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1. Aldous’ theorem. Show (by simulations) that the vector of the two largest cluster sizes C1(n), C2(n) in

the critical Erdős-Rényi graph G(n, 1/n), scaled by n2/3, converges in distribution to the vector of the two

longest excursions of a Brownian motion with parabolic drift, Bt − t2/2, away from its running minimum

(see PGG Theorem 12.23). Do not get frightened by Brownian motion: (Bt)t≥0 should just be simulated

as Xmt/
√
m for some large m, where {Xi}i≥0 is simple symmetric random walk on Z.

2. Persistence of disconnectedness. Recall that there is a sharp phase transition at p = pn = lnn
n for

the connectedness of the Erdős-Rényi graph G(n, p).

(a) Estimate the probability of connectedness at pn via simulations.

(b) What is the probability of being disconnected at the slightly off-critical value pn(t) := pn + t
n , in the

n→∞ limit? How does it behave as t→∞? Note that you can get an explicit mathematical guess

by looking at the expected number of isolated vertices, which is ∼ e−t, for large n.

(c) Now, starting from a configuration at pn, consider the dynamics where, at each step, a uniform

random edge of Kn is chosen and resampled: independently of whether it was present or not, let

it be present with probability pn. Fixing a large t > 0, what is the probability that this dynamic

random graph is disconnected all along the first tn/2 steps? Note (via a math argument) that this

probability is at least as large as the previous off-critical probability, but the question is if it is much

larger; say, only subexponentially small in t. (I do not know the answer.)

3. Virus infection on an expander graph. Take a uniformly random d-regular graph on n vertices

(there are algorithms and packages doing that). The infection starts spreading from a single vertex (the

0th generation), in the following way: with probability 1 − p it infects a uniformly random neighbour,

while with probability p it infects two independently chosen uniform random neighbours (possibly the

same one). Each of the newly infected neighbours (the 1st generation) infects 1 or 2 of its own neighbours,

independently, with the same distribution as before (and possibly choosing already infected neighbours).

Then this 2nd generation gives rise to the 3rd generation, and so on. (One may call this a branching

random walk.) Stop the process when the set of vertices that have ever got infected reaches bunc, for

some fixed u ∈ (0, 1); maybe just take u = 1/2. (Perform the infections from generation i to i + 1

sequentially, so that when we reach bunc, we can stop the infection in the middle of the generation.)

The question is how uniformly spread locally the infection is at this point.

That is, for each vertex vi, i = 1, . . . , n, record the ratio ui of the vertices that are infected among vi and

its d neighbours. Plot the histogram of these ui’s. The average is of course u (check this as a sign that

your code is correct), but does the histogram get concentrated around u as n→∞ and large d (but still

finite compared to n; think of d = 3, 4, . . . , 10 while n = 100, 200, . . . , 1000, also depending on computer

power), or not at all? Is the histogram more similar to which of the following two baseline examples?

(U) A uniformly random subset of the vertices of size bunc;
(B) The ball of size bunc around a fixed vertex (with ties on the boundary decided in a random way).
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(Note that the random d-regular graph is an expander, hence even for (B) the overall ratio of mixed edges

(one endpoint is infected, the other is not) remains uniformly positive.)

I do not know for sure, but I expect that there is a phase transition near p = pc(d) = d
2
√
d−1 − 1: for

p < pc(d) the histogram is more concentrated, more similar to (U), while for p > pc(d) it is more similar

to (B). Caveat: for small d, even to see the difference between (U) and (B), large graphs and many

experiments might be needed.

4. Opinion mixing and consensus on an expander graph. Take a uniformly random 4-regular graph

on n vertices (there are algorithms and packages doing that). At any time t = 0, 1, 2, . . . , each vertex i

has a spin σt(i) ∈ S1 := {(x, y) ∈ R2 : x2 + y2 = 1}. Start from σ0(i) = (1, 0) for all i, and consider

the following Markov chain, depending on some “inverse temperature” β > 0. Given the configuration σt,

pick a vertex i uniformly at random, and let σt+1(i) have conditional density

f(σ |σt, i) :=
1

Zβ(σt, i)

∑
j∼i

exp
(
β
〈
σ, σt(j)

〉)
with respect to Lebesgue measure, where ∼ is the adjacency relation, 〈·, ·〉 is the Euclidean inner product,

and Zβ(σt, i) is the normalizing constant to make this a density (the integral over S1).

