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Notation. The probability measure for the Erdős-Rényi random graph G(n, p) is denoted by Pn,p or Pp.

Subsets of a base set S are sometimes denoted by ω ∈ {0, 1}S , thinking that ω(s) = 1s∈ω.

The comparisons ∼, �, �, � are used as agreed in class.

Bonus exercises are marked with ∗, and can be handed in for extra points any time before the exam period.

ExerciseB 1. Let Sn := X1 + · · ·+Xn be simple random walk on Z; i.e., Xi = ±1 with probability 1/2 each,

iid. Show that E|Sn|/
√
n→

√
2/π. (Caveat: convergence in distribution does not automatically imply the

convergence of expectations! You have to use something like the Dominated Convergence Theorem.)

The next exercise gives an example where the Weak Law of Large Numbers fails for a symmetric random

variable with non-existing expectation.

ExerciseB 2. Recall the standard Cauchy density: 1
π(1+x2) for x ∈ R. Accepting the fact that if X1, . . . , Xn

are i.i.d. Cauchy variables, then the sum Sn = X1+· · ·+Xn has the distribution of nX1, show the following:

(a) Sn/n
P−→ 0 does not hold.

(b) For any ε > 0, the expected number of returns to the interval (−ε, ε) by the Cauchy walk Sn is infinite.

A small calculus lemma, immensely useful in probability:

ExerciseB 3 (Partly repeating from class). Prove that 1− x ≤ e−x for all x ∈ R, and e−x ≤ 1− x/2 for all

0 < x < ε, if ε > 0 is small enough. Conclude that, for any sequence εn ∈ (0, 1), we have:
∑
n εn =∞ ⇐⇒∏

n(1− εn) = 0.

ExerciseB 4. * Let X1, X2, . . . be iid variables with EXi = µ and VarXi = σ2 < ∞, and let Zn :=
X1+···+Xn−nµ√

nσ
. Show that lim infn Zn = −∞ and lim supn Zn = ∞ almost surely. That is, we do not have

almost sure convergence in the Central Limit Theorem.

Just to get used to the notion of couplings:

ExerciseB 5. Let Sn, n ≥ 0 be a SRW on Z started at S0 = 0, while S̃n, n ≥ 0 be a SRW on Z started at

S̃0 = 2. Give a coupling of the two processes such that Sn = S̃n never happens. (We will see soon that the

independent coupling does not work for this!)

The next three exercises define explicitly what monotone couplings and stochastic domination are, which

implicitly appeared in class.

ExerciseB 6 (Repeating from class). An event for the Erdős-Rényi random graph, A ⊂ {0, 1}(
n
2), is called

upward closed or increasing if, whenever ω ∈ A and ω′ ⊇ ω, then also ω′ ∈ A. Show that, for any

such event A, other than the empty or the complete set, the function p 7→ Pp[A ] is a strictly increasing

polynomial of degree at most
(
n
2

)
, with Pp[A ] = p for p ∈ {0, 1}. In particular, there exists a unique p
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such that Pp[A ] = 1/2; this value is usually called the critical (or threshold) density, and will be denoted

by pc(n) = pAc (n).

ExerciseB 7 (Basically repeating from class). Let (X,≤) be a partially ordered set; think of (R,≤) or

({0, 1}S ,⊆). Let B be a sigma-algebra on X, and π a probability measure on X × X with the product

sigma-algebra, with the property that π
(
{(x, y) ∈ X × X : x ≤ y}

)
= 1. Let the first marginal of π be

µ(A) := π(A × X) and the second marginal be ν(A) := π(X × A) for any A ∈ B. So, π is a monotone

coupling of µ and ν. Then, ν stochastically dominates µ: for any increasing (upward closed) set A ∈ B,

we have µ(A) ≤ ν(A).

(Strassen’s theorem says that the converse also holds: if ν stochastically dominates µ, then a monotone

coupling does exist.)

ExerciseB 8 (Partly repeating from class). By constructing monotone couplings, show the following:

(a) If 0 ≤ p ≤ q ≤ 1, then Binom(n, q) stochastically dominates Binom(n, p).

(b) If n ≤ m, then Binom(m, p) stochastically dominates Binom(n, p).

ExerciseB 9. Prove carefully that choosing M edges one-by-one between n vertices, always uniformly at

random, independently of previous choices, but resampling the edge if a multiple edge was created, we get

the model G(n,M).

ExerciseB 10. Find the order of magnitude of the critical density pc(n) for the random graph G(n, p) con-

taining a copy of the cycle C4. Same with K4. (Hint: as in class, use the 1st and 2nd Moment Methods.)

ExerciseB 11. Let H be the following graph with 5 vertices and 7 edges: a complete graph K4 with an extra

edge from one of the four vertices to a fifth vertex. Show that if 5/7 > α > 4/6, and p = n−α, then the

expected number of copies of H in G(n, p) goes to infinity, but nevertheless the probability that there is at

least one copy goes to 0. What goes wrong with the 2nd Moment Method?

ExerciseB 12. Let Xk(n) be the number of degree k vertices in the Erdős-Rényi random graph G(n, λ/n),

with any λ ∈ R+ fixed. Show that Xk(n)/n converges in probability, as n → ∞, to P[Poisson(λ) = k ].

(Hint: the 1st moment of Xk(n) should be clear; then use the 2nd moment method.)

ExerciseB 13. Assume that Yn, n = 1, 2, . . . , are non-negative integer valued random variables, with

Yn/n
P−→ 0. Show that Binom

(
n− Yn, λn

) d−→ Poi(λ), as n→∞.

(Hint: there are two sources of randomness: Yn and Binom. If Yn is not too big, the usual argument

should work. And it is unlikely that Yn is too big.)

The goal of the last bonus exercise is to present one way to pass from G(n, p) to the G(n,M) model.

ExerciseB 14.* Fix δ > 0 arbitrary, and let pn ∈ (0, 1) and Mn ∈
{

0, 1, . . . ,
(
n
2

)}
be two sequences satisfying(

n
2

)
pn →∞ and (1 + δ)

(
n
2

)
pn < Mn for all n. Let An ⊂ {0, 1}(

n
2) be a sequence of upward closed events such

that Ppn [An ]→ 1. Prove that P
[
G(n,Mn) satisfies An

]
→ 1, as n→∞.

In more detail:

(a) Show that P
[
Binom

((
n
2

)
, pn
)
< Mn

]
→ 1.

(b) Let En denote the number of edges in G(n, p). Deduce from part (a) that Ppn [An | En < Mn ]→ 1.

(c) Show that, for any M ∈
{

0, 1, . . . ,
(
n
2

)}
, we have Ppn

[
An
∣∣ En = M

]
= P

[
G(n,M) satisfies An

]
.

(d) Deduce from part (c) that Ppn
[
An
∣∣ En < Mn

]
≤ P

[
G(n,Mn) satisfies An

]
.

Combining parts (b) and (d) concludes the exercise.
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