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Bonus exercises are marked with a star. They can be handed in for extra points.

ExerciseB 1. Consider simple symmetric random walk on Z. Starting from 0, calculate the expected time

to reach 1. (Hint: write a recursion.)

We defined the Cheeger constant of a finite undirected graph as

h(G) := min

{
|E(S, Sc)|∑
x∈S deg(x)

: S ⊂ V (G) with
∑
x∈S

deg(x) ≤ |E(G)|

}
.

ExerciseB 2.

(a) Let the dumbbell graph Kn—Kn be two complete graphs Kn joined by a single edge (the bridge).

Show that h(Kn—Kn) � 1/n2, and that this is the smallest possible order of magnitude for a simple

graph on n vertices.

(b) Consider SRW (Xt)t≥0 on Kn—Kn, started at some vertex x that is not one of the endpoints of the

bridge. Show that for every ε > 0 there exists δ > 0 such that for all large enough n, if t ≤ δn2, then

the probability that (Xi)
t
i=0 has ever crossed the bridge is smaller than ε. Conclude that, for t ≤ δn2,

the L1-distance of Xt from the stationary distribution π(y) = 1/(2n) is∑
y

∣∣∣Px[Xt = y ]− π(y)
∣∣∣ ≥ 1− 2ε.

That is, at δn2 steps, we are pretty far from stationarity.

ExerciseB 3. Recall that we defined the clustering coefficient of an undirected graph as

CC :=
# paths of length 2 with endpoints connected by an edge

# paths of length 2
.

With n vertices and 10n edges, find a graph with small CC, and another one with large CC.

Linear algebra brush-up:

ExerciseB 4. For u, v ∈ Cn column vectors, define the inner product (u, v) := uT v, where v is coordinate-wise

complex conjugation. Let A be a symmetric n× n real matrix.

(a) Show that (v, u) = (u, v), and (Au, v) = (u,Av). Deduce that if v ∈ Cn is an eigenvector of A with

eigenvalue λ, then λ ∈ R.
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(b) From the fundamental theorem of algebra we know that det(A − λI) has a root λ ∈ C. Recall that

this implies that there exists a nonzero v ∈ Cn in the kernel of A− λI, hence λ is an eigenvalue, with

eigenvector v.

(c) Show that v⊥ := {u ∈ Cn : (u, v) = 0} is a linear subspace, and Av⊥ ⊆ v⊥ (when v is the eigenvector

found in the previous part).

(d) Prove by induction that A has an orthonormal basis of eigenvectors v1, . . . , vn ∈ Cn, with all real

eigenvalues λ1, . . . , λn.

(e) Show that A also has an orthonormal basis of eigenvectors u1, . . . , un ∈ Rn, with the same eigenvalues.

If G is an undirected simple graph on the vertex set {1, . . . , n}, then its adjacency matrix A is a real

symmetric n × n matrix, and P = AD−1 is the Markov transition matrix of the associated simple random

walk, where D is the diagonal matrix formed by the degrees deg(i).

ExerciseB 5.

(a) Show that ‖Pf‖∞ ≤ ‖f‖∞ holds for any f : V −→ R considered as a column vector.

(b) A dual statement (this notion of “duality” can be made precise, but you do not have to care right

now) is that ‖fTP‖1 ≤ ‖fT ‖1 holds for any f : V −→ R. (Here, ·T means transposing, so fT is a row

vector.)

(c) Deduce from part (a) or (b) that all the eigenvalues of P have absolute value at most 1.

(d) Note that it is clear what D−1/2 means. Show that B = D−1/2AD−1/2 is a symmetric matrix that

is conjugate to P , hence has the same eigenvalues. Deduce that all the eigenvalues of B (and P ) are

real, are between 1 and −1, and that the vector D1/21 =
(√

deg(i)
)
1≤i≤n is an eigenvector (both left

and right, apart from transposing) for the eigenvalue 1.

(e) Find a left eigenvector and a right eigenvector for P with eigenvalue 1.

(f) Generalizing (e), show that if B has a basis of real eigenvectors {ϕi}ni=1, orthonormal w.r.t. the inner

product 〈ϕ, ϕ̃〉 :=
∑
j ϕ(j)ϕ̃(j), as in Exercise 4, then P has a basis of right real eigenvectors ψi :=

D1/2ϕi, orthonormal w.r.t. the inner product〈
ψ, ψ̃

〉
π

:=
∑
j

ψ(j)ψ̃(j)π(j),

and left eigenvectors ψ̃Ti := ϕTi D
−1/2, orthonormal w.r.t. the same inner product.

(Note how natural this inner product 〈·, ·〉π is: vertices are weighted according to how much time

the stationary chain spends there. Also, if you know what the self-adjointness of an operator means:

P is self-adjoint w.r.t. this inner product. And one can prove, similarly to (a) and (b), that P is a

contraction in the corresponding L2-norm.)

Remark. Graph theorists prefer B to P because it is symmetric, and sometimes to A because it is normalized

to have spectrum between 1 and −1.