(a) For u ∈ [0, 1], let τ−u (n) be the first time t when at least a proportion u of the vertices i have a σt(i)

with a negative x-coordinate. For u = 1/10 or u = 1/2, this could be called the time it roughly takes

to forget the starting configuration. For different β values (say, 100 and 1/100), find the order of

magnitude, in terms of n, of these stopping times τ−1/10(n) and τ−1/2(n).

(b) For u ∈ [0, 1], let τ chaosu (n) be the first time t when the average vector 1
n

∑
i σt(i) has Euclidean

length smaller than u. For u = 1/2 or u = 1/10, this could be called the time it roughly takes to get

a chaotic, disordered configuration. For the same β values as above, find the order of magnitude, in

terms of n, of these stopping times.

(c) Argue intuitively that, for u > 0 fixed and un → 0, it would be crazy if τ chaosun
(n) � τ−u (n) held;

on the other hand, τ chaosun
(n)� τ−1−un

(n) seems completely possible. According to your simulations,

what is actually the situation? Does it depend on β? If so, could you estimate the critical β where

a phase transition seems to occur?

5. Self-repelling random walk. This is the random walk model on Z, studied by Bálint Tóth and Wendelin

Werner, mentioned in the first class. Namely, let Lt(i) be the number of times the edge (i, i+ 1) is crossed

by time t by the walk (in any direction) — called the local time on the edge (i, i+ 1). Then consider the

following self-repelling nearest-neighbour random walk:

P
[
Xt+1 = Xt + 1

∣∣ X0, X1, . . . , Xt

]
P
[
Xt+1 = Xt − 1

∣∣ X0, X1, . . . , Xt

] =
exp(−βLt(Xt))

exp(−βLt(Xt − 1))
,

for some fixed β > 0. Find by simulations the typical distance |Xt|, as a function of t.

[This is good for one student.]

6. Random walk in a changing random environment. Consider critical dynamical bond percolation

on the n × n discrete torus (Z/nZ)2: at the beginning, each edge is open or closed, with probability 1/2

each, independently, then at each time step, one edge is chosen at random and its status is flipped. Now

consider a particle that starts from the origin and performs a random walk in this changing maze with

“infinite speed”: that is, it is always uniformly distributed in its current cluster. That is, let X0 = (0, 0),

and let C0 be the cluster of X0. Then let X1 be a uniform random vertex in C0. Then flip the status of

a random edge. The new cluster of X1 will be C1. Then let X2 be a uniform random vertex in C1. Then

flip the status of a random edge. The new cluster of X2 will be C2, and so on.

How many steps are needed for the particle Xt to be approximately uniformly distributed on the torus?



7. PageRank and degrees for Barabási-Albert. Take the BA graph with m outgoing edges per vertex,

at a large time n, first with m = 1 (so that we get a tree), then with m = 4. Look at four vectors:

• the times of arrivals (1, 2, . . . , n);

• the PageRank scores (R1, . . . , Rn), indexed by the arrival times;

• the first eigenvector centrality (v1, . . . , vn);

• the indegrees (id1, . . . , idn) — the outdegrees are constant m, so not interesting.

How do the correlation coefficients between these vectors behave, as n → ∞? (The correlation between

vectors (v1, . . . , vn) and (w1, . . . , wn) is understood as the correlation between the random variables vU
and wU , when U ∼ Unif({1, . . . , n}). These correlations between our random vectors are now random

themselves, but quite concentrated, my guess is. You can anyway take the expected correlation.) Does

the arrival time of the highest ranked vertex (in each of the three centrality measures, R, v, id) go to

infinity with the growth of the graph?

8. Random genetic drift drives a population towards genetic uniformity. Consider the Wright-

Fisher model, as follows. A certain gene can have two alleles, A and B. At the beginning, the two alleles

are represented equally in the gene pool given by N diploid individuals: there are altogether N copies of

A and N copies of B. In the next generation, we again have N individuals, with each of their altogether

2N genes drawn independently at random from all the genes in the old generation. And so on, repeated

forever.

