Applications of Stochastics — Exercise sheet 3

GÁBOR PETE http://www.math.bme.hu/~gabor

May 24, 2019

Let ξ_1, ξ_2, \ldots be the i.i.d. lifetimes in a renewal process, with non-arithmetic distribution function $F(s) = \mathbf{P}[\xi \leq s]$ and mean $\mathbf{E}\xi = \mu \in (0, \infty)$. Then $T_k := \sum_{i=1}^k \xi_i$ are the renewal times, $N_t := \min\{k : T_k \geq t\}$, and $U(t) := \mathbf{E}N_t$. The excess lifetime (or overshoot) is $\gamma_t := T_{N_t} - t$, the current lifetime is $\delta_t := t - T_{N_t-1}$, and the total lifetime is $\beta_t := \gamma_t + \delta_t$.

- \triangleright Exercise 1.
 - (a) Find the renewal equation H(t) = h(t) + H * F(t) for $H(t) := \mathbf{P}[\beta_t > x]$, where $x \ge 0$ is fixed arbitrarily. (We actually did this in class.)
 - (b) Find the renewal equation for $H(t) := \mathbf{P}[\gamma_t > x]$.
 - (c) Using the Renewal Theorem, find the limit distributions of β_t and γ_t as $t \to \infty$.

If you did the previous exercise correctly, you understand why we are interested in the next one:

\triangleright Exercise 2.

(a) Show that, for any distribution function F(t),

$$\int_0^\infty 1 - F(\max\{x,t\}) \, dt = \int_x^\infty s \, dF(s) \, .$$

(b) Show that if X has distribution function F(t), then the size-biased version \widehat{X} has distribution function $\frac{1}{\mathbf{E}X} \int_0^t s \, dF(s)$.

From the previous two exercises, conclude the following:

- \triangleright Exercise 3.
 - (a) The limit distribution of the total lifetime β_t is the size-biased version of ξ .
 - (b) The limit distribution of the overshoot γ_t is the size-biased version $\hat{\xi}$ multiplied with an independent Unif[0, 1] variable.
- \triangleright Exercise 4.
 - (a) Recall (or prove now again) that if $\xi_1 + \eta_1 + \xi_2 + \eta_2 + \ldots$ is an alternating renewal process with expectations $\mathbf{E}\xi_i = \mu \in (0, \infty)$ and $\mathbf{E}\eta_i = \lambda \in (0, \infty)$, then the asymptotic proportion of time spent in ξ -intervals is $\mu/(\mu + \lambda)$.
 - (b) A harder, local version can be proved using an appropriate renewal equation and the Renewal Theorem: if the distribution of the independent sum $\xi_i + \eta_i$ is non-arithmetic, then the probability that moment t is in a ξ -interval converges to $\mu/(\mu + \lambda)$ as $t \to \infty$.
 - (c) As a special case, show that in a renewal process with a non-arithmetic renewal distribution with finite mean, $\lim_{t\to\infty} \mathbf{P}[$ number of renewals in [0, t] is odd] = 1/2.
 - (d)* Does the last conclusion remain true if the renewal time has infinite mean?

- ▷ Exercise 5. For iid positive variables B_1, B_2, \ldots with finite mean, consider $Z_n := B_1 + \cdots + B_n$. Take a random point $U_n \sim \text{Unif}[0, Z_n]$, and let K_n be the index that satisfies $Z_{K_n-1} \leq U_n < Z_{K_n}$. Show that B_{K_n} converges in distribution to the size-biased version \widehat{B} .
- ▷ **Exercise 6.** Read the proof from Feller that $W_n \stackrel{d}{=} \max\{0, S_1, \ldots, S_n\}$, where S_i is the random walk with increments $X_i := \mathcal{B}_{i-1} \mathcal{A}_i$.
 - (a) Assume that $\mathbf{E}X_i < 0$. Then $S_{\max} = \max\{0, S_1, S_2, \dots\}$ is an almost surely finite variable, since $S_n \to -\infty$. Assume that $\mathbf{E}[e^{tX_i}] < \infty$ for some t > 0. Show that $\mathbf{P}[S_{\max} > m] < C \exp(-cm)$ for some $0 < c, C < \infty$. In particular, $\mathbf{E}S_{\max} < \infty$.
 - (b) Assuming $\mathbf{E}S_{\max} < \infty$, as in the previous item, show that $W_n/n \to 0$ almost surely. Recall from class that this implies that the a.s. limiting utilization ratio is λ/μ .
 - (c) Give an example of a sequence of random variables V_n on a single probability space so that they converge in distribution to an almost surely finite variable V_{∞} , but V_n/n does not converge almost surely to 0.
 - (d)* In the case $\mathbf{E}X_i < 0$, can it happen that $\mathbf{E}S_{\max} = \infty$? Can it happen that W_n/n does not converge almost surely to 0?
- Exercise 7. Consider an M/G/1 system: the arrival process is Markovian, with rate λ , the service is general, with rate μ . Let $H_1 := \inf\{t > 0 : Q_t^+ = 0\}$ be the length of the first busy period. Assume $\lambda \leq \mu$. Show that the busy and idle periods form an alternating renewal process. Using Exercise 4 (a) and Little's law, show that $\mathbf{E}H_1 = \frac{1}{\mu - \lambda}$.
- \triangleright Exercise 8. Show that the copula $C(u_1,\ldots,u_n)$ of any *n*-dimensional joint distribution satisfies

$$\max\left\{1-n+\sum_{i=1}^{n}u_{i}, 0\right\} \leq C(u_{1}, \dots, u_{n}) \leq \min\{u_{1}, \dots, u_{n}\}.$$

Show by examples that the upper bound is sharp for any $n \ge 1$, while the lower bound is sharp for n = 1, 2.