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Notation. The probability measure for the Erdős-Rényi random graph G(n, p) is denoted by Pn,p or Pp.

Subsets of a base set S are sometimes denoted by ω ∈ {0, 1}S , thinking that ω(s) = 1 iff s ∈ ω.

The comparisons ∼, �, �, � are used as agreed in class.

Bonus exercises are marked with ∗, and can be handed in for extra points any time before the exam period.

ExerciseB 1. An event for the Erdős-Rényi random graph, A ⊂ {0, 1}(
n
2), is called upward closed or increasing

if, whenever ω ∈ A and ω′ ⊇ ω, then also ω′ ∈ A. Show that, for any such event A, other than the empty

or the complete set, the function p 7→ Pp[A ] is a strictly increasing polynomial of degree at most
(
n
2

)
, with

Pp[A ] = p for p ∈ {0, 1}. In particular, there exists a unique p such that Pp[A ] = 1/2; this value is usually

called the critical (or threshold) density, and will be denoted by pc(n) = pAc (n).

ExerciseB 2. Prove carefully that choosing M edges one-by-one between n vertices, always uniformly at

random, independently of previous choices, but resampling the edge if a multiple edge was created, we get

the model G(n,M).

ExerciseB 3. Find the order of magnitude of the critical density pc(n) for the random graph G(n, p) con-

taining a copy of the cycle C4. Same with K4. (Hint: as in class, use the 1st and 2nd Moment Methods.)

ExerciseB 4. Let H be the following graph with 5 vertices and 7 edges: a complete graph K4 with an extra

edge from one of the four vertices to a fifth vertex. Show that if 5/7 > α > 4/6, and p = n−α, then the

expected number of copies of H in G(n, p) goes to infinity, but nevertheless the probability that there is at

least one copy goes to 0. What goes wrong with the 2nd Moment Method?

ExerciseB 5. Let Xk(n) be the number of degree k vertices in the Erdős-Rényi random graph G(n, λ/n),

with any λ ∈ R+ fixed. Show that Xk(n)/n converges in probability, as n → ∞, to P[Poisson(λ) = k ].

(Hint: the 1st moment of Xk(n) should be clear; then use the 2nd moment method.)

ExerciseB 6. Assume that Yn, n = 1, 2, . . . , are non-negative integer valued random variables, with E[Yn ] ≤
K <∞, independently of n. Show that Binom

(
n− Yn, λn

) d−→ Poi(λ), as n→∞.

Recall that we used this exercise to show that the limit of the first any fixed number of steps in our

exploration random walk for G(n, λ/n) converges in distribution to the first steps in the random walk with

iid jumps Poi(λ)− 1.

ExerciseB 7. Prove that 1 − x ≤ e−x for all x ∈ R, and e−x ≤ 1 − x/2 for all 0 < x < ε, if ε > 0 is small

enough. Conclude that, for any sequence εn ∈ (0, 1), we have:
∑
n εn =∞ ⇐⇒

∏
n(1− εn) = 0.

ExerciseB 8. Show by example that, in the Second Borel-Cantelli lemma, the assumption of independence

cannot be omitted: construct some events An on some probability space with
∑∞
n=1 P[An ] = ∞ but

P[An infinitely often ] = 0.
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The following is called “Monte Carlo integration.”

ExerciseB 9. Let f : [0, 1] −→ R be a measurable function with
∫ 1

0
|f(x)|4dx < ∞, and let U1, U2, . . . be

i.i.d. Unif[0, 1] variables. Prove that (f(U1) + · · ·+ f(Un))/n converges almost surely to
∫ 1

0
f(x)dx.

I argued intuitively in class that we cannot have almost sure convergence in the Central Limit Theorem.

To make this precise, here is a bonus exercise:

ExerciseB 10. * Let X1, X2, . . . be iid variables with EXi = µ and VarXi = σ2 < ∞, and let Zn :=
X1+···+Xn−nµ√

nσ
. Show that lim infn Zn = −∞ and lim supn Zn =∞ almost surely.

The following exercise gives an example where the converse of Chung-Fuchs is not true:

ExerciseB 11. Recall the standard Cauchy density: 1
π(1+x2) for x ∈ R. Accepting the fact that if X1, . . . , Xn

are i.i.d. Cauchy variables, then the sum Sn = X1+· · ·+Xn has the distribution of nX1, show the following:

(a) Sn/n
P−→ 0 does not hold.

(b) For any ε > 0, the expected number of returns to the interval (−ε, ε) by the Cauchy walk Sn is infinite.

The following exercise originates from a question from the audience during the proof of Chung-Fuchs. I

know how to do (a), it needs a trick, but is doable — it is for bonus. Part (b) is easy and compulsory. I have

not really thought about (c) and (d). My guess about (c) is that the answer is “no”, and then it should not

be hard to find an example. For (d) I do not have a guess, and the solution might actually be hard.

ExerciseB 12. Let X1, X2, . . . be iid integer-valued variables with positive variance, and let Sn = X1 + · · ·+
Xn be the resulting random walk. Let Mn be the largest (rightmost) modus of the distribution of Sn.

(a)* Assume that the Xi’s are symmetric; i.e., Xi
d
= −Xi. Show that M2n = 0 for any n ≥ 0.

(b) Give an example with EXi = 0, but M2k < 0 for some k.

(c)* Assume that EXi = 0 but M2k < 0 for some k. Does it follow that M2n → −∞?

(d)* Whenever M2n → −∞, does lim supnM2n/n < 0 also hold?

The goal of the last bonus exercise is to present one way to pass from G(n, p) to the G(n,M) model.

ExerciseB 13.* Fix δ > 0 arbitrary, and let pn ∈ (0, 1) and Mn ∈
{

0, 1, . . . ,
(
n
2

)}
be two sequences satisfying(

n
2

)
pn →∞ and (1 + δ)

(
n
2

)
pn < Mn for all n. Let An ⊂ {0, 1}(

n
2) be a sequence of upward closed events such

that Ppn [An ]→ 1. Prove that P
[
G(n,Mn) satisfies An

]
→ 1, as n→∞.

In more detail:

(a) Show that P
[
Binom

((
n
2

)
, pn
)
< Mn

]
→ 1.

(b) Let En denote the number of edges in G(n, p). Deduce from part (a) that Ppn [An | En < Mn ]→ 1.

(c) Show that, for any M ∈
{

0, 1, . . . ,
(
n
2

)}
, we have Ppn

[
An
∣∣ En = M

]
= P

[
G(n,M) satisfies An

]
.

(d) Deduce from part (c) that Ppn
[
An
∣∣ En < Mn

]
≤ P

[
G(n,Mn) satisfies An

]
.

Combining parts (b) and (d) concludes the exercise.
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