expon}(\mu)$, and whose copula is $C(u, v)=\min \{u, v\}$? Does it have a 2-dimensional density function? [4 points]

