# Applications of Stochastics - Exercise sheet 4: Renewal equations. Queueing. Copulas. Percolation. 

Gábor Pete<br>http://www.math.bme.hu/~gabor

December 18, 2021

Let $\xi_{1}, \xi_{2}, \ldots$ be the i.i.d. lifetimes in a renewal process, with non-arithmetic distribution function $F(s)=$ $\mathbf{P}[\xi \leq s]$ and mean $\mathbf{E} \xi=\mu \in(0, \infty)$. Then $T_{k}:=\sum_{i=1}^{k} \xi_{i}$ are the renewal times, $N_{t}:=\min \left\{k: T_{k} \geq t\right\}$, and $U(t):=\mathbf{E} N_{t}$. The excess lifetime (or overshoot) is $\gamma_{t}:=T_{N_{t}}-t$, the current lifetime is $\delta_{t}:=t-T_{N_{t}-1}$, and the total lifetime is $\beta_{t}:=\gamma_{t}+\delta_{t}$.
$\triangleright \quad$ Exercise 1.
(a) Find the renewal equation $H(t)=h(t)+H * F(t)$ for $H(t):=\mathbf{P}\left[\beta_{t}>x\right]$, where $x \geq 0$ is fixed arbitrarily. (We actually did this in class.)
(b) Find the renewal equation for $H(t):=\mathbf{P}\left[\gamma_{t}>x\right]$.
(c) Using the Renewal Theorem, find the limit distributions of $\beta_{t}$ and $\gamma_{t}$ as $t \rightarrow \infty$.
(d) Identify the limit distribution of the total lifetime $\beta_{t}$ as the size-biased version of $\xi$, and the limit distribution of the overshoot $\gamma_{t}$ as the size-biased version $\widehat{\xi}$ multiplied with an independent Unif $[0,1]$ variable. In order to avoid working with Stieltjes-integrals, you may assume that $\xi$ has a density function.

## $\triangleright \quad$ Exercise 2.

(a) Recall (or prove now again) that if $\xi_{1}+\eta_{1}+\xi_{2}+\eta_{2}+\ldots$ is an alternating renewal process with expectations $\mathbf{E} \xi_{i}=\mu \in(0, \infty)$ and $\mathbf{E} \eta_{i}=\lambda \in(0, \infty)$, then the asymptotic proportion of time spent in $\xi$-intervals is $\mu /(\mu+\lambda)$.
(b) A harder, local version can be proved using an appropriate renewal equation and the Renewal Theorem: if the distribution of the independent sum $\xi_{i}+\eta_{i}$ is non-arithmetic, then the probability that moment $t$ is in a $\xi$-interval converges to $\mu /(\mu+\lambda)$ as $t \rightarrow \infty$.
(c) As a special case, show that in a renewal process with a non-arithmetic renewal distribution with finite mean, $\lim _{t \rightarrow \infty} \mathbf{P}[$ number of renewals in $[0, t]$ is odd $]=1 / 2$.
$(\mathrm{d})^{* *}$ Does the last conclusion remain true if the renewal time has infinite mean? (The double star means that I do not actually know how to solve this. I have not tried hard.)
$\triangleright$ Exercise 3. Let $S_{n}:=X_{1}+\cdots+X_{n}$ be a random walk on $\mathbb{R}$, with iid increments satisfying $\mathbf{E} X_{i}<0$.
(a) Recall (or prove now again) that $S_{n}$ is transient, and $S_{\max }=\max \left\{0, S_{1}, S_{2}, \ldots\right\}$ is an almost surely finite variable.
(b) Assume that there exists some $t_{0}>0$ such that $\mathbf{E}\left[e^{t X_{i}}\right]<\infty$ for all $t \in\left[0, t_{0}\right]$. Prove that $\mathbf{P}\left[S_{\max }>m\right]<C \exp (-c m)$ for some $0<c, C<\infty$, for all $m>0$. In particular, $\mathbf{E} S_{\max }<\infty$.
(c) Let $\left(W_{n}\right)_{n \geq 0}$ be random variables on a single probability space with marginal distributions $W_{n} \stackrel{d}{=}$ $\max \left\{0, S_{1}, \ldots, S_{n}\right\}$, but arbitrary joint distribution otherwise. Assuming $\mathbf{E} S_{\max }<\infty$ from the previous item, show that $W_{n} / n \rightarrow 0$ almost surely.
(d) ${ }^{* *}$ Without the condition $\mathbf{E} S_{\max }<\infty$, can it happen that $W_{n} / n \rightarrow 0$ fails?
$\triangleright$ Exercise 4. Consider a G/G/1 queueing process with iid inter-arrival times $\left(\mathcal{A}_{n}\right)_{n \geq 1}$ and iid service times $\left(\mathcal{B}_{n}\right)_{n \geq 0}$, with $\mathbf{E} \mathcal{A}_{n}=1 / \lambda$ and $\mathbf{E} \mathcal{B}_{n}=1 / \mu$. (As in class, we are starting to serve the zeroth customer at time 0.) Assume that $\lambda<\mu$; moreover, assume that the walk $S_{n}:=X_{1}+\cdots+X_{n}$ with jumps $X_{n}:=$ $\mathcal{B}_{n-1}-\mathcal{A}_{n}, n=1,2, \ldots$, satisfies the condition $\mathbf{E} S_{\max }<\infty$ from the previous exercise.
(a) Recall from class (or from the scan from Feller's book) that the waiting time $W_{n}$ of the $n$th customer has the same distribution as $\max \left\{0, S_{1}, \ldots, S_{n}\right\}$.
(b) Let $\mathcal{B}(t)$ be the total time in $[0, t]$ while the system is busy. Show that