(a) How many generations does it typically take to eradicate one of the alleles from the gene pool?

(b) Now assume that, in each generation, each individual may go dormant, independently with proba-

bility λ/N , some λ ∈ (0,∞) fixed, and stays dormant for an independent time ξ with distribution

P[ ξ ≥ t ] = t−β , t = 1, 2, 3, . . . , some β > 0. When D individuals are dormant, then the reproduction

is like before, just with the N −D non-dormant individuals participating. When an individual wakes

up, it will take part in the reproduction, and thus may re-introduce a seemingly extinct allele. For

what values of λ and β is the time scale to get complete uniformity significantly larger than before?

9. Gaussian copula. Consider the following data from the last 100 days for the prices of a pair of stocks:

{197.353,196.091}, {199.994,198.65}, {199.072,199.348}, {200.708,201.}, {200.913,200.886}, {198.658,200.963},
{197.991,198.945}, {196.623,195.647}, {174.145,173.292}, {195.316,197.539}, {198.094,197.832}, {199.989,199.081},
{195.803,194.361}, {198.876,199.206}, {200.673,198.304}, {199.18,199.571}, {199.31,199.408}, {198.183,198.941},
{195.385,194.721}, {194.352,193.637}, {200.305,200.425}, {200.364,198.983}, {193.307,192.28}, {199.938,199.881},
{196.373,200.394}, {198.139,198.212}, {198.429,200.204}, {195.85,195.527}, {199.789,197.688}, {142.878,144.063},
{197.9,199.182}, {199.062,198.951}, {199.45,198.405}, {199.155,199.998}, {200.273,199.752}, {195.985,196.035},
{194.796,195.318}, {146.416,146.557}, {201.217,198.965}, {181.586,178.65}, {197.829,198.288}, {199.705,199.521},
{196.436,198.504}, {198.789,197.327}, {199.322,199.112}, {197.326,196.97}, {196.636,198.376}, {198.896,200.127},
{196.368,196.261}, {199.445,199.997}, {196.488,197.711}, {201.327,200.46}, {199.445,198.858}, {202.185,198.577},
{198.497,199.534}, {187.733,187.746}, {202.017,199.699}, {197.905,196.714}, {200.163,200.675}, {199.892,200.168},
{189.9,189.625}, {199.831,197.95}, {199.754,199.582}, {197.078,198.139}, {194.82,195.171}, {190.081,192.552},
{201.011,199.33}, {199.266,200.368}, {198.476,199.991}, {198.325,199.554}, {201.485,200.171}, {200.068,199.977},
{191.163,190.332}, {198.721,197.111}, {199.126,199.662}, {200.361,200.111}, {200.368,200.463}, {185.678,183.188},
{198.889,196.268}, {196.492,197.666}, {198.766,198.719}, {199.475,196.836}, {199.234,198.996}, {194.382,195.764},
{199.488,200.936}, {199.055,198.705}, {193.661,194.99}, {200.075,199.714}, {200.656,199.61}, {197.777,198.142},
{197.921,198.226}, {196.327,195.933}, {182.735,183.658}, {199.297,198.142}, {199.786,198.945}, {198.017,199.},
{94.6431,92.8557}, {197.519,196.789}, {199.518,200.268}, {198.256,198.966}

(I admit that this is actually iid data from a certain bivariate distribution, so we see things that would not

happen for real stock prices. In real life, a day like {94.6431, 92.8557} could happen without any warning

signs beforehand, but would not be followed by completely normal days.)



(a) Calculate the sample mean vector µ and covariance matrix Σ for this data.

(b) Assuming that the distribution is bivariate normal, with the parameters (µ,Σ) just obtained, make

a random sample how the next 100 days may look like.

(c) Estimate the marginal distributions of the data, then using the Gaussian copula with parameters

(µ,Σ), make a random sample for the next 100 days.

(d) Vice versa, calculate the sample copula of the data, then assuming that the marginals are normal,

with marginal parameters obtained above, make a random sample for the next 100 days.

(e) Now use the marginals and the copula obtained from the data, and make a random sample for the

next 100 days.