ExerciseB 6. Let P be the Markov transition matrix for the simple random walk on a finite undirected

simple graph G. Write −1 ≤ λn ≤ · · · ≤ λ1 = 1 for its eigenvalues (see the previous exercise).

(a) Show that λ2 < 1 if and only if G is connected (the chain is irreducible), and this is precisely when P

has a unique stationary distribution.

(b) Show that λn > −1 if and only if G is not bipartite. (Recall here the easy lemma that a graph is

bipartite if and only if all cycles are even.)

(c) Let πt := π0P
t be the distribution of the random walker after t steps. Show that πt converges

coordinate-wise to the unique stationary distribution precisely when λ2 < 1 and λn > −1.
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Now back to general directed graphs and their associated Markov transition matrix P .

ExerciseB 7. In Google’s PageRank for a graph on n vertices, the iteration xt+1 := αxtP + (1− α)1/n is

used, with some α ∈ (0, 1). Show that, for any starting vector x0, the sequence xt converges to 1−α
n 1 (I −

αP )−1.

(Hint: use the Banach fixed point theorem, with an appropriate notion of distance; see part (b) of Exercise

5. In order to have a strict contraction, don’t forget to use that α < 1. Also, note that part (c) implies that

I − αP is invertible for any α ∈ (0, 1).)

ExerciseB 8. Consider the undirected graph on the vertex set {1, 2, 3, 4}, where 1, 2, 3 form a triangle, and

1 and 4 are also connected by an edge.

(a) Calculate the Eigenvector centrality of the four vertices.

(b) Calculate the PageRank scores, for several values of α.

You are welcome to use Mathematica or other software.

ExerciseB 9. Let G be a directed graph on 3 vertices, where there is an undirected path through vertices

1, 2, 3, plus a directed edge from 1 to 3. Let A be its adjacency matrix.

(a) Find the eigenvalues of A and an orthonormal basis of eigenvectors.

(b) Consider the iteration xt+1 := xtA, with x0 = 1. Find a sequence of scalars ct such that ctxt converges

to a nonzero vector.

ExerciseB 10. If X is a non-negative random variable with finite expectation, then its size-biased version

X̂ is defined by

P[X̂ ∈ A] =
E[X 1{X∈A} ]

E[X ]
, for all measurable A ⊂ [0,∞).

If this looks incomprehensible to you, think of just two special cases: when X is discrete, with possible values

{xk}k≥1, then P[X̂ = xk] = xkP[X = xk]/EX; when X has a density function fX(x), then X̂ has density

fX̂(x) = xf(x)/EX.

(a) Show that the size-biased version of Poi(λ) is just Poi(λ) + 1.

(b) Show that the size-biased version of Expon(λ) is the sum of two independent Expon(λ)’s.

(c)* Take a Poisson point process of intensity λ on R. Condition on the interval (−ε, ε) to contain at least

one arrival. As ε → 0, what is the point process we obtain in the limit? What does this have to do

with parts (a) and (b)?

The next exercise proves the renewal paradox for the renewal process Tn := ξ1 + · · ·+ ξn in the case when

the interevent time distribution ξ is arithmetic.

ExerciseB 11. Let P[ ξ = k ] = pk, for k = 1, 2 . . . and
∑
k≥1 pk = 1. Let Nt := min{n ≥ 0 : Tn > t}, and

let δt := t− TNt−1 ≥ 0 be the current lifetime. Note that δ0 = 0.

(a) Show that (δt)
∞
t=0 is an irreducible aperiodic Markov chain, and find its transition probabilities.

(b) Show that δt converges in distribution to Unif{0, 1, . . . , ξ̂ − 1}, where ξ̂ is the size biased version of ξ.

ExerciseB 12. Mr Smith likes the brand UniCar. These cars break down after a uniform Uni[0, 2] years of

use, independently of everything. Mr Smith wants to replace each of his old cars after a fixed T years of use,

or the time of breakdown, whichever happens earlier. When a car breaks down, there is a cost of USD 1000

for towing it from the road and getting rid of it, and a new car costs USD 12000. If he replaces a car when

it still works, he gets a discount at the store for the old car, so the new car costs only USD 10000 (and there

is no extra cost of getting rid of the old car). How should Mr Smith choose T to optimize his spendings on

the long run?
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ExerciseB 13. Let ξ1, ξ2, . . . be the i.i.d. lifetimes of the light bulbs, with Eξi = µ ∈ (0,∞], and we have a

janitor who visits the corridor at times given by a Poisson process with intensity λ, and if he sees that the

bulb is dead, he replaces it by a new one. Thus the times τ1, τ2, . . . passing between the death of a light

bulb and the next visit of the janitor are thus i.i.d. Expon(λ) variables.

This is an alternating renewal process, and after a little thought, one can think of it as a renewal process

with rewards.

(a) At what rate are bulbs replaced? (I.e., what is the number of replacements per unit time, during a

large time t?)

(b) What is the almost sure limiting fraction of visits by the janitor on which the bulb is working?

(c) What is the limiting fraction of time that the light works?
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