Applications of Stochastics - Exercise sheet 3

Gábor Pete
http://www.math.bme.hu/~gabor

May 24, 2019

Let ξ_{1}, ξ_{2}, \ldots be the i.i.d. lifetimes in a renewal process, with non-arithmetic distribution function $F(s)=$ $\mathbf{P}[\xi \leq s]$ and mean $\mathbf{E} \xi=\mu \in(0, \infty)$. Then $T_{k}:=\sum_{i=1}^{k} \xi_{i}$ are the renewal times, $N_{t}:=\min \left\{k: T_{k} \geq t\right\}$, and $U(t):=\mathbf{E} N_{t}$. The excess lifetime (or overshoot) is $\gamma_{t}:=T_{N_{t}}-t$, the current lifetime is $\delta_{t}:=t-T_{N_{t}-1}$, and the total lifetime is $\beta_{t}:=\gamma_{t}+\delta_{t}$.
$\triangleright \quad$ Exercise 1.
(a) Find the renewal equation $H(t)=h(t)+H * F(t)$ for $H(t):=\mathbf{P}\left[\beta_{t}>x\right]$, where $x \geq 0$ is fixed arbitrarily. (We actually did this in class.)
(b) Find the renewal equation for $H(t):=\mathbf{P}\left[\gamma_{t}>x\right]$.
(c) Using the Renewal Theorem, find the limit distributions of β_{t} and γ_{t} as $t \rightarrow \infty$.

If you did the previous exercise correctly, you understand why we are interested in the next one:

$\triangleright \quad$ Exercise 2.

(a) Show that, for any distribution function $F(t)$,

$$
\int_{0}^{\infty} 1-F(\max \{x, t\}) d t=\int_{x}^{\infty} s d F(s)
$$

(b) Show that if X has distribution function $F(t)$, then the size-biased version \widehat{X} has distribution function $\frac{1}{\mathbf{E} X} \int_{0}^{t} s d F(s)$.

From the previous two exercises, conclude the following:

\triangleright Exercise 3.

(a) The limit distribution of the total lifetime β_{t} is the size-biased version of ξ.
(b) The limit distribution of the overshoot γ_{t} is the size-biased version $\widehat{\xi}$ multiplied with an independent Unif $[0,1]$ variable.
$\triangleright \quad$ Exercise 4.
(a) Recall (or prove now again) that if $\xi_{1}+\eta_{1}+\xi_{2}+\eta_{2}+\ldots$ is an alternating renewal process with expectations $\mathbf{E} \xi_{i}=\mu \in(0, \infty)$ and $\mathbf{E} \eta_{i}=\lambda \in(0, \infty)$, then the asymptotic proportion of time spent in ξ-intervals is $\mu /(\mu+\lambda)$.
(b) A harder, local version can be proved using an appropriate renewal equation and the Renewal Theorem: if the distribution of the independent sum $\xi_{i}+\eta_{i}$ is non-arithmetic, then the probability that moment t is in a ξ-interval converges to $\mu /(\mu+\lambda)$ as $t \rightarrow \infty$.
(c) As a special case, show that in a renewal process with a non-arithmetic renewal distribution with finite mean, $\lim _{t \rightarrow \infty} \mathbf{P}[$ number of renewals in $[0, t]$ is odd $]=1 / 2$.
(d)* Does the last conclusion remain true if the renewal time has infinite mean?
\triangleright Exercise 5. For iid positive variables B_{1}, B_{2}, \ldots with finite mean, consider $Z_{n}:=B_{1}+\cdots+B_{n}$. Take a random point $U_{n} \sim \operatorname{Unif}\left[0, Z_{n}\right]$, and let K_{n} be the index that satisfies $Z_{K_{n}-1} \leq U_{n}<Z_{K_{n}}$. Show that $B_{K_{n}}$ converges in distribution to the size-biased version \widehat{B}.
\triangleright Exercise 6. Read the proof from Feller that $W_{n} \stackrel{d}{=} \max \left\{0, S_{1}, \ldots, S_{n}\right\}$, where S_{i} is the random walk with increments $X_{i}:=\mathcal{B}_{i-1}-\mathcal{A}_{i}$.
(a) Assume that $\mathbf{E} X_{i}<0$. Then $S_{\max }=\max \left\{0, S_{1}, S_{2}, \ldots\right\}$ is an almost surely finite variable, since $S_{n} \rightarrow-\infty$. Assume that $\mathbf{E}\left[e^{t X_{i}}\right]<\infty$ for some $t>0$. Show that $\mathbf{P}\left[S_{\max }>m\right]<C \exp (-c m)$ for some $0<c, C<\infty$. In particular, $\mathbf{E} S_{\max }<\infty$.
(b) Assuming $\mathbf{E} S_{\text {max }}<\infty$, as in the previous item, show that $W_{n} / n \rightarrow 0$ almost surely. Recall from class that this implies that the a.s. limiting utilization ratio is λ / μ.
(c) Give an example of a sequence of random variables V_{n} on a single probability space so that they converge in distribution to an almost surely finite variable V_{∞}, but V_{n} / n does not converge almost surely to 0 .
(d)* In the case $\mathbf{E} X_{i}<0$, can it happen that $\mathbf{E} S_{\max }=\infty$? Can it happen that W_{n} / n does not converge almost surely to 0 ?
\triangleright Exercise 7. Consider an M/G/1 system: the arrival process is Markovian, with rate λ, the service is general, with rate μ. Let $H_{1}:=\inf \left\{t>0: Q_{t}^{+}=0\right\}$ be the length of the first busy period. Assume $\lambda \leq \mu$.

Show that the busy and idle periods form an alternating renewal process. Using Exercise 4 (a) and Little's law, show that $\mathbf{E} H_{1}=\frac{1}{\mu-\lambda}$.
\triangleright Exercise 8. Show that the copula $C\left(u_{1}, \ldots, u_{n}\right)$ of any n-dimensional joint distribution satisfies

$$
\max \left\{1-n+\sum_{i=1}^{n} u_{i}, 0\right\} \leq C\left(u_{1}, \ldots, u_{n}\right) \leq \min \left\{u_{1}, \ldots, u_{n}\right\}
$$

Show by examples that the upper bound is sharp for any $n \geq 1$, while the lower bound is sharp for $n=1,2$.