$$
\mathcal{B}_{0}+\cdots+\mathcal{B}_{N_{t}-1}-W_{N_{t}} \leq \mathcal{B}(t) \leq \mathcal{B}_{0}+\cdots+\mathcal{B}_{N_{t}}
$$

where $N_{t}$ is the index of the last customer arriving before time $t$.
(c) Using the SLLN and part (c) of the previous exercise, show that the limiting utilization ratio is

$$
\lim _{t \rightarrow \infty} \frac{\mathcal{B}(t)}{t}=\frac{\lambda}{\mu} \quad \text { almost surely }
$$

$\triangleright$ Exercise 5. Consider an $\mathbf{M} / \mathbf{M} / \mathbf{1}$ queuing system: the interarrival times are iid Expon $(\lambda)$, the service times are iid Expon $(\mu)$. Assume $\lambda<\mu$. Let's start at time 0 with nobody in the system.

Let $N_{0}=0, N_{1}, N_{2}, \ldots$ be the time moments when a customer arrives at the system or leaves it (having been just served). Let $Y_{i}$ be the number of people in the system (including the one currently being served, if there is any), at time $N_{i}$.
(a) Show that $\left(Y_{i}\right)_{i \geq 0}$ is an irreducible aperiodic Markov chain. Find its transition probabilities and stationary distribution.
(b) Assume that $\mu$ and $\lambda$ are such that the utilization ratio in the queueing process is $99 \%$. On the long run, what is the average number of people in the system?
(c) Now assume that the expected service time increases by $1 \%$, from $\lambda$ to $1.01 \lambda$. How does the average number of people in the system change?
$\triangleright$ Exercise 6. Show that the copula of any $n$-dimensional joint distribution is invariant under scalings and shifts:

$$
C_{\left(X_{1}, \ldots, X_{n}\right)}\left(u_{1}, \ldots, u_{n}\right)=C_{\left(\sigma_{1} X_{1}+\mu_{1}, \ldots, \sigma_{n} X_{n}+\mu_{n}\right)}\left(u_{1}, \ldots, u_{n}\right),
$$

for any $\mu_{i}$ 's and positive $\sigma_{i}$ 's.
In particular, for $n=2$, show that the copula of the 2 -dimensional joint Gaussian $\mathbf{N}(\bar{\mu}, \Sigma)$ depends only on the correlation coefficient between the two coordinates.
$\triangleright \quad$ Exercise 7. Show that the copula $C\left(u_{1}, \ldots, u_{n}\right)$ of any satisfies

$$
\max \left\{1-n+\sum_{i=1}^{n} u_{i}, 0\right\} \leq C\left(u_{1}, \ldots, u_{n}\right) \leq \min \left\{u_{1}, \ldots, u_{n}\right\}
$$

Show by examples that the upper bound is sharp for any $n \geq 1$, while the lower bound is sharp for $n=1,2$.
In particular, does there exist a 2-dimensional distribution whose marginals are Expon $(\lambda)$ and Expon $(\mu)$ distributions, and whose copula is $C(u, v)=\min \{u, v\}$ ? Does it have a 2 -dimensional density function?
$\triangleright$ Exercise 8. What is the critical bond percolation density for the infinite triangular ladder?

$\triangleright \quad$ Exercise 9. Consider site percolation on $\mathbb{Z}^{2}$. Show that $1 / 3 \leq p_{c}\left(\mathbb{Z}^{2}\right) \leq 5 / 6$.