(f) Plot all the data, in five separate two-dimensional pictures: (1) the original; (2) bivariate normal;

(3) estimated marginals, Gaussian copula; (4) estimated copula, Gaussian marginals; (5) estimated

copula, estimated marginals. How similar are these to each other?

(g) We go bankrupt in the future if both prices go below 0. For which model does this seem to be

the most likely? (Of course, since the minimum number in the entire data is 92.8557, it’s not really

possible to estimate this probability. I’m just asking for simple-minded intuition, which is what many

traders would also rely on.)

10. In a k-step Markov chain X0, X1, X2, . . . , by definition, k is the smallest value such that, for every

n ≥ k, the distribution of Xn depends only on the previous k steps:

Xn |X0, X1, . . . , Xn−1
d
= Xn |Xn−k, . . . , Xn−1.

The following sequence is the first 2000 steps of a k-step Markov chain. Make a guess what k is and what

the transition probabilities are.

0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,

0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,

1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0,

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0,

1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1,

1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1,

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0,

0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0,

0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,

1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1,

1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0,

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,

0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0,

1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1,

1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,



1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0,

1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1,

0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1,

1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1,

0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1,

1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1,

1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,

0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1,

1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,

0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,

1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1,

1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1,

0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1,

0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1,

0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,

1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0,

1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1,

0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,

0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1,

1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0,

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1,

1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1

[This is good for one student.]

11. Benford’s law. The first digits in many real-life numerical datasets follow Benford’s distribution: the

probability that the first digit is k is about log10(k+1)−log10 k, for k = 1, . . . , 9. During the week following

Biden’s victory in the US elections, many right-wing news outlets (including in Hungary) picked up the

news from “some mathematicians” that the dataset consisting of the number of people voting for Biden in

each district in certain key states does not follow Benford’s law, while the numbers for Trump do, which

is a proof of election fraud: Biden’s number must have been artificially altered. The following exercise

explains how much unfounded this is. Part (a) describes models where we can expect to see Benford’s

law; real-life examples include prices of various goods, sizes of cities, distances to stars, surface areas of

lakes. The most important requirement is that the database should contain numbers of several orders of

magnitude. (See https://qubit.hu/2020/12/09/miert-nem-alkalmazhato-a-benford-torveny-az-

amerikai-valasztasi-korzetekre for a more detailed explanation.) Part (b) explains that the election

numbers are not like that. Part (c) is a horrifying example from the Hungarian media.

(a) Let X1, . . . , X10 be independent random variables, not necessarily identically distributed, but each

having a distribution that is supported in the interval [1, 9], continuous or discrete, whatever, but

should be reasonably random — say, with a standard deviation at least 2. Let Y ∈ {1, . . . , 9} be

the first digit of the product X1 · · ·X10. Make 1000 independent samples, and plot the empirical

distribution of Y . Play with the 10 distributions for X1, . . . , X10, and see how often the histogram

for Y is similar to Benford’s law.

(b) Now take 1000 integers, N1, . . . , N1000 each between 200 and 1000, in any way you want. Let Bi,

for i = 1, . . . , 1000 be independent random variables with distribution Binom(Ni, 2/3), and let Ti :=

Ni − Bi. These variables model the number of votes for Biden and Trump, respectively, in the ith

electoral district with Ni voters, in a Biden-leaning county of Pennsylvania (exactly as in the news).

Plot the empirical distribution of the first digit of the B′is, and the empirical distribution of the

https://qubit.hu/2020/12/09/miert-nem-alkalmazhato-a-benford-torveny-az-amerikai-valasztasi-korzetekre
https://qubit.hu/2020/12/09/miert-nem-alkalmazhato-a-benford-torveny-az-amerikai-valasztasi-korzetekre


first digit of the Ti’s. Can you make these two plots resemble Benford’s law, by choosing the Ni’s?

Typically, which of the two plots is more similar to Benford’s law?

(c) What do you think of the first histogram in https://index.hu/belfold/2018/valasztas/2018/

04/13/csalasgyanu_valasztas_statisztika/? Read the description of the figure carefully.

https://index.hu/belfold/2018/valasztas/2018/04/13/csalasgyanu_valasztas_statisztika/
https://index.hu/belfold/2018/valasztas/2018/04/13/csalasgyanu_valasztas_statisztika/

